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Abstract 

Target coverage is one of the important problems in visual sensor networks. The coverage should be accompanied 
with an efficient use of energy in order to increase the network lifetime. In this paper, we address the maximum lifetime 
for visual sensor networks (MLV) problem by maximizing the network lifetime while covering all the targets. For this 
purpose, we develop a simulated annealing (SA) algorithm that divides the sensors’ Field-of-View (FoV) to a number of 
cover sets and then applies a sleep-wake schedule for cover sets. We also identify the best possible FoV of sensors 
according to the targets’ location using rotating cameras, to reduce the solution space and approaching to a near-optimal 
solution. Our proposed energy and neighbor generating functions of the SA result in a balanced distribution of energy 
consumption as well as escaping from local optima. We conduct some simulation experiments to evaluate the 
performance of our proposed method by comparing with some well-known solutions in the literature. 

Keywords: target coverage; network lifetime; scheduling; simulated annealing; visual sensor networks. 

   

 

1. Introduction 

A wireless sensor network (WSN) is composed of 

a large number of sensor nodes deployed over a 

geographic area for monitoring physical phenomena 

[1]. A power source supplies the energy needed by the 

sensors to perform their tasks. This power source is 

usually a small battery with a limited capacity. In 

traditional WSNs, sensors collect the scalar data such 

as humidity, temperature, pressure, etc. But the advent 

of inexpensive CMOS cameras has created the 

opportunity to build Visual Sensor Network (VSN) 

which enables us to gather, process and transmit the 

visual data [2]. VSNs are significantly different from 

the traditional WSNs. For example, unlike scalar 

sensors in traditional WSNs, the sensing region of a 

camera sensor node is limited to its Field of View 

(FoV). In a two-dimensional space, the FoV of a 

camera looks like a sector of a disk with its own 

specific viewing angle. Consequently, in addition to 

the sensing range (radius), there is an important 

property (angle of view), which should be considered.  

One of the issues addressed in literature is the 

coverage problem that the different solutions are 

proposed to solve it [3-9]. Coverage answers this 

question; how well the sensing field (or targets) is 

monitored (tracked) by camera sensors? Thus, 

coverage is a quality of service (QoS) problem. Based 
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on what is to be covered, three types of coverage are 

defined: area coverage, barrier coverage, and target 

coverage to monitor a number of fixed or moving 

targets. In this paper, we concentrate on the target 

coverage problem and assume that visual sensors are 

randomly deployed for monitoring a set of targets 

with known locations. To guarantee the coverage of 

all the targets, a sufficiently high density of sensors 

along with redundancy is necessary. On the one hand, 

as mentioned earlier, a battery that gets depleted over 

time usually handles the power supply of sensors. 

Sensors are often deployed in such environments as 

forests, under water or glaciers and replacing the 

batteries is nearly impossible. On the other hand, it is 

necessary to increase the network lifetime in order to 

satisfy the requirements of such applications as long-

term coverage. Consequently, we intend to solve a 

problem with two conflicting goals: coverage of all 

targets requires the activation of more camera sensors, 

but the energy saving requires turning the most 

sensors off.  

As implied in [3] and [10], one of the common 

approach to increase the network lifetime is to 

schedule sensors in sleep-wake cycles. In this paper, 

we will deal with the issue of “Maximum Lifetime for 

VSN” (MLV) in visual sensor networks. We aim to 

find sensor-FoV cover sets (CS) and to determine the 

appropriate camera viewing angles so that all intended 

targets could be covered. Then, we intend to properly 

schedule consecutive waking of CSs and the other 

sensors to sleep to conserve energy and hence to 

prolong the network lifetime. Here, the lifetime of the 

network is the period of time during which each target 

is monitored by at least one active sensor. This issue 

is very similar to the Maximum Coverage with 

Minimum Sensors (MCMS) problem [3] that has been 

proven to belong to the class NP-complete (NPC). 

In the literature, many solutions have been 

proposed to solve the target coverage problem in 

visual or directional sensor networks [3, 4, 10-13]. 

Although the proposed solutions achieved substantial 

improvement in the network lifetime, most of them 

assumed the fixed, predetermined and non-

overlapping directions for cameras [3, 10]. These 

limitations and lack of attention on the location of 

targets lead to inappropriate selection of camera 

direction and consequently loss of maximum 

coverage of targets. A few works, which assumed the 

overlapping sensors, is possible either did not take 

energy consumption into consideration [9, 13] or they 

did not pay attention to the position of targets and 

encompass all possible camera directions, that 

resulted in scaling up the variables of the problem and 

consequently increasing the execution time and the 

complexity of the problem [12]. 

Our main contributions in this paper can be 

summed up as follows: 

1) We use the method proposed in [14] to detect 

the camera directions in maximal subsets of targets 

and then employ them as an input for the scheduling 

algorithm. In other words, the cover sets are included 

of the FoVs with at least one target on its extreme 

edge (right or left). This reduces the solution space 

and complexity of algorithm. 

2) We model and solve the MLV problem using 

SA algorithm. The simulation results show an 

improvement in network lifetime along with the 

complete coverage of targets.  

3) We define the new energy and neighborhood 

generation function in SA. Our proposed energy 

function increases the number of cover sets, and takes 

into consideration the balanced distribution of energy 

consumption among sensors as an influential 

parameter in increasing the lifetime in future. Also, 

our new neighbor generating function examines the 

various moves in the neighborhood of current solution 

to escape local optima. 

The rest of this paper is organized as follows: 

section 2 reviews some researches in this field. 

Section 3 defines and formulates the Maximal 

Lifetime with Coverage Scheduling problem. Section 
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4 describes our proposed algorithm to solve MLV 

problem. In section 5, the performance of the 

proposed algorithm will be demonstrated using 

simulation and different experiments. Section 6, 

finally, is devoted to the conclusion and the future 

works. 

2. Related Work 

The concept of coverage is a fundamental standard 

for Quality of Service (QoS) and has been received a 

lot of attention in recent years. The goal is to have at 

least one sensor for each target to sense it in the 

camera’s FoV. This issue was initially discussed by 

Cardei et al. [15, 16] for omni-directional sensors. 

They proved the problem under the title of Maximum 

Set Cover (MSC) is NP-Complete. Two heuristic 

algorithms were proposed to solve it: Linear 

Programming (LP) and greedy algorithm. The authors 

show that the computational complexity and run-time 

are less, and network lifetime is more in greedy 

algorithm than LP method. They solved the problem 

using disjoint sensor sets [16] but in [15] could 

increase the network lifetime with incorporating 

sensors in non-disjoint cover sets.  

The algorithms introduced in [15, 16] are 

centralized and the position of targets and sensors are 

assumed to be determined. The first distributed 

algorithm with a polynomial time complexity was 

introduced by Kasbekar et al. [11] to maximize the 

network lifetime. In [11], the sensors are, aware of its 

telecommunication and sensing distance to its 

neighbors. The operating time of the network is 

divided into several time slots, and in each time slot a 

subset of sensors is activated to cover k targets. In 

order to balance the energy distribution on all the 

sensors, in each time slot, the sensors with higher 

residual energy will be chosen. The authors proved 

that the lifetime is at least 1 O(log n	 × log nB) of the 

optimal solution, where n refers to the number of 

sensors and B is the initial energy of each sensor. In 

this way, using distributed-approximation algorithm, 

they provided a testable guarantee for network 

lifetime that did not need the exact localization of 

sensors. 

The target coverage problem in directional sensor 

networks (DSN) was firstly introduced by Ai et al. 

[3]. The authors formulated this problem under the 

title of Maximum Coverage with Minimum Sensors 

(MCMS) and proved that the problem is NPC. The 

main idea of [3] is to choose sensor-FoVs which 

cover the most possible targets. This is done 

iteratively and the selected sensors are turned on one 

after another until their energy will be discharged and 

the remaining sensors cannot cover the targets. This 

algorithm was implemented utilizing the three 

methods of centralized and distributed greedy and 

incorporating sensors’ residual energy into distributed 

method. 

Gil in [10] has proposed two solutions for the 

MSCD problem: heuristic greedy algorithm and meta-

heuristic genetic algorithm. Greedy algorithms 

usually find the solution more rapidly, but because of 

the locality the answers may occur in local optima. 

Consequently, the authors employed a genetic 

algorithm to find the optimal solution. In [10], the 

authors take a constant number of the possible 

directions for each sensor into consideration, indeed 

overlapping is not allowed. This assumption made 

obtaining the global optimal solution doubtful. 

In all of methods mentioned so far, the network 

topology is assumed fixed, but Hosseini et al. [12] 

assumed that targets are mobile. They offered two 

approaches to solve the sensors selection problem. 

The first approach deals with the sensors selection in 

each time slot independently so that the total of 

energy consumed by the sensors will be minimized, 

but the second approach in addition to the 

optimization of energy consumption in each time slot; 

take into consideration the uniform energy 

consumption for the next time slots. The authors 



B. Shahrokhzadeh et al. / Improving Energy-Efficient Target Coverage in Visual Sensor Networks. 

 

56

simulated their proposed algorithms and showed that 

uniform consumption of energy throughout the 

network and during the time slots will cause a 

remarkable improvement in the network lifetime. 

In the most studies devoted to the target coverage 

in rota table directional sensor networks, the best 

sector for supplying the maximum coverage is chosen 

from a constant and predefined set of sectors. For 

example, if the viewing angle of the sensor is 90 

degrees, it can be divided into four sectors [13]. 

Removes this limitation and adjusts sensor directions 

based on the targets location. Thus, each sensor 

choosing the appropriate sector can cover more 

targets and as a result, fewer sensors are needed to 

cover targets completely. This reduces the amount of 

energy consumed. 

3. The Problem Definition 

3.1. Directional Model 

Before the MLV problem definition, it is needed to 

describe the model of directional camera sensors. The 

model used in this paper is similar to what introduced 

in [10], except that firstly, cameras can turn towards 

the target and secondly, there is the possibility of 

overlapping between neighboring FoVs. Fig. 1 

demonstrates the model of rotatable camera sensors 

with two random targets located in the FoV.  

 
Fig. 1. FoV of a camera sensor and two targets located in. 

In this picture, S is camera and (x, y) is its 

Cartesian coordinates. T1 and T2 are the intended 

targets with (x1, y1) and (x2, y2) as their coordinates 

on a two-dimensional plane, respectively. P is the 

camera orientation relative to the horizontal axis, θ is 

the Angle of View (AoV) and R refers to the sensing 

radius of camera. V is the unit vector in the direction 

of the bisector θ that is the index of camera direction. 

The AoV and sensing radius define the FoV. 

In order to detect the FoVs covering all maximal 

subsets of targets (MaxFoV), the method suggested in 

[14] will be used. Based on [14], The FoV with at 

least one target on its extreme edge (right or left) will 

be given a chance to be included in MaxFoV. For 

example, based on Fig. 1, if T1 is on the left edge and ‖ ‖ ≤  , we can adjust the P angle based on the 

following equation:  = − 2 (1) 

In which α is the polar angle of T1. If another 

target (e.g. T2) satisfies the three below conditions, 

then it will be included in the FoV, as well: ≤ (2) 

= cos ( .‖ ‖. ‖ ‖) ≤ , 		0 ≤ ≤  (3) 

≤  (4) 

Which in (3)φ is the angle between and 	and  : . = ( − )( − ) + ( − )( − ) (5) 

‖ ‖ = ‖ ‖ = ( − ) + ( − )  (6) 

‖ ‖ = = ( − ) + ( − )  (7) 

and in the (4) β is the polar angle of T2. 

In this way, the set of covered targets by FoV will 

be detected. Now, if the current set is not a proper 

subset of another FoV, it will be added to MaxFoV. 

3.2. Defining MLV Problem 

We consider a VSN network with N camera 
sensors deployed in a totally random manner. We 
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intend to monitor M targets using these sensors. The 
set S={s1, s2, ..., sn} is a set of N sensors and the set 
T={t1, t2, ..., tm} is a set of M targets. The cameras 
used in the network are pan-tilt-zoom (PTZ) type, i.e. 
they were able to rotate horizontally (pan), vertically 
(tilt), and magnify (zoom). Since our problem is two-
dimensional, only the horizontal rotation of cameras 
is intended. 

The MLV aims to maximize the lifetime of a VSN 
network utilizing the proper sleep-wake schedule for 

sensors while covering all targets. Our assumptions 
are as follows: 

 VSN is a homogeneous network. That is, all sensors 
have equal initial energy, sensing radius, and AoV and 
energy consumption ratio. 

 The location of sensors and targets are fixed and 
known. There is only one non-overlapping sensor (or 
target) in each point. 

 The network connectivity is guaranteed assuming that 
the transmission radius is long enough. 

Other symbols used in this article are as follows: 

 Pi: Maximal cover set included the sectors of sensor si 
that is defined based on the coverable targets. 

 Fi,p: the pth sector of sensor si (i:1, 2, ..., N, p:1, 2, ..., 

).
Pi

 

 F: the set of Fi,p of sensors. 
 F(tj): the set of sensor-FoVs with the potential of 

covering target tj (j:1, 2, ..., M) 
 CS (⊆ F): the kth cover set from sensor-FoVs that 

cover all of targets (T), under the following condition: 
1) Every target is covered by at least one sensor-FoV. 
2) There is at most one sensor-FoV for each sensor in 

CSk. 
3) The sum of the consumed energy by each sensor 

cannot be more than its initial energy 
 CS: the collection of CSk resulted in scheduling 
 Ei: the initial energy of sensor si (i:1, 2, ..., N). (By 

homogeneity assumption of VSN: E = E, ∀s ∈ S) 
 rk: the ratio of energy consumed to initial energy of 

each sensor in the kth cover set (0≤rk≤1) 
 Cost: the energy consumed per unit of time (Joule/s) 
 CEk: the energy consumed in the kth cover set (CE =min	{r ∗ E,min , ∈ (RE )}) 
 REi: the residual energy of the ith sensor (the initial 

residual energy is: RE = E = E, ∀s ∈ S) 

ak: the active time of  the kth cover set (a = CE Cost) 

To maximize the lifetime, we form CSs using the 

sensors with residual energy. Each CS includes 

sectors of sensors to cover all of the targets. By a 

scheduling algorithm, these CSs in turn will be 

activated and the sensors consume a pre-specific of 

their energy. It is clear that if we find more CSs, the 

network lifetime will be increased. We divide 

collection F in k cover sets. Each sensor-FoV can 

belong to several cover sets if its residual energy is 

not fully consumed (non-disjoint cover set). Our goal 

is to find the greatest value of k based on three 

conditions mentioned before. As evident in [15], the 

upper bound of k is shown by L and equal to d/r 

where d is the number of sensor-FoVs that cover a 

critical target (a target with minimum potential 

sensor-FoVs to cover it) and r is the ratio of energy 

consumption. 

In order to precisely define the problem, we 

introduce a variable called , : 

, = 1 , , ∈0 , ℎ (8) 

If a sensor-FoV in CSk is selected, that is if we turn 

on the sensor si and adjust its FoV in sector p, the 

value of M ,  equals 1, and otherwise 0. After defining 

this variable, the MLV will be defined as follows: 

Max ∑ (9) 

s.t. ∑ ,, ∈ ≥ 1 , ∀ ∈ , = 1,2, … ,  (10) 

,| | ≤ 1, ∀ ∈ , = 1,2, … . (11) 

| | . . , ≤ , ∀ ∈ . (12) 

where , ∈ {0,1}. 
Equation (10) guarantees that each target is 

covered by at least one sensor-FoV. Equation (11) 

shows that each sensor in each CS can have at most 

one active direction and (12) explains that the sum of 

consumed energy by each sensor over all the CSs 

should not exceed its initial energy. 
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This problem is known as an NP-Complete 
problem [3], and this paper proposes an evolutionary 
algorithm to solve it. 

4. Proposed Algorithm for MLV Problem 

Here, we describe the details of proposed algorithm 
to solve the MLV problem. Fig. 2 shows an algorithm 
to solve the MLV problem. Then we present a meta-
heuristic SA method. To the best of our knowledge, it 
presented for the first time to solve the target 
coverage problem in visual sensor networks. 

4.1. Solving the MLV Using the Simulated Annealing 

In SA, an arbitrary point (s: initial state) is chosen 
from the search space and its energy (E(s)) will be 
calculated. Then, we choose an initial temperature 
(τ0). Then, a state from the neighboring states will be 
chosen for the next step. The neighbors are obtained 
based on variation of the current state. To decide 
about moving towards a new state we follow this 
instruction: If the energy of new state is smaller than 
current state move to new state, if not move to it with 
the possibility of P. To escape from local optima, 
although the algorithm favors better solutions, accepts 
some of the worse neighbors with a possibility (P). 
One of the most customary functions as acceptance 
probability function is defined as follows [17]: P(e, e , τ) = exp	{−Δe Bτ}, > 01, ≤ 0  

(13) 

where e is the energy of current state, e’ is the 
energy of new state, ∆e = −  , τ is the temperature 
and B is the Boltzmann constant [18]. The function is 
defined so that with a high temperature, the 
acceptance probability of a worse state will increase. 
Another effective parameter on P is the amount of 
energy variation (∆e). If that becomes greater, then 
the probability of P will decrease and vice versa. 
When the temperature is high, the solution space is 
searched to find the range of global optimum. When 
there is a temperature drop, the goal is to make the 
solution as close to the global optimum as possible. 

Consequently, a mild decrease in temperature is 
important to provide a more comprehensive search in 
the solution space. Two common methods are 
introduced in literature in order to reduce the 
temperature: exponential and linear. In exponential 
method, when the temperature is high, less time will 
be spent to search the solution space, but with a 
decrease in temperature, a more time is spent to refine 
the quality of prior solution. In the linear decrease of 
temperature, the search time will be uniform.  

In our proposed algorithm, each states show a 
candidate solution to solve the problem and it is 
shown as a two dimensional matrixes with M rows 

(number of targets) and L columns (upper bound of 
the cover sets) as in Fig. 3. 

csL  …  csk    … cs2 cs1 
14,28    5,170    4,55  8,25  T1  
-    12,22    21,30  2,110  T2  
8,196    3,193    4,55  15,10  T3  

            …  
-    3,193    2,320  2,110  TM  

Fig. 2. A sample of State representation in proposed SA algorithm. 

In this figure, each Ai,k, which means ith row and 
kth column (i=1, 2, ..., M and k=1, 2, ..., L) of the 

matrix possess the following value: , =( , ) 
The Sensor ID refers to the identity of the sensor, 

which covers target ti with the adjusted Direction based 
on its polar angle in CSk. Each column of matrix will 
make up a CS, if the following criteria are met: 

1) There is no sensor with inconsistent 
directions in a column. 

2) For each target (row), there is at least one 
sensor with specified direction. 

3) The covered targets of no sensor-FoV are 
a subset of another one in each column. 
If we assume that the network is homogeneous and 

the ratio of consumed energy in all of cover sets is 
equal (rk=r), the network lifetime will be calculated as 
follows: = | | ∗ ( ∗ ) (14) 

Where │CS│ is the number of CSs and E is the initial 

energy of sensors and Cost is the rate of consumed energy 

per unit of time. 



 Journal of Computer & Robotics 10 (1), 2017 53-65 

 

 

59

Algorithm for MLV Problem (S, T, r, E, Cost) 

1: k = 1; Sensors = S; Targets = T 
2: Set REi of each sensor to E 
3: Coverage_time = 0 
4: F =  
5: foreach sensor si  Sensors do 
6:  Pi = MaxFov(si, Targets) 
7:  for p = 1 to |Pi| do  
8:   F = F ∪ {F , }  // Fi,p Pi 
9:  end for 
10: end for 
11: while each target is covered by at least one FoV in F do 
12:  CSk =  
13:  while Targets ≠ do 
14:   for each FoV Fi,p F do 
15:    C , =  

16:    for each target tj  Targets do 
17:     if tj is covered by Fi,pthen 
18:      C , = C , ∪ {t } 
19:     end if 
20:    end for 
21:   end for 
22:   for each target tj  Targets do 
23:    F  =  

24:    for each FoV Fi,p F do 
25:     if tj is covered by Fi,pthen 
26:      F = F ∪ {F , } 
27:     end if 
28:    end for 
29:   end for 
30:   find a tc  Targets with lowest |Ft | 
31:   MaxCF =  
32:   find all Fi,p F that cover tc with highest |C , | and insert 

them into MaxCF 
33:   select a FoV Fs,q MaxCF with highest REs 
34:   CSk = CSk {Fs,q} 
35:   for each FoV Fi,p F do 
36:    if i = s then 
37:     F = F - {Fi,p} 
38:    end if 
39:   end for 

 
40:   for each target tj Targets do 
41:    if tj is covered by FoV Fs,qthen 
42:     Targets = Targets  – {tj} 
43:    end if 
44:   end for 
45:  end while 
46:  Min_RE = find minimum of REi so that Fi,p CSk 
47:  if (r * E < Min_RE) then 
48:   CEk = r * E 
49:  else 
50:   CEk = Min_RE 
51:  end if 
52:  for each FoV Fi,p CSkdo 
53:   REi = REi - CEk 
54:   if REi = 0 then 
55:    Sensors = Sensors – {si} 
56:   end if 
57:  end for 
58:  F = ⋃ { , }| | for each siSensors 
59:  Coverage_time = Coverage_time + (CEk / Cost) 
60:  k = k + 1 
61:  Targets = T 
62: end while 
63: return Coverage_time and K-number of cover set and the 

cover sets CS1, CS2, … , CSk 

Fig. 3. Pseudocode of algorithm MLV 

In order to assess the states (e.g. matrix in Fig. 3), 

an energy function is used. The energy function must 

be defined so that firstly, its value is increased with an 

increase in the number of CSs, and secondly, the 

balanced distribution of energy among network 

sensors is taken into consideration. The high number 

of remaining sensors and their residual energy are 

important, since in the case of new network 

configuration (e.g. addition of one or several sensors) 

the possibility of discovering new cover sets will 

increase. 

With the above introduction, we define the energy 

function as follows: 

= . | | + (1 − ). , ∑ ∗ , cos 2 (15) 

In this equation,  is the upper bound of number 
of CSs. N is the number of useful sensors (a sensor 

with at least one target in its sensing range) and Q 
refers to the number of sensors with residual energy at 
the end. E is the initial energy of sensors and ∑  is the total residual sensor energy. σ shows 

the standard deviation of residual energy in sensors 
and indicates the energy consumption distribution. 
The lower standard deviation implies more balanced 
energy distribution between sensors of the network. 
Consequently, the energy function has an inverse 
relation with σ. Thus, the descending function cos ( ) is used. All parameters of the above 

function are normalized between zero and one, and as 
a result cos ( ) is divided to 2 and then along 

with  and ∑ ∗  is averaged to limit its 

range between 0 and 1. α is the importance coefficient 
in the range 0-1. 

We will continue with a step-by-step description of 
proposed SA algorithm: 

Step 1: Initialization- at this stage the initial values for 
temperature (τ0), temperature threshold (τth) and 
cooling coefficient of annealing process (η) are set. 
Temperature threshold is set as: τth=0.01*τ0 to 
provide sufficient opportunity to perform 
comprehensive search at the search space, and 
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then, with a much reduction of final temperature 
the probability of accepting the worse solutions 
will be minimized.  

Step 2: Production of solution matrix (S(A, k))- for 
each target, from potential sensor-FoVs covering 
that target one will be randomly chosen if each 
column forms a CS, based on the triple conditions 
mentioned. The completion of next columns of 
matrix will continue until remaining sensor-FoV 
sets cannot create a new cover set. k is the number 
of resultant columns (CSs). 

Step 3: Producing neighborhood solution matrix- by 
relocating the S matrix components the new matrix 
Snew is rebuilt. Choosing the candidate components 
to be substituted and the criteria of such a choice 
are based on rules indicated in Table 1. In each 
row of the table, there is a choice and its possible 
rules. All rules have equal chance to be chosen 
(There are three rules and therefore the probability 
of choosing each rule is 0.33). For each row, a 
random number will be chosen: ∈ 	 [0,1], if 
0≤u≤0.33, then rule one, if 0.33<u≤0.66 rule two 
and if 0.66<u≤1 rule three will be selected for that 
row. This procedure is run as follows: 
1) Selection of candidate CS (column) for 
substitution of component in S based on the first 
row of the table. The candidate cover set can be 
the first or last column or chosen randomly.  
2) From the column selected in the previous step, 
a sensor-FoV (row) should be candidate for 
substitution with new options that are randomly 
substituted or a sensor-FoV with the least or most 
number of columns (CSs). 
3) Now, a substitute of sensor-FoVs should be 
replaced. This substitution can be random or a 

choice can be made based on the least overlap with 
other sensor-FoVs or a sensor with the most 
residual energy will be selected. 
4) Ultimately, we come to adjusting next cover 
sets (columns). The options include random, 
sensor-FoVs with the least overlap and sensors 
with most remaining energy. 

The random selection rule in all rows of the table 
is needed to escape of local optima. 

Step 4: The comparison between energy of S and 
Snew– in this step the energy matrix of the new 
(Snew) and old (S) matrix will be calculated based 
on (6) and then will be compared. If Snew results 
better than S, the new matrix will replace the old 
one and will be registered as Sbest and we proceed 
to the 6th step, otherwise we will continue with the 
5th step. 

Step 5: Calculation of acceptance probability- a worse 
matrix is accepted with the acceptance possibility 
P as will be defined later: = ∆ ( , ) (16) 

where B is the Boltzmann constant and τ is the 
temperature. Then a random number between zero and 
one will be generated. If P is smaller, the new matrix 
will be accepted. 

Step 6: Annealing or cooling the temperature- In the 
proposed SA, the linear cooling function is used as 
follows: = ∗ (17) 

η is the annealing coefficient between 0 and 1. τi and 
τi+1 are current and new temperatures, respectively. 

 

Table. 1. Sensor-FoV selection rules for substitution by neighborhood function generator matrix 

Category Rule 1 Rule 2 Rule 3 
Cover Set Selection (Column) Random First Col Last Col 
Sensor-FoV Selection (Row) Random At least CSs At most CSs 
Sensor-FoV Replacement  Random At least overlapping At most residual energy

Next Columns Configuration Random At least overlapping At most residual energy
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5. Performance Evaluation 

In this section, the performance of the proposed SA 

algorithm will be evaluated using simulation and then 

will be compared with four common methods in the 

literature.  

5.1. Simulation Environment 

We implement a simulation environment using 

C++ to evaluate the performance of our algorithm. A 

500×500 m2 area is considered for simulation, in 

which a different number of camera sensors (N=50, 

100, 150, 200 and 250) and targets (M=20 and 40) 

randomly scattered in a region with the uniform 

distribution. Various sensing ranges from 50 m to 120 

m and angle of view (45◦, 60◦, 90◦) are used. The 

initial energy of all camera sensors (Ei for i = 1,..,N) 

is set to 1000 Joule, and the energy consumed per 

second is set to 20 Joule/sec. The values for different 

simulation parameters are presented in Table 2. 

Fig. 4-a depicts a sample of initial deployment of 

sensors and targets in our simulation environment. In 

this picture, the number of sensors is assumed 20 that 

covered 10 targets with the sensing range of 100m 

and the angle of view of 90◦. All possible maximal 

FoV for each camera based on the location of nearby 

targets. It is clear that at most one sector of a sensor is 

activated for covering all of the targets (Fig. 4-b). All 

simulated algorithms are centralized and it is assumed 

that in the base station will be run once. Then, the 

obtained scheduling will be announced to the sensors 

deployed in the network. Each experiment will be 

repeated 10 times and the reported results have been 

average over 10 runs. 

Table. 2. Simulation parameters and their values 

Parameters Values 

Number of Camera Sensors (N) 50, 100, 150, 200, 250 

Number of Targets (M) 20, 40 

Sensing Radius (R) 50 m, 100 m, 120 m 

Angle of View (AoV) 45◦, 60◦, 90◦ 

Initial Energy (E) 1000 Joule 

Consumed Energy per Second (Cost) 20 J/s 

Initial Temperature (τ0) 200 

Annealing Coefficient (η) (Eq. 17) 0.9 

α (Eq. 15) 0.9 

5.2. The Comparison of Proposed Method with 
Greedy Algorithms 

We compared the SA method with four greedy 

heuristic algorithms mentioned more often in the 

literature. Greedy algorithms can be divided into two 

categories: 

1) Greedy algorithms to find Disjoint Cover Sets 

(DCS): in these algorithms, each cover set will be 

active until all of its sensors are discharged. 

Consequently, with the complete discharge of sensors 

of the current cover set; they cannot participate in 

other cover sets [3]. 

2) Algorithms with non-disjoint cover sets: a cover 

set is active for a constant duty period and consumes a 

portion of its initial energy (with the rate of r, e.g. 

r=20%), consequently, if the residual energy of a 

sensor is not zero, it can participate in the next cover 

sets. Then these sensors go to sleep mode, and the 

next cover set will be activated to perform the sensing 

coverage. Based on the above, there are three possible 

criteria for choosing sensor-FoVs:  

2.1) Maximum Coverage First (MCF): sensor-

FoVs with most target coverage have a high priority 

to be added to the cover set [3]. 
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 (a) 
   

(b) 

Fig. 4. A scenario of cameras and targets deployment (a) Max FoV based on target’s location (b) Activated sensors in their maximal FoV. 

2.2) Maximum Residual Energy First (MREF): 

sensors with maximum residual energy will be added 

to the cover set with a high priority [10]. 

2.3) Most Critical Sensor First (MCSF): sensor-

FoVs with the least overlapping coverage will be 

chosen to participate in the CSs with high priority 

[19]. 

5.3. The Impact of the Number of Camera Sensors 

In order to investigate the impact of the number of 

sensors, their sensing range and angle of view are set 

on 100m and 90◦, respectively. Camera sensors from 

50 to 250 are used to cover 20 targets. 

Fig. 5 shows the network lifetime to cover 20 

targets (M=20). As evident in the figure, by 

increasing the number of camera sensors, the network 

lifetime will increase, since with more camera sensors 

to cover constant number of targets, more cover sets 

can be formed. 

As depicted in figure, the network lifetime in the 
proposed SA algorithm will be more than other 
methods independent from the number of camera 

sensors. This demonstrates a significant improvement 
in proposed algorithm for coverage of targets. 

5.4. The Impact of Sensing Range (Radius) 

In order to investigate the impact of sensing range 
of camera sensors on the efficiency of proposed 
method experiments were conducted. There are 150 
sensors and 20 targets. We increase the sensing range 
of cameras from 30m to 120m. The AoV for all 
cameras is set on 60◦ in these experiments. 

 

Fig. 5. Comparison of the Network Lifetime with respect to the Number of Sensors 

Fig. 6 shows the impact of sensing radius on the 
network lifetime. Network lifetime in higher ranges is 
higher and on the contrary in lower ranges is lower, 
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because with a drop in sensing range of cameras we 
need more sensor-FoVs to cover all targets. 
Consequently, cover sets are formed with the 
participation of more sensors. Therefore, the usable 
sensors exhaust their energy rapidly, resulting in 
decreasing of the network lifetime. 

In Fig. 6, we can see that the network lifetime for 
radius less than 50m in different methods do not make 
significant difference but with an increase in sensing 
radius, the SA method shows a higher efficiency in 
choosing appropriate sensor-FoVs and with 
approaching to upper bound of number of cover sets, 
the network lifetime will increase. 

 
Fig. 6. Comparison of the Network Lifetime according to change in Sensing Radius 

5.5. The Impact of Camera Angle of View 

We conduct the experiments with the investigation 

of impact of camera AoV on the network lifetime. 

There are 150 sensors and 20 targets. The sensing 

radius is fixed on 100m and the AoV varies from 45◦ 

to 120◦. 

Fig. 7 shows the results of experiment after 10 

rounds of execution in each scenario and averaging. 

As evident in the figure, the average network lifetime 

in different AoV is not so different. Of course, the 

average of network lifetime in proposed SA algorithm 

is more than other greedy methods but the network 

lifetime is independent from the cameras’ AoV. In 

other words, the increase in the AoV has no impact 

upon the operating time of network to cover the 

targets. 

In fact, angle of view in contrast to the sensing 

radius does not have a significant impact on 

increasing the number of targets covered by sensors; 

consequently, the number of active sensors in each 

cover set for different angle of views is nearly equal. 

Thus, the resultant number of CSs is constant. Since 

the consumed energy in the network has a close tie 

with the number of CSs, the network lifetime will not 

undergo a significant change. 

 
Fig. 7. Comparison of Network Lifetime according to change in Angle of View 

5.6. Manner of Distributing the Consumed Energy 
Between Sensors 

In order to investigate the distribution of the energy 

consumed by sensors in different algorithms, we set 

150 sensors to cover 20 targets. The AoV and sensing 

ranges of camera sensors were considered as 60◦ and 

100m, respectively. The initial energy of sensors 

varies from 500J to 2000J and for each case the 

average standard deviation in 10 rounds of execution 

was calculated. The results are depicted in Fig. 8. As 

expected, the greedy method based on MREF show 

the best performance in balanced distribution of 

energy, because the sensors with least participation in 

the sensing operation (highest residual energy) are 

more likely to be chosen. The energy distribution by 

the proposed SA method is very close to best schema 
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(MREF). This means SA performs well in energy 

efficient use as well as improving other parameters 

such as the network lifetime. 

 

Fig. 8.The Standard Deviation of Residual Energy 

6. Conclusion 

In this paper, we proposed a solution approach 

based on simulated annealing to solve the target 

coverage problem in visual sensor networks. The 

rotating cameras were used to find maximum number 

of cover sets in our SA algorithm. To prolong the 

network lifetime, we assumed the sensors of each 

cover set monitor all the targets in a pre-specified 

time slot and then go to the sleep mode. The results 

from simulations indicate that our proposed algorithm 

is more efficient than other methods including genetic 

algorithms and greedy approaches. This is mainly due 

to incorporating the residual energy in our SA 

algorithm balancing the load on all the camera 

sensors. We also obtained a longer network lifetime 

by some improvements in SA method at the expense 

of some execution time overhead. 

As our future work we will focus on addressing the 

some problems in the dynamic surveillance 

environments with moving targets. We will also 

incorporate other coverage quality parameters 

including the target’s facing direction. 
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