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Abstract 

The purpose of this study was to design a logic-based switching H2/H∞ state-feedback controller for continuous-time LTI singular 

perturbation systems. To this end, a hybrid control scheme based on a Genetic Algorithm (GA)-based supervisor is proposed which 

manages the combination of two controllers. A convex LMI-Based formulation of both fast and slow subsystem controllers leads to a 

structure which ensures a good performance in both transient and steady state phases. The stability analysis uses Lyapunov techniques, 

inspired from switching system theory, to prove that a system with the proposed controller remains globally stable despite the configuration 

(controller) changing. 

Keywords: Continuous-time LTI singular perturbation systems, GA-based supervisor, switching H2/H∞ state-feedback control, Linear Matrix Inequality 

(LMI). 

 

1. Introduction 

Singular perturbation systems are studied extensively in 

numerous papers and books (see for example 

[3],[4],[8],[12],[13]). Many approaches such as optimal and 

robust control schemes have been considered for these 

systems of both linear and nonlinear types. For the robust 

control of singular perturbation systems, the controller is 

usually derived from indirect mathematical programming 

approaches (e.g. solving Riccati equations), which 

encounters serious numerical problems because of the 

stiffness of the equations involved in the design. To avoid 

this difficulty, several approaches [6], [9] have been 

developed to transform the original problem into  -
independent sub-problems, among which the time-scale 

decomposition [6] is commonly adopted. As an alternative 

to the solution of the Riccati equation, LMI formulations 

have been attracting more and more attention of robust 

control researchers. However, solving mixed H2/H∞  

 

 

perturbation systems through the LMI approach still 

remains an open question. Among those researchers who 

worked on LMI formulations, Garcia et al. [4] extended the 

results of a study by Peres and Gromel [14] and suggested a 

solution to the infinite time near optimal regulator problem 

(H2 control) for singular perturbation systems through an 

LMI formulation. A time-scale decomposition was 

employed on the overall system as well. Li et al. [15] 

devised a different way for solving this problem. By 

proposing a new lemma, they formulated the problem into a 

set of inequalities independent of  ., and provided an 

algorithm to solve them through LMI formulations. In [16] 

the H2 static state feedback control of linear singular 

perturbation systems by extending [15] was presented, but 

the further extension of this method to the mixed H2/H∞ 

control is very difficult. Combining different techniques to 

obtain different performances is widely used today ([7], 

[10], and [11]). It results in hybrid dynamical systems 

which include continuous and discrete dynamics and a  
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mechanism (supervisor) managing the interaction between 

the dynamics [2].  

Compared with the sole H∞ control, the mixed H2/H∞ 

control is more attractive to engineering practices since the 

former is a worst-case design which tends to be 

conservative whereas the later minimizes the average 

performance with a guaranteed worse-case performance. In 

[17, 18] a new approach based on the logic-based switching 

control [19] was considered for the multi-objective mixed 

H2/H∞ control of linear singular perturbation systems. In 

these two papers, by utilizing the results of [1, 6, 9] on the 

multi-objective control approach and designing a fuzzy 

supervisor based on [7, 10], a control signal was 

constructed with the weighted sum of two control signals 

for both slow and fast subsystems while the weighted factor 

was governed online by the fuzzy supervisor. In [20] an 

extension of the methodology used in [16] was for the H∞ 

control of singular perturbation systems.  

The present study also deals with continuous-time linear 

singular perturbation systems. Yet its main novelty lies in 

the fact that the switching mixed H2/H∞ state feedback 

control problems of continuous-time linear singular 

perturbation systems are solved by a different design 

structure for the supervisor. The simple design methods of 

[1] are applied to derive the state-feedback gains separately 

for fast and slow sub-systems. A GA-based supervisor 

(instead of a fuzzy supervisor) which is proposed for the 

hybrid combination of the controllers and their 

corresponding advantages is able to ensure the required 

performances and the stability of the overall closed loop 

system. The contribution of the present work is combining 

fast and slow sub-system controllers using a GA-based 

supervisor which manages the gradual transition from one 

controller to another. The control signal is obtained via the 

weighted sum of the two signals provided by the slow and 

fast sub-system controllers. This weighted sum is managed 

thanks to a GA-based supervisor, which is adapted to 

obtain the desired closed loop system performances.  

As a result, while the fast sub-system controller mainly 

acts in the transient phase providing a fast dynamic 

response and enlarging the stability limits of the system, the 

slow sub-system controller mostly works in the steady state 

to reduce chattering and maintain the tracking performance. 

Furthermore, the global stability of the system, even in the 

case that the system switches from one configuration to 

another (from the transient to the steady state and vice 

versa) is guaranteed.  

The structure of the paper is as follows. Section 2 

presents the definition of systems and the controllers used. 

In Section 3, the GA-based supervisor and the proposed 

control law are described, and the stability analysis is 

demonstrated in Section 4. The design procedure is 

explained in Section 5 and an example is given to illustrate 

the efficiency of the proposed method, followed by the 

conclusions in Section 6.  

 

2. Statement of Problem 

 

Consider the following linear singularly perturbated system 

  with slow and fast dynamics described in the "singularly 

perturbated" form [17]: 

 

   

{
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  ̇                    

                                 

                                           

 (1) 

Where     
         are the states,       is the control 

input,       is the disturbance input,       is the 

measured output,       is the output to be regulated, and  

is a small positive parameter. By introducing this notation: 
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(2) 

System   can be rewritten into the following compact form: 

  {

 ̇              

                          
                                   

 (3) 

Then applying a static state feedback control 

     (4) 

leads to the following closed-loop system: 

    {
 ̇           
                     

 (5) 

where 

                               (6) 

denote the transfer function of closed-loop system     from 

  to   as  (   )     (      )
     . 

The generalized   norm of  (   ) is defined by: 
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and the H∞ norm of   (   ) is defined by: 
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2.1. Slow and Fast Sub-systems  

If    is a nonsingular matrix, the original singularly 

perturbated system in (1) can be decomposed into a slow 

and a fast subsystem. The slow subsystem is defined by 

setting     in the second equation of (1), computing    in 

terms of    , ,  , and finally substituting it in the first 

equation of (1). Therefore, the slow subsystem obtained is 

as follows [17]: 

{

 ̇                 
                  
                   

 (9) 

where: 

          
     

             
              

      
(10) 



Journal of Computer & Robotics 1 (2011) 33-38 

 
35 

            
                

     

           
              

     

          
              

     

The fast subsystem of (1) is defined by: 
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(11) 

Therefore, according to (9) and (11) the overall full order 

system in (1) can be decomposed into two slow and fast 

subsystems with lower orders. Then these two subsystems 

can be used for the slow and fast controller design and can 

be mixed through the utilization of a GA supervisor to 

produce the proposed controller for the overall system. It 

should be noted that this article deals with the suboptimal 

mixed       static state feedback control design problem. 

Consequently, the suboptimal H2, H∞ and mixed       

problems are expressed in terms of linear matrix 

inequalities (LMI). 

● Lemma 2.1. [1] (The suboptimal overall H2 static state 

feedback control problem):  

Consider the overall system described by (1). The static 

state feedback control law (4) stabilizes the closed-loop 

system (5) and achieves a prescribed H2-norm bound 

    for system (5) if and only if there exists      

    and Z with appropriate dimensions such that: 

(
            

   
    

      
 

         
)     

(
    
   

  
)                                                              

      ( )    

(12) 

By solving the LMIs, Q, T and Z are found, and control 

law (4) is calculated as: 

 

                                                                          (13) 

 

The application of (13) to the system characterized by 

(1) guarantees that the closed-loop system (5) is 

asymptotically stable and that H2-norm (7) is less than   
 . 

● Lemma 2.2. [1] (The suboptimal overall H∞ static state 

feedback control problem) 

Consider the overall system specified by (1). The static 

state feedback control law numbered (4) stabilizes closed-

loop system (5) yielding a prescribed H∞-norm bound 

     for closed-loop system (5) if and only if there exists 

             with appropriate dimensions such that: 

 

(

            
   

       
      

 

   
      

 

              

)

   

(14) 

 
By solving LMI (14), Q and T are found, and control 

law (4) is calculated from (13). 

The application of this controller to the system defined 

by (1) guarantees that closed-loop system (5) is 

asymptotically stable and that H∞-norm (8) is less than 

    . 

● Lemma 2.3. [1] (The suboptimal overall mixed       

static state feedback control problem): 

Consider the overall system described by (1). Static state 

feedback control law (4) satisfies the mixed       control 

problem if and only if the following LMIs for          

and a given positive scalar     are satisfied: 
 

         

Subject to: (12) and (14) 
(15) 

 

By solving (15), we can find Q, T, Z and  , with control 

law (4) computed from (13). 

3. GA-based Supervisor  

The approach suggested in this paper for solving the 

mixed H2/H∞ control problem of a linear singular 

perturbation system is different from previous approaches. 

In this approach, at first an overall linear singular 

perturbation system is considered and decomposed into a 

slow and a fast subsystem. Then the mixed H2/H∞ control 

problem is solved for each slow and fast subsystem and 

Kfast and Kslow are calculated by solving the corresponding 

LMIs. It is well known that a fast subsystem can be a good 

approximation of the transient mode of an overall system 

response while a slow subsystem can be a good model for 

approximating the steady state mode of an overall system 

response. Therefore, the fast subsystem controller Kfast can 

be utilized during the transient time while the slow 

subsystem controller Kslow can be used during the steady 

state. The control actions of the proposed control scheme 

are combined by means of a weighting factor with  [   ] 

representing the output of a GA-based supervisor that takes 

the tracking error   and its time derivatives  ̇  ̈        as 

inputs. Genetic algorithms have been inspired by Darwin’s 

theory of evolution. The solution to a problem solved by 

genetic algorithms is provided by an evolutionary process. 

The algorithm begins with a set of solutions (represented 

by chromosomes) called population. This is motivated by 

the hope that the new population will be better than the old 

one. Solutions are then selected to form new solutions 

(offspring). This is repeated until some condition (for 

example number of populations or an improvement in the 

best solution) is satisfied. The problem solving process can 

often be expressed as looking for an extreme of a function 
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defined over the search space while in general the GA 

algorithm tries to find a minimum of the H2 and H∞ norms. 

The main advantage of GAs is their property of 

parallelism. GAs are traveling in a search space using more 

individuals (and with genotype rather than phenotype) so 

that they are less likely to get stuck in a local extreme if 

compared to other methods. Moreover, a GA can be 

implemented easily.  Once the basic GA algorithm is 

formulated, a new chromosome needs to be defined (just 

one object) to solve another problem. With the same 

encoding, only a change in the fitness function is needed. 

However, for some problems, choosing and implementing 

the encoding and the fitness function can be quite difficult. 

The disadvantage of GAs is their computational time as 

GAs may be slower than other methods. The outline of a 

basic GA is as follows: 

1-[Start]: if the length of time interval is (   ) , each 

chromosome has r genes. The i-th gene on the chromosome 

is the value of the weighted coefficient   in the time 

interval(   )      . Encoding heavily depends on 

the problem's type and complexity. Direct value encoding 

can be utilized in problems where more complicated values 

such as real numbers are used. In general, the utilization of 

binary encoding for this type of problems would be 

difficult. Here instead, value encoding is adopted and every 

chromosome is a sequence of real values. Finally, a random 

population of n chromosomes is generated while some 

researches show that the best population size ( ) depends 

on the size of the encoded string (chromosomes). 

2. [New population] Create a new population by repeating 

the following steps until the new population is complete: 

2-1. [Crossover] Cross over any two parent 

chromosomes to form new offspring (children) 

according to: 

                (   )          (16) 

where   is a random number (the crossover probability 

is equal to 1). 

2-2. [Mutation] Mutation generally prevents the GA 

from falling into local extremes. Mutate new offspring 

at each gene (positions in chromosomes) according to: 

Choose   {   } 

If     

  
      

    (              
   )   ( ) 

If     

  
      

    (              
   )   ( ) 

where 

        ( )  [     (  
 

 
)]
 

 (17) 

     (the mutation probability is equal to 1). 

In the above equation,   is the k-th gene on the 

chromosome for which mutation has been utilized. The 

upper bound and the lower bound are the maximum and 

minimum values of   (in this paper they are 0 and 1). g is 

the population number and G is the maximum number of 

the population in the GA. 

3. [Accepting and Replace] Add the new offspring to the 

old population. Sort the new population based on their 

fitness which is evaluated according to: 

If (                 ) or (                 ) 

          

otherwise 

        (
        
        

)  (
        
        

) 

end 

Choose n chromosomes with the best fitness as the new 

population and remove the rest. 

5. [Test] If the end condition is satisfied, stop and return 

the best solution to the current population. 

6. [Loop] Go to step 2 

When the norm of the tracking error   and its time 

derivatives  ̇  ̈     -  are small, the plant is governed by 

the slow subsystem controller Kslow (   (. Conversely, if 

the error and its derivatives are large, the plant is governed 

by the fast subsystem controller Kfast (   ). The control 

action u is determined by: 

         (   )      (18) 

where: 

              

              
(19) 

The structure of the proposed control scheme with a GA-

based supervisor is depicted in Figure 1. 

 

 
Fig. 1. Structure of the proposed controller. 

4. Stability Analysis  

The theorem of Essounbouli et al. [7] is utilized to prove 

the global stability of the system governed by the control 

law in (18). Similar to [7], this theorem is rewritten as 

follows: 

Theorem 4.1. Consider a combined GA-based logic 

control system as described in this work. If  

1. There is a positive definite, continuously 

differentiable and radially unbounded scalar function  for 

each subsystem, 

2. Every GA subsystem gives a negative definite  in its 

active region, 

3. The weighted sum method is utilized such that for any 

control input u: 
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    (           )        (           ) 
, the resulting control u provided by (18) guarantees the 

global stability of the closed loop system. 

Proof: Satisfying the first two conditions guarantees the 

existence of a Lyapunov function in the active region. It is 

a sufficient condition for ensuring the asymptotic stability 

of the system during the transition from the fast subsystem 

controller to the slow subsystem controller. Consider the 

Lyapunov function        
        where       is a positive 

definite matrix and the solution of (15) for fast subsystem 

(11). Consider the Lyapunov function       
         where       is a positive definite matrix and the 

solution of (15) for slow subsystem (9). To satisfy the 

second condition of the theorem, it suffices to 

choose       and       such that: 

            (20) 

This condition guarantees that in the neighborhood of 

the steady state (the slow subsystem controller), the value 

of the Lyapunov function       is greater than that of      . 

To satisfy the third condition, the balancing term   takes its 

values in the interval [0 1]. Consequently, the three 

conditions of the above theorem are satisfied and the global 

stability of the system is guaranteed. Thus, the problem 

formulation (the switching H2/H∞ control) can be 

formulated as: 
                 (‖ (   )‖ )    

                         (‖ (   )‖ )          
 

and 
         (‖ (   )‖ )    

                 (‖ (   )‖ )          
 

while:               

(21) 

5. Design Procedure   

The design procedure can be summarized as follows. 

Compute the slow and fast subsystems of the overall 

system in (1) from (9) and (11). Solve the control problem 

(21) for both the slow and fast subsystems defined in (9) 

and (11) with given positive scalars  
    

 and  
    

 to find 

Kslow and Kfast from (13). Compute uslow and ufast from (19). 

Calculate the overall control signal u from          
(   )      where   [  ] is governed by the GA-

based supervisor according to the corresponding error and 

its derivatives. Apply this control signal to (1) and 

construct the closed loop system in (5). 

Example 5.1. Here, to demonstrate the solubility of 

various LMIs, the simplicity and the low conservatism of 

the proposed method, a fourth-order, four-output, two-input 

example is being considered and a switching static state 

feedback controller is sought. Consider a singularly 

perturbated system described by (1) with: 
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Following the proposed design method in section 5, these 

results are obtained: 

      [
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           [      (   )     ] 

while the responses of the system states are presented in 

Figure 2 for an arbitrary excitation random signal [17]. We 

obtain         by solving mixed H2/H∞ control problem 

(15) for full order system (1).       and       are 

calculated by solving control problem (21) for both slow 

and fast subsystems (9) and (11). 

Based on the simulation results of example 5.1 in Table 1, 

it is clear that the suggested method gives a better response 

than the conventional overall design method. Moreover, the 

results of this method are better than those of the fuzzy 

supervisor-based switching approach [17]. In our proposed 

switching method, with a smaller   for the   constraint, 

we have a smaller    norm. But both of    and    norms 

increase in the conventional overall method. Figure 2 also 

shows that the state regulation in the proposed controller is 

better related to the conventional overall controller. 

 

 

Fig. 2. State Response of Example 5.1. 
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Table 1 

Results of example 5.1. 

       

Overall 11.9754 1.8664 

GA-Switching 

Fuzzy 

Switching[17] 

0.2082 

2.9774 

 

0.6983 

1.0274 
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6. Conclusion 

In this paper, a convex optimization method is used to 

design a logic-based switching       controller for a 

linear singular perturbation system. The proposed 

controller scheme guarantees the stability of the closed loop 

system and satisfies the prescribed level of performance 

indexes for both    and    norms. Using two reduced-

order fast and slow mode controllers instead of one full-

order overall controller is the main contribution of this 

study. The suggested GA-based supervisor scheme is able 

to manage both fast and slow controller performances 

efficiently. In reality, the fast mode controller has a good 

performance in the transient mode (fast dynamic response 

and low energy impulse response) and the slow mode 

controller affects the steady state section and is able to 

attenuate the interaction of low frequency disturbances. The 

simulation results presented indicate that the proposed 

novel control scheme results in a considerable 

improvement in the performance of the closed loop 

systems. 
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