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Abstract

Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help
researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one.
however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable
statistical data set has led to a significant reduction in the accuracy of Markov algorithms including Forward algorithm
used in solving Evaluation problems.

The model’s parameters such as the occurrence probability of observation symbol being produced by state, varies
directly among the successive events. Since the probability value of the above-mentioned parameter plays an important
role in the accurate Evaluation and assessment of the probability of observations’ occurrence in the Evaluation problem
by Forward algorithm, the variations between events and observations generated by the States should be automatically
extracted. In order to achieve this, the current paper proposes an adaptive parameter for event probability in order to
match and adjust the variations in the parameter after each event during the lifetime of Forward algorithm. The results of
the experiments on a real set of data indicates the superior performance of the proposed method compared to other

conventional methods regarding their accuracy.
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1. Introduction

Establishing a statistical model for modeling
unstable statistical data set, is one of the main
objectives of different researchers. Markov modeling
is one of the most popular methods for modeling
stochastic processes. The Bayesian and flexible
network structure of this model is the reason for its
widespread use and popularity.

After the introduction of hidden Markov models in
the late 1960s by Baum & Argon [1], utilizing
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extended Markov models such as hierarchical hidden
Markov model and Factorial hidden Markov model
[2] gained much acceptance. Extended hidden
Markov models, including Factorial and Hierarchical
[3] hidden Markov models use further Bayesian
dynamic structures to improve the accuracy of
statistical data modeling. Increasing the accuracy for
modeling statistical data is intended to improve the
efficiency of Markov algorithms including Forward
algorithm based on extended hidden Markov models.



30 N. Rezazadeh et al. / An Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems
on Unstable Statistical Data Set

Recent extended models, such as hidden Markov
model, utilize average statistic and static theories in
order to calculate the values of the likelihood
functions of the events of observations. The above-
mentioned theory is used despite the fact that in an
unstable statistical data set, the model’s parameters
such as the probability of the event of observation
generated by the state, change directly from one event
to the next. Neglecting these variations in the value
configuration of the likelihood function in the hidden
Markov model will lead to complications in modeling
stochastic processes. Yu et al. in [4] tried to segment
statistical training data in order to solve the problem
of variation in Markov function’s values during the
lifetime of unstable statistical data. In this method in
order to solve problems such as evaluation in Markov
algorithms based on the above-mentioned model,
firstly it should be determined the set of observations
belong to which segment of the statistical training
data. The need for this extra information renders
solving Markov problems solely using the usual
assumptions impossible.

In order to increase the accuracy of Forward
algorithm in solving evaluation problems in unstable
environments, the current paper discusses an adaptive
algorithm which is statistical but non-parametric.
Accordingly, at first, the variations of the likelihood
function for the event of observation symbol
generated by the state, influenced by the event of
observation symbol, should be calculated in the
statistical training data. The calculation process is
performed considering the dependent structure of the
above-mentioned function. In the following, the
values obtained based on the adaptive parameter are
used to compare and update the values of the
likelihood function for the event of observation
symbol generated by the state after each event.

Considering the importance of the accuracy of the
values for the likelihood function of the event of
observations in solving evaluation problems by
Forward algorithm, adaptive algorithms provide better

performance compared to Forward algorithm. In fact,
the adaptive algorithms has been able to utilize the
average storage of variations in unstable
environments to increase the productivity of Markov
algorithm in those environments. However, the
presence of relative order in the variations of the
event of observation symbols in the lifetime of
training and test data is one of the requirements for
the success of this algorithm. In the following,
Section Two discusses and introduces hidden Markov
models as well as extended hidden Markov models.
Section Three explains the proposed method. Section
Four is dedicated to the experimental results which
include implementation, comparison and analysis of
the methods. Finally, section Five concludes the

study.

2. Literature Review

This section introduces hidden Markov model as
well as extended hidden Markov models. Extended
hidden Markov models use further Bayesian dynamic
structures for increasing the accuracy of modeling
unstable statistical data set.

2.1. Unstable Statistical Data Set

In the unstable statistical data set, the time interval
between the repeated events of the observation
symbol V; generated by state i constantly varies. The
rate of these variations can be regular or irregular.
The variations in the probability of the event of
observations in the majority of natural event possesses
minimum order. Let {X;} be a stochastic process and

the function £ (X g T X, +T) be a cumulative

likelihood function for the simultaneous distribution
of {Xi} in t;+1,.... 4+t times, then, if equation (1)
holds [5], the {X;} process will be stable for k and

th,. .t
Fx(le + oy X, +T)=F (xtl,.. X ) (1)

X A A

]S t STData
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The Tp.. parameter is the lifetime of statistical data
observations. The cumulative function of likelihood
[16] is defined over all the observations present in the
training statistical data. In the following, the three
dimensional cumulative likelihood function, B', is
defined for determining the probability of all the
events of the observation symbol V; generated by
state i during the training data as used in equation (2).

B~/ (kb () =P(O,=V}]g,=5)

Where 1<t <occurrence(i,k,r)
ISr<p,, Where, ISi<N,I<k<M

bi(k)[7], shows the probability of the event of
observation symbol, k, in the state, i, The p,i

parameter is the number of the events of observation
symbol Vi generated by state i during the lifetime of
the training data. The occurrence(ik,r) parameter,

assuming /< r <p, , is the time or the turn of the

event for the observation symbol V, generated by state
i during the lifetime of the training data. As can be
seen, all the observation symbols with identical states
contribute to the variations of this parameter between
two sequential events. If the event of the observations
during the lifetime of sports data occur in regular time
intervals or the variations of time intervals between
the events of observations are negligible, then this
effect will be small and negligible. However, if the
time interval of repeated events of the observations
decrease or increase, the value of the cumulative
likelihood function decreases and increases, too. In
Figure (1), the cumulative likelihood function, B'is
used in order to assess the values of the likelihood
function for the event of observation symbol of
in basketball,

Iranian

performing the dunk
Vi="Dunk”,

b/ =Iran(V, ="Dunk"), for seven events of the

technique

performed by the team,

observation symbol, V;="Dunk” and 1<r <27, during
the lifetime of the training data related to the
basketball match between Iran and Taiwan during
FIBA Asia cup in 2012 [6].
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Fig. 1. Cumulative likelihood function, B, , for calculating the

probability of the event of observation Symbol Vi= "Dunk” generated
by state i="Iran” during the lifetime of sports data set for the Basketball
match between Iran and Taiwan, 2012

By allocating the constant value for the state

variable of i, i="1ran”, the three dimensional
cumulative likelihood function, B', will change into
a two dimensional function. The parameter r is used
to count all the events of the observations symbols in
training data. By the event of V;="Dunk” during the

lifetime of sports data, the value of the parameter
b/ = Iran(V, ="Dunk")will be distinguished by the

red color. In Figure (1), the reduction of the values of
the likelihood function, bj..,("Dunk’) with each event
of the observation symbol during the lifetime of
sports data is visible

2.2. Hidden Markov Model

Hidden Markov model is one of the methods for
modeling stochastic processes. This model uses
Bayesian dynamic structures for modeling stochastic
processes. This characteristic strengthens the
mathematical structure in hidden Markov model so
that the possibility of implementing a wide variety of
theories including speech processing as well as event
prediction have been made possible by hidden
Markov model. The normal parametric structure of
hidden Markov model is defined as A =(A4,B,7) so

that the likelihood function, B, includes NxM entries
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and each entry, bij(k), shows the probability of the
event of observation symbol, K, in the state, j. The
likelihood function, A, includes N XN entries and each
entry, a; , shows the transition probability from state i
to state j. Moreover, the likelihood function, m,
includes N entries and its entries; namely, z;, /<7 <N,
are the preliminary probabilities of state i. All these
parameters are calculated using equations (3), (4), and

) [7]).

A= {al.j}, a; =P(q,+1 =Sj|q, :Si) (3)
B=b.(k), b,(k)=PlO, =V]g,=s,) @
”:{7[5}9 7, =P(q,=8,) )

I1<ij<N,ISK<M

q, is the variable of state at time ¢ and O, is the

variable for observation symbol at time ¢ assuming
that /< ¢ <T, the T parameter is the length of the
observations of the problem. In order to use the
hidden Markov model with the statistical parameters
of A=(4,B,r), three main issues become apparent.

These three issues include evaluation, decoding and
learning [7]. According to the structure of each one of
these issues, there is an algorithm for solving it. The
most important Markov algorithms include Forward
algorithm [8] for solving the issue of evaluation, the
Viterbi algorithm [9] for solving the decoding
problem and the Baum Welch algorithm [10] for
solving the learning problem.

2.3. Extended Hidden Markov Model

Extended hidden Markov models are proposed to

increase the accuracy of modeling stochastic
processes and in turn they increase the accuracy of
Markov algorithms such as Forward algorithm in
solving problems. Using extended hidden Markov
models is carried out based on the requirements and
the structure of the statistical data. One of the most
important methods which uses Bayesian dynamic
structure is Factorial hidden Markov model [11]. In

the factorial hidden Markov model, the relation

between states in the lifetime of Markov algorithms is
modeled based on the training data. Figure (2) shows
a factorial hidden model with the set of states at time ¢

equal to S, ={S,1,Stz,St3 } and the variable of

observation at time ¢ equal to Y.

o
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/

Fig. 2. The structure of Factorial hidden Markov model [11]
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As can be seen in Figure (2), the relation between
states is modeled based on the previous time interval,
t-1; current time interval, ¢ and the next time interval,
t+1.

Using the new Bayesian Probability functions is
one of the important ways to develop the Hidden
Markov Model. The
probability functions increases the modeling accuracy

application of the new

of statistical data relationships. Evidence Feed-
Forward Hidden Markov Model [12], is a newly non-
parametric model for development and accuracy
improvement of Hidden Markov Models by applying
the transition probability function between
observations symbols in all states of the model. With
addition of non-parametric probability of transition
between observations symbols, C, the general form of
Hidden Markov Model is defined as A= (A,B,C,n).
The equations (3), (4) and (3) [5] show the calculation

methods of probability functions of A, B andr.

3. The Proposed Method
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Neglecting the variations of the likelihood function
for the event of the observation symbol V) generated
by state i, b;(k), during the lifetime of training data for
unstable s in the process of determining the likelihood
function of hidden Markov model leads to a decrease
in the accuracy of Forward algorithm in solving
evaluation problems. Hence, in the proposed
algorithm, using the present order in the variations of
this function is considered desirable. Using the
adaptive approach in Forward algorithm is considered
in order to apply the variations created by the

observation event, V;, onto the likelihood function,

bi(k), using the 77;

Before

parameter in unstable

environments. explaining the proposed
algorithm, we should first discuss the concept of
stableness for the likelihood function, b;k), in

stochastic processes.
3.1. Calculating the Adaptive Parameter, 77,1;

Considering the importance of the b;(k) function in

solving the evaluation problems in Forward
algorithm, the average variations of the likelihood
function b;(k) for each event of the observation
symbol V; during the lifetime of training data should
be automatically extracted. The parameter for average
sum of variations in the likelihood function of b;(k)

with each event of V; during the lifetime of statistical
data is shown by 77;. As can be seen from equation

(6), this parameter is calculated using all the events of
the observation symbol V; generated by state i during
the lifetime of the training data.

1

-1

X

7712 = Mean Of((bi"“ (k)-b; (k))): »

ot (6)
Dbk =bl (k)N <Si<NI<k<M

r=1

The M parameter is the number of observation

symbols, and N is the number of states. Pki is equal to

the number of events for the observation symbol ¥V
generated by state i in the training data.

3.2. Using the Adaptive Approach in Forward
Algorithm

The adaptive approach is used to apply the effects
arising from the event of observation symbol, V;, on
the variations of the likelihood function, b;(k). This
likelihood function is updated with each event of V;

during the lifetime of Forward algorithm using the 77,’;

parameter. The process of updating the Forward
algorithm is carried out based on the order of
retrieving observations by the auxiliary variables in
the Forward algorithm as well as the requirements

3.2.1. Adaptive Forward Algorithm

adaptive Forward algorithm is developed in order
to update the values of the function b;(k) by each
retrieval of the observation symbol, V}, by the
auxiliary variable of @ at time ¢, @, The auxiliary
variable of a is a recursive Forward variable. Before
using the updating function, the retrieval order in the
set of variables in the Forward algorithm should first
be considered using the auxiliary variable a. The
retrieval order in the set of observations based on the
auxiliary variable of @ at time ¢ is shown in Table 1.
Table 1

The retrieval order of observations in the Evaluation problem by the
auxiliary variable a in the Forward algorithm

Current
Called Auxiliary Variables ObCaIIed_
Time servation
=0 a(f)=01<j<N -
- a1 () =7 b, (0)) 0,
N
=2 ar(j)=b; (02),21a1(i)“y o,
i =
aT(j)=b](0T)z aT_l(i)a!'/‘ OT

i=1

The adaptive Forward algorithm is obtained by
combining Forward algorithm based on hidden
Markov model and the updating function for the
function b;(k). In the following, Forward algorithm
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based on the hidden Markov model is shown as
algorithm (1).

Algorithm 1. Adaptive Forward algorithm based on
hidden Markov model

1: Initialize:

2: For (i=1:i<N; i++)

3y, =7, (0). (/)= 0
- End

s Update(l, Oy), 1 <j<N

: Induction

s For(t=2; t<T; t=t+1)

: For (i=1:i<N; i++)

o N w» A

9:a,(i)=b,(0, )i a. (i)aij

10: End;
11: Update(t, O)
12: End
13: Termination.

14: For (i=1I: i<N; i++)
N

15: PO]2) = a, (i)
i=1

16: End

With each retrieval of observation O, by the
auxiliary variable, a, 1<t<T, the function Update(t, O,
updates the value of the likelihood function, b;(k). The
updating function, Update(t, O,) is presented in
algorithm (2) below.

Algorithm 2. Update algorithm

1: Function Update (O,)

- 0,=k'

s For(i=1; i<N; i=i+l)

: For (k=1; k<M; k=k+1)

5 if (k==K"b """ (k") = b, (k) + 17,

A W N

6: Else b (k) =b,(k); End:

7: Sum(i,k) = b7 (k) + Sum(i, k);

8: End;

9: End

10: For(i=1; i<N; i=i+1)

11: For (k=1; k<M; k=k+1)

125 if (Sum(i, k) < 1)b "' (k) =
I S
Sum(i, k)

% bféla_l/usted (k)

2

13: Else biAdj”Sted (k)=

14:

Sul’i’l(l) % biAdjusted (k),End ;

15: End;
16: End;
17: End;

The parameter Sum(i,k)is used to count the sum

of values of likelihood function, b;(k)assuming that
1<k <M . The parameter M indicates the number of
observation symbols. At the end of algorithm 2, it is
necessary to evaluate the necessary requirements in
equations (7) and (8) for the adapted values of the

function b,(k); namely, b,-Ad/umd (k).

biAdjusted (k) > O (7)
ZbiAd/‘usted (k) — 1 (8)
k=1

1<k<M]I<i<N
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At the end of algorithm 1, lines 10 to 16, applying
the normalization process will lead to the
establishment of the requirements of equations (7) and
(8) for the updated values of the likelihood function,

bi(k); namely, biAdjusled ( k) .

4. Results of the Experiments

In the section for the results of the experiments, the
accuracy of adaptive Forward algorithm in solving the
evaluation problem is compared to the Forward
algorithm based on hidden Markov model as well as
extended hidden Markov model under unstable
statistical data set.

4.1. The Set of Test Data in Experiments

This study tries to use popular stochastic processes
such as sport processes. The selected sports data
involve the statistical data for basketball matches.
Desired training and test set, consists of two
professional basketball match. First training and test
set used in the experiments have been chosen From
the Eighth-week games of professional basketball
league of America, NBA, in 2015-16(February) [13].
Considering the teams present in the Evaluation
problem and by prioritizing in alphabetical order, the
selected states are as follows:

1- Denver Nuggets
2- Utah Jazz

In the first series of tests, basketball shots
techniques are evaluated. Hence, observation symbols
include 2-point and 3-point shots. Categorization of
observation symbols is carried out based on basketball
rules [14]. The list of all the defined observation
symbols is as follows:

1- Successful 3-point shots (Success 3P)
2- Failed 3-point shots (Failed 3P)
3- Successful 2-point shots (Success 2P)
4- Failed 2-point shots (Failed 2P)

The training statistical data include the ordered
pairs of observation symbol and the state generating
the observation symbols for the basketball match
between Denver and Utah in the second week of
2015-16 league.

The second sport processes used in the experiments
have been chosen From the Fifteenth-week games of
NBA in 2015-16(March) [13]. By considering the
teams present in the problem environment and by
prioritizing Based on alphabetical order, the selected
states are as follows:

1- Denver Nuggets
2- Memphis Grizzlies

Observation symbols of both statistical data set are
same.

4.2. Experiments’ Parameters

Establishing variety in the values of problem
parameters including the length of the Evaluation
problem and changing the conditions of the test data
such as erratic variations in the likelithood function,
bi(k), during the lifetime of the stochastic processes,
aim to learn more about the performance of the
proposed algorithms in unstable statistical data set.

4.2.1. Percentage of Erratic Changes in the

Likelihood Function, bi(k).

This study utilizes the percentage of erratic
changes in the values of likelihood function, b;(k),
with each event of the observation, V, during the

lifetime of statistical data, SVD;'C [15]. In function

SVD;{, the extent of stochastic changes during the

lifetime of statistical data, is allocated a value
between 0 and 1. When there is Stability in the ratio
of generating observation symbol, V; generated by the
state i during the lifetime of statistical data, the value

of SVD]i{ will be equal to 0. If the increasing and
decreasing steps of the function b;(k) with each event

of V; are equal, the function SVD},iC will be equal to 1.
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Table 2

The value of percentage of erratic Changes in the Likelihood Function,
bi(k)iwith each event of observation, V, during the Lifetime of Test data,
SVD;, .

index Match Name

i

SVD ;A

1 Denver Vs Utah Jazz 0.141
2 Denver Vs Memphis 0.337

As can be seen in Table 2, of the Sport data set (1),
involve much more erratic changes in the values of
the likelihood function b;k) at the event of
observation symbol, V;, during the life of the test data.
The results presented in Table 2 can be useful for
comparing the performances of the proposed
algorithm and Forward algorithm under unstable

statistical data set.
4.2.2. The Length of the Evaluation Problem

According to equation (1), for L =1 and L=2 of the

observation sequence, o= {0, .., OT}, the impact of

initial state probabilities in determining the value of
observation symbol probability k produced by state i,
bi(k), is respectively 100% and 50%. So, it is assumed
that the minimum length of decoding equals to L=3.
To reduce the role of probability function m and
therefore correctly evaluate of Hidden Markov
algorithms performance, the Evaluation length should
be properly selected in order to accurately estimate of
state probability of evaluation problems. On the other
hand, increasing the length of evaluation problems
leads to increase the number solution paths
exponentially. Hence, the evaluation problem choices
with a high length (above 6) are avoided. Hereupon,
the length of the Evaluation problems selected 3, 4, 5,

and 6, in each of the four experiments respectively.

4.3. Accuracy Percentage of Adaptive Forward
Algorithm in Experiments

The accuracy percentage of Forward algorithm is
determined based on the average accuracy of

calculating the probability of sequential event of

observations, O = {0, ..... 07-}, for the given model of

/1,P(0|/1), by the Forward algorithm. In the

following, the obtained results will be analyzed
considering the extent of erratic variations in the
likelihood function, b;(k) , during the lifetime of test
data and the length of the Evaluation problem, 7.

In the following, accuracy percentage of the
adaptive Forward algorithm based on the hidden
Markov model, AF HMM, will be compared to the
average accuracy of the Forward algorithm based on
the hidden Markov model [7], F HMM , the factorial
hidden Markov model [11], F FHMM, and Evidence
Feed Forward hidden Markov model [12],
F EFFHMM. In order to evaluate the performance of
the proposed algorithm in different data set, the erratic
processes have been chosen from professional sport
statistical data set.

A. Accuracy Percentage of the Adaptive Forward
Algorithm for Sport Data Set (1)

The Relative high value of the variations in the
likelihood function, b;(k), at the event of observation

Vi or SVD;C is a characteristic of the Sport data set

(1). In Figure (3), the average accuracy of the
adaptive Forward algorithm based on hidden Markov
model, the Forward algorithm based on hidden
Markov model, the Evidence Feed Forward hidden
Markov model and the factorial hidden Markov model
for the accurate calculation of the probability of event,

P(O|/1) , over of the Sport data set (1) test data are

presented.



Journal of Computer & Robotics 6 (2), 2013 29-39 37

Accuracy Percentage

3 Test thber ]

Fig. 3. The Accuracy of the adaptive Forward algorithm and the Forward
algorithm based on the extended hidden Markov models in solving
Evaluation problems for sport data set (1)

Increasing the length of the Evaluation problem
and the numerous observation events during the
lifetime of the Forward algorithm will lead to a
decrease in the average accuracy of the Forward
algorithm in

solving the Evaluation problem.

However, the adaptive Forward algorithm
significantly prevents the reduction of the accuracy of
the algorithm by adjusting the probability value of
bi(k) and applying the wvariations rising from
observation events in the Evaluation problem on the

values of this function.

B. Accuracy percentage of the Adaptive Forward
Algorithm for Sport Data Set (2)

The average accuracy of the adaptive Forward
algorithm, Forward algorithm based on hidden Markov
model, Forward algorithm based on factorial hidden
Markov model, and Forward algorithm based on
Evidence Feed Forward hidden Markov model for the
selected sports processes are presented in Figure (4).

---F HMM
- F EFF HMM
~F F HMM

e AFHMM |

Viterbi A;wraw Estimation Mean
I
I
{

Test Number .

Fig. 4. The accuracy of the adaptive Forward algorithm and the Forward
algorithm based on the extended hidden Markov models in solving
Evaluation problems for sport data set (2)

Decreased erratic variations of the likelihood
function, b;(k), at the event of the observation symbol,
V}, during the lifetime of the selected statistical sports
data will lead to an increase in the accuracy of the
adaptive Forward algorithm in solving Evaluation
problems compared to the Forward algorithm based
on the factorial and Evidence Feed Forward hidden
Markov models. In the following, the Wilcoxon
signed-rank test is used for analyzing the hypothesis
positing the presence of a significant difference
between the accuracy values of adaptive and non-
adaptive Forward algorithm for the experiments in
Sections 4.3 and 4.4 with the confidence level of 95%
(alpha coefficient= 0.05). The result of the Wilcoxon
signed-rank test for assessing the above-mentioned
hypothesis with 95% confidence level is presented in
Table 4.

Table 3

Wilcoxon signed-rank test over the accuracy values of adaptive Forward
algorithm and Forward algorithm based on extended hidden Markov
models

Algorithm | FHMM  FEFFHMM FFHMM A FHMM
F HMM - -

FEFFHMM | 043 .

F FHMM 0.041 0.047 -

AF HMM 0.041 0.047 0.143

The values lower than the alpha level, of a=0.05,
for the values of the Wilcoxon signed-rank test in
Table 3 indicate the significant difference for the
Evaluation accuracy of compared algorithms. Proving
the presence of a significant difference between the
accuracy of the adaptive Forward algorithm and the
Forward algorithm based on hidden Markov model
and extended hidden Markov models is one of the
important results of this test.

4.4. Comparing the Order of Complexity for the
Calculations

Selecting the appropriate algorithm for the
implementation of the theoretical foundations should
be done based on the problem's conditions, the
accuracy required, and the resource limitations such
as time and the extent of calculations. The limited

number of observation symbols and short-length
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Evaluation problems diminish the influence of the
resources. However, by increasing the length of the
problem and the number of the observation symbols,
the decision making conditions will definitely change.
In the adaptive Forward algorithm, an extra nested
ring is used for adjusting the values of the likelihood
function for the event of the observations generated
by the states. Hence, the complexity of the
calculations for the adaptive Forward algorithm based

on the hidden Markov model is as follows.

Our mam = 0((N2 xN)T')= O(NST) 9

In the following, the order of complexity for the
adaptive Forward algorithm based on hidden Markov
model, 4 F HMM, the Forward algorithm based on
factorial hidden Markov model, F FF HMM, the
Forward algorithm based on Evidence Feed Forward
hidden Markov model, F EFF HMM, and the
Forward algorithm based on hidden Markov model,
F_HMM , are presented in Table 4.
Table 4

Order of complexity of calculations for the adaptive Forward algorithm
and Forward algorithm based on extended hidden Markov models [16]

Algorithm Complexity Order
F HMM O(N’T)
F FHMM ON’T)
F EFFHMM O(N’T)
AF HMM ON’T)

Table 4, indicates the higher order of complexity of
calculations for the adaptive Forward algorithm, and
the Forward algorithm based on factorial hidden
Markov model. By increasing the length of the
Evaluation problem or the number of observation
symbols, the significance of the calculation
complexity in selecting the proposed algorithm also

increases.

5. Conclusions

In this study, an adaptive approach for the
likelihood function, b;(k), at the event of the

observations for the Evaluation problem during the
lifetime of the Forward algorithm under unstable
statistical data set proposed. Updating the b;(k)
function using the parameter for average variations
for the values of the b;(k) function, at the event of V;
will lead to an increase in the accuracy of Forward
algorithm under unstable statistical data set. The
capability of the proposed algorithms is considerably
related to the percentage of changes in the values of
the likelihood function b;(k) at the event of V; during

the lifetime of the test data, S VD,’;. Accordingly,

reducing the value of the above-mentioned parameter
will lead to an increase in the accuracy of the
algorithm in solving Evaluation problems. Moreover,
by increasing the value of this parameter and
decreasing the present order in the variations of the
bi(k) function at the event of V}, in the context of the
test data, the accuracy of the adaptive Forward
algorithm in solving the Evaluation problems will
decrease. Considering the relation between the order
of variations in the likelihood function of the event of
observations and the value of the adaptive parameters,
the proposed algorithm provides an desirable
performance under all the test set. The higher order of
complexity of calculations in adaptive Forward
algorithm compared to the Forward algorithm based
on the hidden Markov model is one of the
disadvantages of the proposed algorithm.
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