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Abstract 

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in 
such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of 
exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version 
of K-Means algorithm, namely Persistent K-Means, which alters the convergence method of K-Means algorithm to 
provide more accurate clustering results than the K-means algorithm and its variants by increasing the clusters’ 
coherence. Persistent K-Means uses an iterative approach to discover the best result for consecutive iterations of K-
Means algorithm. 
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1. Introduction 

The main goal of clustering is to generate compact 
groups of objects or data that share similar patterns 
within the same cluster, and isolate these groups from 
those which contain elements with different 
characteristics [1, 4, 6, 11, 15, and 19].  

The K-means algorithm is one of the most 
commonly used clustering algorithms, which uses the 
data reassignment method to repeatedly optimize 
clustering [1, 2, 7 and 9].  Although the K-means 
algorithm has features such as simplicity and high 
convergence speed, it is totally dependent on the initial 
centroids which are randomly selected in the first 

phase of the algorithm. Due to this random selection, 
the algorithm does not always converge to the 
optimized solution [16]. Include taking into account 
the K value more than its actual value. Or select the 
initial centroids with a special technical for converging 
the K-means algorithm to more accurate clustering 
results. Different variants of K-means algorithm have 
been proposed to address these limitations.  In [18] 
four initialization approaches are proposed for K-
Means algorithm is presented that these approaches 
include: In [18] four initialization approaches are 
proposed for K-Means algorithm is presented that 
these approaches includes: Random, Forgy, MacQueen 
and Kaufman. Random method divides the database 
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into a partition of K randomly selected clusters. In 
Forgy, K instances of the database (seeds) are chosen 
at random and the rest of the instances are assigned to 
the cluster represented by the nearest seed.  

In Macqueen, K instances of the database (seeds) 
are chosen at random. Following the instance order, 
the rest of the instances are assigned to the cluster with 
the nearest centroid. After each assignment, a 
recalculation of the centroid has to be carried out. 
Finally in Kaufman method, the initial clustering is 
obtained by the successive selection of K 
representative instances. The first representative is 
chosen to be the most centrally located instance in the 
database. The rest of representative instances are 
selected according to the heuristic rule of choosing the 
instances that promise to have around them a higher 
number of the rest of instances and that are located as 
far as possible from the previously fixed ones. 
In [17] a procedure for computing a refined starting 
condition from a given initial one that is based on an 
efficient technique for estimating the modes of a 
distribution. The refined initial starting condition 
allows the iterative algorithm to converge to a better 
local minimum. The procedure is applicable to a wide 
class of clustering algorithms for both discrete and 
continuous data. Reference [20] proposes a new 
approach to optimizing the designation of initial 
centroids for K-means clustering. This approach is 
inspired by the thought process of determining a set of 
pillars' locations in order to make a stable house or 
building. The authers consider the pillars' placement 
which should be located as far as possible from each 
other to withstand against the pressure distribution of a 
roof, as identical to the number of centroids amongst 
the data distribution. Therefore, the proposed approach 
in this paper designates positions of initial centroids by 
using the farthest accumulated distance between them. 
First, the accumulated distance metric between all data 
points and their grand mean is created. The first initial 
centroid which has maximum accumulated distance 
metric is selected from the data points. The next initial 
centroids are designated by modifying the 
accumulated distance metric between each data point 

and all previous initial centroids, and then, a data point 
which has the maximum distance is selected as a new 
initial centroid. This iterative process is needed so that 
all the initial centroids are designated. This approach 
also has a mechanism to avoid outlier data being 
chosen as the initial centroids. In reference [21] the 
authors propose a new approach to optimize the initial 
centroids for K-Means which spreads them in the 
feature space uniformly so that the distance among 
them is as far as possible.  

In spite of the improved performance of the K-
Means variants for synthetic datasets with Gaussian 
distribution, their performance on real datasets is not 
very promising and different from the original K-
Means algorithm. In addition, all K-Means based 
algorithms lack an efficient method to determine the 
optimal number of clusters. Either this requires the 
user to determine the number of clusters arbitrarily or 
based on practical and experimental estimates, which 
might not be the optimal values.  

In this paper, we propose an improved version of K-
Means algorithm, namely Persistent K-Means, which 
alters the convergence method of K-Means algorithm 
to provide more accurate clustering results than the K-
means algorithm and its variants by increasing the 
clusters’ coherence. Persistent K-Means uses an 
iterative approach to discover the best result for 
consecutive iterations of K-Means algorithm.  

The rest of the paper is organized as follows. 
Section II provides a brief description of the Persistent 
K-means algorithm. Section III demonstrates a case 
study where the clustering errors are calculated for 
different algorithms. Finally, Section IV concludes the 
paper. 

2. Persistent K-means  

In this section, an improved version of K-Means 
algorithm, namely Persistent K-Means, is proposed, 
which alters the convergence method of K-Means 
algorithm to present deterministic and accurate 
clustering results. Persistent K-Means uses an iterative 
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approach to discover the best result for consecutive 
iterations of K-Means algorithm. Assume a matrix 

called K NBest _ Dist  , with K rows and N columns. 

Where, K is the number of clusters, N is the total data 
count, and each element of the matrix equals the 
Euclidean distance of each data item from centroids of 
the discovered clusters. Using this matrix, we can 
assign each data to the closest cluster centroid. Now, 

considering another matrix called K 3M_ Dist  , in which 

each row, from 1 to K, represents a cluster centroid, 
and the three columns respectively contain the 
number, total Euclidean distance, and the average 
distance of the data assigned to the corresponding 
cluster. Equation (1) presents the third column values 
of this matrix. 

(K,3) (K,2) (K,1)M_ Dist = (M_ Dist / M_ Dist )

 
(1) 

Assuming Ave_Dist is the mean of the second 

column values in matrix K 3M_ Dist  , for consecutive 

iterations of K-Means algorithm, a low value of 
Ave_Dist indicates that the K-Means algorithm is 
converted to a more accurate result. This condition is 
the “first constraint” of this dissertation, which is 
proposed to achieve the best result for different 
iterations of the algorithm. Generally, in order to 
achieve the optimal result of K-Means algorithm, we 
need to run 1 to R iterations of this algorithm, based 
on the number of iterations defined by the user. The 
results corresponding to the iteration with the 
minimum Ave-Dist is returned as the final output of 
the algorithm. This is illustrated by an example in the 
following. We must note that all synthetic data used in 
this section are also applied in [15]. The dataset used 
in this section includes 25620 2-dimensional data and 
10 clusters. In Table 1, results of 10 consecutive 
iterations are presented and the minimum value of 
Ave-Dist corresponds to iteration 8. Accuracy 
evaluation results based on AC accuracy measure, 
indicate that the clustering accuracy in this iteration is 
higher that of other iterations.

Table 1 

K-Means algorithm results in 10 rounds 

AC Ave_Dist Iteration No. 

80.12 655401294525.546 1 

90.00 338521198628.016 2 

90.06 327507683280.353 3 

90.04 349949420687.898 4 

70.24 827217507568.969 5 

90.06 327507683280.353 6 

79.48 2117958554025.93 7 

99.96 242094107823.816 8 

90.01 321337928867.259 9 

90.05 349517225397.660 10 
  

Table 1, presents the results of matrix K 3M_ Dist  in 

iteration 8 and Fig. 1, presents an overview of the 
clustering results of iteration 8. 

 

Fig. 1. Eighth iteration results of K-Means algorithm 

Table 2 presents more details regarding the results 

of matrix K 3M_ Dist   in the eighth iteration of K-Means 

algorithm using the synthetic data set of the 
experiments.
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Table 2 

Results of K 3M_ Dist   in the eighth iteration of K-Means  

(K,3)M_ Dist  (K,2)M_ Dist  (K,1)M_ Dist  K 

99062282.654861 256373187510.78 2588 1 

133914033.56765 353934790719.30 2643 2 

134308555.81052 357797992679.24 2664 3 

61014568.574379 153390625395.99 2514 4 

90343288.467262 228026460091.37 2524 5 

59144592.833550 147624903712.54 2496 6 

60796107.310754 150166385057.56 2470 7 

115475534.15090 301044717531.40 2607 8 

110662125.51444 284512324697.62 2571 9 

73955835.958446 188069690842.32 2543 10 

Moreover, Fig. 2 presents the clustering results in 
iteration 10 (which has an accuracy of 90.05%). 

 

Fig. 2. Tenth iteration results of K-Means algorithm 

Satisfying the “first constraint” for consecutive 
iterations of K-Means algorithm leads to results that 
are more accurate. However, in some cases, in which 
some clusters are close and some are far from each 
other, increases the chance of making mistakes and 
even by considering the “first constraint”, it’s not 
possible to provide the most accurate result. For 
instance, assume a synthetic dataset consisting of 
10752 two-dimensional records and 10 clusters. Table 
3 presents the results of 10 consecutive runs of the 
algorithm on this dataset.

 

Table 3 

K-Means algorithm results in 10 iterations 

AC Ave_Dist Iteration No.

90.30 110170616864.106 1 

79.28 343677320109.839 2

70.36 204069771177.445 3

79.99 167025068278.392 4

79.97 233767050297.790 5

99.90 86531408864.7107 6

80.67 117312819963.335 7

80.16 199513262433.238 8

70.35 205711134156.617 9

90.33 76159749961.1842 10

As can be seen in Table 3, even though the 
minimum value of Ave_Dist corresponds to iteration 
10, the accuracy of iteration 10 is less than that of 
iteration 6. Considering Ave_Dist, the result of 10 runs 
of the algorithm must be returned as the final result. 
However, according to Fig. 3, in iteration 10, the 
algorithm specifies some cluster centroids by mistake 
and based on AC accuracy measure results, the best 
result is obtained by iteration 6. The reason for the 
wrong answer of iteration 10 is definitely the wrong 
cluster centroid in low Centralized arrears. In what 
follows a solution is proposed for this problem. 

 

Fig. 3. Tenth round results of K-Means algorithm 
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Table 4 presents the results of K 3M_ Dist  in iteration 

10. In an ideal situation, for the relevant datasets, 
cluster sizes must be almost the same. However, in 
iteration 10 (Table 4), the data assigned to the centroid 
of the fifth cluster (K=5) are almost twice the expected 
values, since one cluster centroid is selected for two 
adjacent clusters (Fig. 3). Moreover, the number of 
data records assigned to the centroid of the ninth 
cluster (K=9) is very low, since this centroid is 
selected at a point far from the Centralized area of the 
data space. As it was mentioned, the third column of 

K 3M_ Dist   representing the average distance of a data 

record from the corresponding cluster centroid. These 
values are presented in the fourth column of Table 4. 

Table 4  

Results of K 3M_ Dist   in the tenth iteration of K-Means  

Ave (K,3)M_ Dist  (K,2)M_ Dist  (K,1)M_ Dist  K 

0.66 96910899.69504 108927851257.2 1124 1 

0.33 48559128.35595 51326998672.24 1057 2 

0.21 31883372.26043 33126823778.59 1039 3 

0.47 69113275.40665 74642337439.19 1080 4 

0.54 79706711.38171 163558171755.2 2052 5 

0.35 51190243.23626 55592604154.58 1086 6 

0.36 52795451.77791 56332747047.03 1067 7 

0.23 34437639.60279 36021771024.52 1046 8 

6.24 905879993.6318 95117399331.34 105 9 

0.56 79334667.10931 86950795151.80 1096 10 

In cases where cluster centroids are falsely selected 
far from Centralized areas, the average distance of the 
data assigned to these cluster centroids is much larger 
than the cluster centroids, which are selected from 
Centralized areas. For a better representation of the 
amount of this difference, each element of the fourth 
column of Table 4 is divided by the mean of its values 
and results are presented in the fifth column of the 
Table 4.  

According to the results in Table 4 the difference 
between the element of the ninth cluster (K=9) and the 
fifth cluster (K=5) is abnormal. The reason behind this 
is the large difference between the mean and median 

of the elements in the third column K 3M_ Dist  . In order 

to prevent this type of problems, we have proposed a 
condition called the second constraint. Accordingly, if 
equation (2) is satisfied by one of the iterations, the 
results of that iteration is preferred to the results of 
iterations which only satisfy the “first constraint”. In 
cases where the second constraint is satisfied, the 
result of the iteration is selected as the final result of 
the algorithm. In fact, for determining the final cluster 
centroids, the “second constraint” precedes the “first 
constraint”. 

(2 Mean_Dist) > (Med_Dist)   (2) 

For clusters 1 to K, the third column of 

K 3M_ Dist  consists of the average distance of a data 

record from the corresponding cluster centroid. In 
equation (3-2), Mean_Dist equals the mean of values 

in the third column of K 3M_ Dist  and Med_Dist equals 

the median of the elements in the third column of 

K 3M_ Dist  . Mean_Dist and Med_Dist values of 

iteration 10 of K-Means in the previous example are: 

 

Med_Dist = 468881682.9461516 

Mean_Dist = 144981138.2457970 
 

These results indicate that equation (2) is not 
satisfied in this iteration of K-Means. Therefore, it’s 
necessary to apply some conditions to select the best 
result as the result of the algorithm in all cases. The 
process of Persistent K-Means algorithm is presented 
in Fig. 4. 

 

According to Fig. 4, after determining dataset (D), 
the number of clusters (K), and the user-defined 

number of iterations (R), matrix K 3M_ Dist   are created 
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based on the results of K NBest _ Dist   (as one of the 

outputs of K-Means). Subsequently, Ave_Dist is 
computed and compared with a default value, i.e. 
infinite (the initial value of Min_Dist). Clearly, it’s the 
lower value and is recorded as the new value of 
Min_Dist. 

 

Fig. 4. Persistent K-Means flowchart 

We must note that in the next iterations, only if the 
value of Ave_Dist in the corresponding iteration is less 
than Min_Dist, its value is recorded as a new 
minimum value in the Min_Dist variable. Otherwise, 
the results of that iteration is ignored and a new 

iteration of the algorithm is executed. After updating 
Min_dist, the second constraint is checked for the 
corresponding iteration. If it’s satisfied, its result is 
stored in Temp2 and the value of the Counter variable 
is incremented; otherwise, the clustering result of that 
iteration is stored in Temp1. Subsequently, the 
algorithm checks whether there are more iterations to 
run? if Yes, it runs the next iteration. otherwise, it 
checks the Counter variable and if its value is larger 
than 0, it means that the second constraint has been 
satisfied with one of the iterations. Then the result of 
that iteration, stored in Temp2, is selected as the final 
output of the algorithm. If its value is not larger than 0, 
the last result stored in Temp1 is selected as the final 
result and the algorithm is stopped. In what follows, 
the results of Persistent K-Means clustering in the 
previous example are investigated. 

Table 5 presents the results of Persistent K-Means 
(assuming r=10) on the corresponding dataset. The 
minimum value of Ave_Dist corresponds to iteration 
10 of the algorithm. However, since the second 
constraint is not satisfied, the fifth iteration is returned 
as the final result of the algorithm. The reason is that 
in iteration 5, according to table 5, in addition to 
minimizing the Ave_Dist value, the second constraint 
is also satisfied. Since this constraint precedes the first 
condition, the result of this iteration is selected as the 
final output. The evaluation results based on accuracy 
(AC) measure [20] for 10 consecutive iterations of the 
algorithm shows the clustering precision of this 
iteration of Persistent K-Means algorithm. 

Table 5 

Persistent K-Means algorithm results in 10 rounds 

AC Ave_Dist Iteration No.

79.50 317873556933.486 1 

70.50 238935794873.245 2

79.51 256760408954.824 3

79.82 255168615089.361 4

99.90 86531408864.7107 5

79.98 163652149307.042 6

78.98 428409853900.782 7

80.03 259409970278.423 8

79.37 278407541804.449 9

90.33 76159749961.1842 10
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Fig. 5, and Fig. 6, respectively presents an overview 
of the results of Persistent K-Means for iterations 5 
and 10. According to Table 5, the clustering accuracy 
for iteration 5, based on AC accuracy measure equals 
99.9%, which is the maximum possible accuracy for 
10 consecutive iterations of K-Means algorithm. 

 

Fig. 5. Persistent K-Means algorithm results in (r=5) 

 

Fig. 6. Persistent K-Means algorithm results in (r=10) 

According to Fig. 6, despite the fact that the 
minimum value of Ave_Dist is obtained through 
iteration 10, the algorithm does not have an acceptable 
performance in detecting clusters centroids. More 
specifically, selecting a cluster centroid from the less 
Centralized areas, as well as a centroid for two distinct 
clusters, its accuracy is 90.3% based on AC, which is 
less than that of iteration 5. The reason for this wrong 
selection is ignoring the second constraint. 

Table 6 

Results of K 3M_ Dist   matrix in (r=5) 

Ave
 

3(K, )M_ Dist  2(K, )M_ Dist  1(K, )M_ Dist  K 

0.27 21393012.84712 21799480091.22 1019 1 

0.96 76406933.52488 82748709007.44 1083 2 

1.40 111331487.4529 123911945535.1 1113 3 

2.30 181859121.3599 201863624709.5 1110 4 

1.61 127799607.5883 144924755005.2 1134 5 

0.40 31883372.26043 33126823778.59 1039 6 

1.19 94460017.76343 101072219006.8 1070 7 

0.44 35453908.88381 37120242601.35 1047 8 

0.31 24772972.61415 25739118546.10 1039 9 

1.07 84705983.93953 93007170365.61 1098 10 

According to Table 6, Mean_Dist and Med_Dist of 
iteration 5 are: 

Med_Dist :101626067.103523 

Mean_Dist : 79006641.8234663 

These results indicate the satisfaction of the second 
constraint in iteration 5. Accuracy evaluation results of 
Persistent K-Means clustering algorithm using a real 
dataset indicate the absolute superiority of the 
proposed algorithm in comparison to the classic 
version of K-Means algorithm and other improved 
versions of this algorithm. 

In the third phase of running GBDC-P2P algorithm, 
each peer separately runs Persistent K-Means 
algorithm on its external data to obtain the final cluster 
centroids. Corresponding peer using the centroids 
obtained from this algorithm assigns its internal data to 
the closest cluster centroid. Eventually, the peer 
clusters its data independently from other peers and 
thus its local clusters are formed. 
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3. Case Study 

This section focuses on evaluating the performance 
of Persistent K-Means centralized clustering 
algorithm. For this purpose, the result of Persistent K-
Means algorithm is compared with the results of other 
algorithms on the Ruspini [26], IRIS and Wine and 
New Thyroid [27] real data sets.  

It should be noted that in order to evaluate the 
Persistent K-Means centralized clustering algorithm, 
accuracy (AC) assessment [20] criterion is used that 
will be discussed briefly in the following. Also, more 
information about the real data set examined in this 
section is provided in Table 6. 

Table 6 

The real datasets used in the evaluation of Persistent K-Means. 
 

Number of 
Cluster

s

Number of 
Dimensi

ons 
Number of 

Data Dataset Name Ref 

4 2 75 Ruspini [20] 

3 4 150 IRIS [13] 

3 5 215 NewThyroid [13] 

3 13 178 Wine [13] 

4-1. Assessment criteria of clustering accuracy "AC" 

If C shows the results of real integer clustering, at the end 
of each round of the centralized clustering algorithm, K 
clusters of 1 2 3C  = {C ,C ,C ,...,C }P P P P P

K  ore extracted called 

calculated clusters (CP). According to Equation (3), the AC 
criterion gives a number between zero and one. If the 
number is closer to one, it reflects the high accuracy of the 
concerned clustering algorithm (Xu, 2003). In equation (3), 
|D| is the total amount of network data. the map (c) function 
is used for mapping a calculated cluster CP  to the real peer 
cluster C. The δ(x,y)  function is “1” if (x = y), otherwise, 

it returns the value of zero [5, 11]. 

p

d D
δ(C(d),map(C (d)))

AC
D

   (3) 

4-2. Persistent K-Means clustering algorithm 
evaluation results over real datasets 

In this section, based on AC criterion, we compare 
the clustering accuracy of Persistent K-Means 
algorithm with, K-Means with random init, K-
Medoids [12], Fuzzy C-Means [3]. We also compare 
the Persistent K-Means result with the several 
improved versions of K-Means algorithm, including 
Forgy, MacQueen, Kaufman [18], Refinement [17], 
MDC [20] and Improved Pillar K-Means [21]. 
Comparisons of results on real data sets of Ruspini in 
Fig. 7, IRIS in Fig. 8, Wine in Fig. 9, and New 
Thyroid in Fig. 10 are shown. 

 

Fig. 7. Comparing the clustering results on Ruspini dataset 

 
Fig. 8. Comparing the clustering results on IRIS dataset 
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Fig. 9. Comparing the clustering results on Wine dataset 

 

 

Fig. 10. Comparing the clustering results on New Thyroid dataset 

The evaluation results indicate the absolute 
superiority of the results of Persistent K-Means 
algorithm compared to the K-Means classical version 
and its relative advantages in comparison with 
improved versions of K-Means algorithm. It should be 
noted that the results of evaluation of the proposed 
algorithm is provided for the default condition (r= 10). 

4. Conclusion 

In this paper inverse kinematic formulation of a 
radial symmetric (hexagonal) hexapod has been verified 
and demonstrated by an experimental hexapod robot. 
SiWaReL hexapod robot prototype and its design is 
discussed and the implementation process is studied. It is 
shown that a modular view for solving inverse kinematic 

problem and gait analysis for this kind of robot works 
well. 
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