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Abstract 

Joint flexibility is a very important factor to consider in the controller design for robot manipulators if high performance is expected. Most of 
the research works on control of flexible-joint robots in literature have ignored the actuator dynamics to avoid complexity in controller design. 
The problem of designing nonlinear controller for a class of single-link flexible-joint robot manipulators whose model incorporates the effect of 
the electrical actuator is considered in this paper. The main control purpose followed in this research is stabilization of the system states and 
backstepping approach is employed to achieve this goal and find control law. The global asymptotic stabilization of the closed-loop system is 
achieved in the sense of Lyapunov. Finally, to demonstrate the efficiency of the designed controller in stabilization the system states, the 
simulation results for system dynamics and closed-loop system, are compared in different initial conditions without and in the presence of 
external disturbances.  
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1. Introduction 

In the recent years, considerable research efforts have 
been made to solve the problem of flexible-joint robot 
control. Joint flexibility exists when there is a difference 
between the angular position of the driving actuator and that 
of the driven link. It is known that the joint flexibility can 
cause oscillations in robot manipulators. Therefore, it is 
considered as a problem. Good et al. [1] showed that ignoring 
joint flexibility in manipulator dynamics and controller 
design causes degradation in performance of robots.  

A flexible joint robot (FJR) model was introduced by 
Spong [2], which led to many researches on flexible joint 
robot manipulators. Several approaches have been so far 
suggested for controller design of FJRs: PD control [3], 
feedback linearization [4], singular perturbation approach [5], 
extended state observer based control [6], using neural 
networks [7] and fuzzy logic controller [8], to cite a few. A 
survey of the literature related to modelling and control of 
flexible joint robots is provided in [9]. 

However, in all the aforementioned studies, the dynamics 
of the actuator has been neglected in modelling and controller 
design. The main reason is that considering the actuator 
dynamics will cause more complexity in controller design. 

There are very few contributions in the literature about FJRs 
in which actuator dynamics is considered in dynamic model 
and controller design. Iterative regulation of an electrically 
driven flexible-joint robot was presented in [10]. A linear 
output-based controller for stabilization of a flexible- joint 
electrically driven robot is investigated in [11]. A simple 
adaptive robust control structure is designed for an Electrical 
flexible joint robot manipulator under both structured and 
unstructured uncertainty in [12]. A robust tracking control is  
suggested for a class of electrically driven FJRs actuated by 
brushed DC motors[13]. The control aims were accomplished 
without velocity measurements via designing a nonlinear 
observer. 

Backstepping approach is suggested as a method 
providinga framework for recursive design of nonlinear 
systems by achieving system stability in each step[14],[15]. 
Backstepping is applied to stabilize the dynamic motion of 
the FJR [16]. Robust backstepping control to overcome 
parameter uncertainty for FJRs is proposed in[17]. 

In this paper backstepping is employed for nonlinear 
controller design of a class of single-link flexible-joint robots 
incorporating the dynamics of the brushed DC motor used as 
actuator, in the dynamic model. The control purpose is to 
stabilize the system states in a few seconds considering 
different initial conditions. First, the dynamic model of the 
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FJR incorporating motor dynamics is introduced briefly. Next 
the nonlinear controller design is done using backstepping 
approach. Then the stability analysis is studied for the closed-
loop system and the global asymptotic stability is achieved. 
Finally, comparing the simulation results for the system states 
before and after designing controller in different initial 
conditions, the effectiveness of the proposed controller in 
stabilizing system states is verified. The effect of external 
disturbances on system states and control input is studied 
through simulation results, too. 

2. Dynamics of FJR Actuated by Brushed dc Motor 

The dynamic model of a rigid-link flexible joint 
manipulator can be derived from Lagrange equations [2] 
involving actuator dynamics of brushed DC motors, the 
governing dynamic equation of the single-link electrically 
driven flexible-joint robot which is shown in Fig. 1, is 
obtained easily as follows: 
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 , 

m  joint and motor angles, 

 , 
m  joint and motor velocities, 

I, J link and motor inertia coefficients, 

C, B joint and motor damping coefficients, 

m, l mass and length of the link, 

K joint stiffness coefficient, 

Km motor torque constant, 

Kb back-emf constant, 

R, L armature resistance and inductance, 

Ia motor current, 

U motor voltage. 

 
Fig. 1. Single-link flexible-joint robot manipulator actuated by brushed DC 

motor [13]. 

In the above modelling of the electrical flexible joint 
robot, joint flexibility is modelled by a linear torsional spring. 

The equation of motion of the electrical flexible joint robot is 
represented in the state-space in Eq. (2). The state vector 
contains angular position and angular velocity of the link 
side, angular position and angular velocity on the motor side 
and the motor current, i.e. 
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As shown in the above system, the dynamic equation is 

very complex and highly nonlinear and controller design for 
this system is a serious challenge. In the next section, a 
control structure will be designed based on the backstepping 
approach to achieve the control purpose of stabilization of the 
system. 

3. Backstepping Controller Design 

The control method used for stabilization of the flexible-
joint robot incorporating brushed DC motor dynamics is 
based on backstepping technique. The backstepping 
technique provides a recursive process for stabilizing of a 
system which must be in a form which is called strict-
feedback form. Since the nonlinear equation of dynamic 
model represented in Eq. (2) is strict-feedback, backstepping 
controller design is a proper choice to accomplish our control 
purposes. 

 
In general, the system which is to be controlled is given 

below: 
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Where 
nRx and R are state variables and Ru is the 

control input. First   is considered as a control input for the x-

subsystem.  can be selected in any way to make thex-

subsystem globally asymptotically stable. The choice is 

denoted ( )des x and is named a virtual control law. This 

virtual control law is determined from selection of a proper 
Lyapunov function V. 

The order of system of Eq. (2), is 5. So, five proper 
Lyapunov functions and virtual control laws which are Vi and 

des
i for i=1,2,…,5 should be calculated in five steps and 

then the actual control input u is designed. Using some 
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mathematical operations, these Lyapunov functions and 
virtual control laws are determined as (4). 
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Where the new states i  are achieved from the states xi 

and the constants c1, k1, k2 , k3 , k4 ,are the controller gains 
which should be positive. Above selections in Eq. (4) 
guarantees the global asymptotic stabilization of the closed-
loop subsystems in the sense of Lyapunov. 

Regarding to the state-space form in Eq. (2), the virtual 
control laws which achieve the global asymptotic stability of 
the closed-loop system of the FJR incorporating motor 
dynamics in the dynamic model, are obtained as follows: 
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The forth virtual control law is determined in fourth step 
of backstepping controller design as follows: 
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Also, the last virtual control law, ξ5
des; is obtained by 

some mathematical operations from Eq. (4). In Eq. (5) and 
Eq. (6), the virtual states ξi for i=1,2,3 are determined from 
the system state-space equation as: 
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Finally, the actual feedback-stabilizing control law u is 
derived as: 
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Where 

2x and 
4x are substituted from Eq. (2). Based on 

the backstepping approach, it can be concluded that the 
designed control law represented in Eq. (8) guarantees the 
global asymptotic stability of the closed-loop system of 
governing Eq. (1) and Eq. (2). 

4. Numerical Simulations 

To illustrate the effectiveness of the suggested nonlinear 
backstepping controller, numerical simulations are performed 
in this section. The values of parameters of the dynamic 
model of EFJR, are demonstrated in table 1. The controller 
gains are selected as: c1=4, k1 =5, k2 =4, k3 =5 and k4 =4by 
trial and error. Values of parameters in numerical simulations 
are:   
Mgl=5(Nm),K=100(Nm/rad),I=1(Kg.m2),J=0.3(Kg. m2),C= 
0.02(Nm.s/rad),B=0.001(Nm.s/rad),Km=0.2(Nm/A),Kb=0.26(
Nm/A),R= 1.6(Ω), L=0.01(H). 

in this section, simulations comparisons before and after 
designing the controller for the system, show the efficiency of 
the proposed controller in stabilization of the system states in 
different initial conditions. Then the effect of external 
disturbances on system states in different initial conditions 
studied. For all of the simulation cases, the mentioned values 
of the system parameters are used. 

a. Case1 
    The Initial conditions of the system states in this 

simulation are chosen as [0.6; 0.5; 0.8; 0.3; 0]. Simulation 
results in Fig. 2(a) represent the variations of the system 
states before designing the controller. These states are joint 
angle (x1), joint velocity (x2), motor angle (x3), motor velocity 
(x4) and motor current (x5), respectively. As shown in Fig. 
2(a), the dynamic of the system has a very oscillatory 
behavior and the settling time is too long; even after 30 Sec., 
the system states has not been stable. After designing the 
controller for the system, all of the system states are 
stabilized and converge to equilibrium point [0,0,0,0,0], in 3 
seconds. Fig. 2(b) illustrates the effect of the proposed 
controller on the stabilization of the system states. The input 
control signal is motor voltage and it is shown in fig.2(b), too.  

b. Case2 
In this case initial conditions of the system states are 

chosen as [0.8; 0.5; 0.5; 0.2; 0].  As shown in Fig. 3 the 
proposed controller has a good performance in stabilization of  
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Fig. 2.The effect of controller design in the stabilizing of the system states in case1 

 
 

Fig3. The effect of controller design in stabilizing of the system states in case2 
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of the system states and all of  the states are converged 
to equilibrium point[0;0;0;0;0], in less than 3 seconds.  

    Comparing the results in each case, we find out that 
the suggested controller has caused the elimination of the 
oscillations and considerable reduction in settling time. All 
of the states of the closed-loop system converge to the 
equilibrium point [0;0;0;0;0] in few seconds. 

c. Case3 
   In this case, the effects due to external disturbances 

into the closed-loop system behavior are considered via 
simulation results to show the robustness of the suggested 
controller.  

   Two unknown disturbances d1 and d2 are added into 
the joint angle and motor angle 2nd-order dynamics. These 
two signals have random values and occur between t=1.5 
sec and t=2.5 sec. Simulation results for stabilization of the 
system are represented in Fig. 4.  Initial conditions for this 
simulation case are the same as the simulation in subsection 
A. Fig.4 shows the good robustness of the controller in 
stabilization in presence of external disturbances. 
 

Similarly, the effects of the external disturbances on the 
controller performance in stabilization of the system states 
are studied via simulation results considering the initial 
conditions of subsection B. The results are shown in Fig.5 
and depicted  

the acceptable performance of the designed controller in 
stabilizing the system states under external disturbances 
(which are happened between t=1.5 sec and t=2.5 sec). 
 

 

 

5. Conclusion 

In this paper, a nonlinear controller for a single-link 
flexible-joint robot manipulator whose model incorporates 
the effects of the brushed DC motor has been established. 
To accomplish this control purpose, a nonlinear controller 
was designed based on backstepping approach and 
asymptotic global stability of system states has been 
achieved. Comparing the simulation results before and after 
controller design, it was concluded that the proposed 
nonlinear controller has a good performance in stabilization 
the system states in different initial conditions. To show the 
robustness of the suggested controller, external 
disturbances are added into the joint angle and motor angle 
2nd-order dynamics and simulation results illustrate the 
acceptable performance of the designed controller in the 
presence of the external disturbances. The advantage of the 
proposed control scheme is that it does not need 
measurement of acceleration and jerk of motor side and 
link side. 
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