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Abstract 

Biped robot locomotion is one of the active research areas in robotics. In this area, real-time stable walking with proper 

speed is one of the main challenges that needs to be overcome. Central Pattern Generators (CPG) as one of the biological 

gait generation models, can produce complex nonlinear oscillation as a pattern for walking. In this paper, we propose a 

model for a biped robot joint trajectory in order to be able to walk straight, exploiting polynomial equations for the support 

leg’s joints and Truncated Fourier (TFS) Series equations for the swing leg’s joints in the sagittal plane and frontal plane. 

Four customized genetic algorithms (GA-1 to GA-4) with different implementations for the crossover steps are used as 

evolutionary algorithms to optimize equation parameters and achieve the best speed and performance in walking motion. 

These four GAs differ in crossover step and parent selection parts. After a primary evaluation to make sure the next 

generation is better off than before, we consider a clever comparison feature between the best of two generations (parent 

and child) in GA-4. The algorithms have been tested on the Darwin humanoid robot in the Webots simulator environment 

where the results show that the GA-4 model has the best performance and achieves the desired fitness value.  

Keywords: Humanoid Robot Walk, Central Pattern Generator, Genetic Algorithm, Truncated Fourier series.  

 

1. Introduction 

1.1. Gait Generation Models 

Professor Ichiro Kato’s group was the first group that 

worked on humanoid robots at Waseda University from 

1970 [1]. Two decades after that, researches on humanoid 

robots expanded and other groups such as MIT, NASA 

(USA) and the University of Tokyo initiated various studies 

on this subject [2, 3].Gait generation for biped robots is an 

important and open problem. Many researchers have 

proposed several models for a human-like walk. There are 

several models to generate walking gait for humanoid 

robots.  

1) Trial and error model: In this model, each step is 

divided into several phases, and equations are designed for 

each phase. The following sub-models of this model are: a) 

a joint space model [4], b) a virtual forces model [3]. The 

joint space model computes suitable temporal trajectories 

between the present joint limits of the walking motion [3]. 

In the virtual forces model, which is proposed by Jerry 

Pratt et al [4],the equations are produced based on the force 

reaction and joint torque control. The disadvantages of this 

model are: I) the dynamics of the robot using this model is 

very simple and therefore, the model cannot be used for a 

robot with an adult human size. II) This model is very slow 

due to its equations design. 
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2) Mass distributed model: To generate more accurate 

gaits and also taking into account the dynamic effects of the 

robots, this model studies the equation of pendular motion 

on centre of mass for some biped links [5]. The submodels 

are: a) Two Masses Inverted Pendulum Model (TMIPM) 

[6] and b) Multiple Masses Inverted Pendulum Model 

(MMIPM) [7]. The main advantage of this model is that 

walking motion is stable but it can only be used for offline 

trajectory generation, but not in real-time due to the high 

computation time. 

3) Mass concentrated model: This model simplifies the 

dynamic of the whole body of the robot in one mass, 

namely “center of gravity”, and the kinematic equations of 

this mass are computed. There are two sub-models for this 

model: a) the 2D Inverted Pendulum Model (IPM), b) the 

3D Inverted Pendulum Model [8]. In the 2D IPM, the 

motion of the robot is studied in sagittal plane (x-z plane) 

and all the mass of the body is concentrated in the centre of 

gravity. In 3D IPM, to get more stability and have a 

walking motion similar to a human, the robot’s motion is 

also studied in frontal plane and this model introduces ZMP 

as a stability criteria when the robot stands on one of its 

legs during walking (single support phase). Due to the 

simplicity and low computation time, this model can be 

used for real-time applications. 

4) Central Pattern Generator (CPG): Is inspired from 

biology, which produces multidimensional rhythmic signals 

and these signals are applied to the robot’s joints [9]. Shik 

[10], Cruse [11] and Brewer [12] used this model as a gait 

generation model for a biped robot. In this model accurate 

knowledge of the dynamic of the robot is not needed. 

Taga’s work on biped locomotion [9] proves that CPG 

can be used to make humanoid robot’s walk. In [13] a 

genetic algorithm is used for optimizing trajectory 

generation of the walking biped robots. In [14] Kim uses a 

method based on PSO algorithm for optimizing CPG 

parameters. In [15] authors introduce a biologically 

inspired method for a biped gait generation using particle 

swarm optimization. Human biomechanics are used to 

mimic the stability condition and the walking cycle 

composition. All joints are set to simple initial positions at 

the beginning of each iteration in order to prepare the robot 

for a stable walking motion. A forward position should 

ensure a forward step and a stable walking motion. 

Truncated Fourier series was used as a nonlinear oscillator 

to model gait trajectory of each joint of the robot in 2006 

[16]. 

1.2. Evolutionary Algorithms 

Each gait generation model has various parameters that 

must be tuned. Evolutionary algorithms are one of the most 

popular algorithms to optimize these parameters in 

minimum time in order to achieve continuous dynamic 

walking [17] [18]. Each evolutionary algorithm has 

individuals that search the solution space of the given 

problem. A fitness value is assigned to individuals to 

evaluate the performance of each one. The probability of an 

individual to be selected as a parent depends on the fitness 

value. The individual with the better fitness value has a 

better chance of being selected. 

The evolutionary algorithms such as generic, simulated 

annealing, particle swarm optimization (PSO) algorithm are 

inspired from nature. These algorithms are based on 

iteration and the probability and are used in optimization 

problems. Genetic Algorithms are used as an evolutionary 

algorithm to minimize walking trajectory energy 

consumption in [17]. A comprehensive study on intelligent 

control techniques is performed in [18] and GA is used to 

optimize neural network parameters to control robot 

walking motion. The investigated GA models of [19] use 

the crossover and mutation operations of [18]. In [20] 

different implementations of GA operators are used to 

optimize gait parameters, such as two-point crossover and 

Gaussian mutation. To avoid being stuck in the local best 

answer in the solution space, the authors of [21] designed 

explicit fitness sharing. In [22] Adaptive PSO is used which 

tunes the inertia weight dynamically to search local space 

more or speed up the convergence to the global best 

position. The adaptive GA is also used in [23] to optimize 

the gait parameters. This algorithm can adaptively change 

the possibilities of the GA crossover operator and mutation 

operator during the process of evolution.  

The rest of this paper is organized as follows: Section 2 

explains our proposed model. Section 3 focuses on 

experimental setup, and section 4 presents the experimental 

results, and finally Section 5 concludes the paper. 
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2. Proposed Model 

2.1. Motion Pattern 

The proposed model is a sub model of CPG, which 

produces rhythmic signals as a trajectory gait 

generation. The goal of this experiment is to have a 

straight, stable walking with proper speed .The 

Darwin kid size robot is used for the proposed 

algorithm that has 20 degrees of freedom (Fig. 1). For 

the walking trajectory, only joints of the legs are 

considered. As can be seen in Fig. 1, each leg has six 

degrees of freedom and only these joint are derived. 

The walking trajectory is divided into several types. 

Angular trajectory is defined as the trajectory in 

which the angle of each joint is plotted at a certain 

time slice.  

A straight walking cycle consists of two steps 

which are completely symmetric, so only one step is 

needed to produce because after each step, only the 

role of the support and swing legs are changed, 

respectively. In our studies on human forward 

walking, the angle of each leg’s joints in one period 

of walking signal (one step) with 0.04 seconds 

interval is recorded (Fig. 2). In the sagittal plane, the 

joints of the hip, knee and ankle for the support leg 

have smooth trajectories.  

This trajectory helps humans to achieve faster and 

stable walking motion. Polynomial Equation (Eq. (1)) 

is used as a novel method for the support leg to 

produce the gait Equation to model the trajectory 

(Table1). a1, a2, …, an are the constant coefficients for 

the support leg and t is the time. Due to this 

equation’s low computation time, it’s possible to use 

it in real-time. Truncated Fourier Series (TFS) (Eq. 

(2)) is used to generate the trajectory of the swing leg 

in the sagittal plane (Table1) Ai, Bi and Ci are the 

constant coefficients and t is the time. As pattern 

generators, the advantages of these equations are their 

simplicity and the possibility to be used for real-time 

calculations. TFS is also used on the frontal plane to 

maintain robot stability during walking motion. 

 

��,�,� = ���
� + �����

��� + ⋯+ ���
� + ��� + ��										 (1) 

��,�,� = ���

�

���

. sin(��� + ��)		 (2) 

 

Table. 1.  Joints equation types 

Joint name 

(plane name) 

Support Leg 

(Left Leg) 

Swing leg 

(Right leg) 

Hip (Yaw) Sinusoid Sinusoid 

Hip (Roll) Sinusoid Sinusoid 

Hip (Pitch) Polynomial Sinusoid 

Knee (Pitch) Polynomial Sinusoid 

Ankle (Pitch) Polynomial Sinusoid 

Ankle (Roll) Sinusoid Sinusoid 

 

  

Fig. 1. The Darwin robot model with 20 degrees of freedom 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Fig. 2. (a) Hip joint angular trajectory for the support leg in the sagittal plane, (b) Hip joint angular trajectory for the swing leg in the sagittal plane, 

(c) Knee joint angular trajectory for the support leg in the sagittal plane, (d) Knee joint angular trajectory for the swing leg in the sagittal plane, (e) 

Ankle joint angular trajectory for the support leg in the sagittal plane,(f) Ankle joint angular trajectory for the swing leg in the  sagittal plane, (g) Hip 

joint angular trajectory for both legs in the frontal plane, (h) Ankle joint angular trajectory for both legs in the frontal plane. 
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Fig. 3. The Webots environment (simulating software) 

2.2. GA Models 

In this paper, four GAs are used to optimize the 

coefficients of the proposed motion trajectory equations 

(Eq. (1) and Eq. (2)). These GAs consist of four steps, in 

the first step the initial population is created, in the second 

step, the fitness of each individual is evaluated, in the third 

step some individuals are selected based on their fitness 

value and sent to the crossover operator to produce two 

new individuals. This operation is then until the size of the 

population of new individuals reaches the main population 

size. In the last step, the mutation operator changes some 

gens of the new individuals (the coefficient values in our 

model).  

GA-1 to GA-4 have different implementations in the 

selection step and the crossover part. In all of the four 

models the initial population is created randomly, the 

mutation is executed on 10% of the new population and 

only changes a single gen (coefficient) by random. Fig. 4 

shows the structure of one chromosome. Each coefficient 

of the Eq. 1 and Eq. 2 is considered as one gen. Each 

chromosome consists of 87 gens. There are 15 gens for the 

coefficients of the polynomial equation and 72 gens for the 

coefficients of the TFS equation (totally, 87coefficients are 

considered for all TFS and Polynomial equations (Eq. 1 and 

Eq. 2)) and cost is introduced as the fitness value of the 

chromosome after their evaluation.  

GA-1 Model: the crossover operator selects two 

individuals by random and swaps random parts of each one 

to produce new individuals and repeat this operation until 

the maximum population size is reached. 

GA-2 Model: this model uses the Roulette wheel 

method to select the best parents. In the crossover step, 

parts of these parents are swaped randomly in order to 

create new population in crossover step. 

GA-3 Model: similar to the GA-2 Model, the Roulette 

wheel method is used to select best parents but in the 

crossover step, the swaping method is different. In this 

model all gens of one individual (all coefficients of the 

Equations) which are responsible for producing motion in 

the x-z plane and all gens that produce motion in the    y-z 

plane are selected to be swaped in order to create two new 

individuals. 

GA-4 Model: in this model Roulette wheel method is 

used to select parents for the next generation, random parts 

of each parents are swapped in the crossover operation. 

When creation of the new generation is done, evluation for 

all new chromosomes is started, the best chromosomes of 

two generations (parent and child generations) are selected, 

taking into acount the size of the population, to produce the 

next generation. This operation is then repeated. The 

advantage of this model is that when the Roulette wheel 

method is used as a selection method there is always a 

chance for chromosomes with low fitness to be choosen in 

order to create new generations that produce chromosomes 

with new abilities. Finally only the best chromosomes from 

two generations (parents and child generations) are kept. 

The main implementation choices for each of these 

models are shown in Table 2. Eq. (3) shows the fitness 

function that is used in this paper. 

�∑
�(�������)

��	(�������)
��|(�������)|

��������������������

�
��� �	                    (3) 

The goal of this experiment is to have a straight, stable 

walking with proper speed, so evaluating fitness with this 

criteria has several interesting properties, such as ensuring 

that the robot is moving forward (in X direction) and 

favouring higher velocities. At first, for each gen the fitness 

function has the initial value equal to zero. After each two 

steps, the fitness function is calculated and added to the 

fitness function. This calculation is repeated after each two 

steps until the termination conditions is met.�������	is the 

initial position of robot, ������������ is the final position of 

the robot when moving straight ahead in the main 

simulation time.���� and ��	are the current positions of 

robot before and after each two steps i and i-1. the X 

direction and also ���� and ��	in Y direction so that the GA 

can determine good individuals from their fitness, |(�� −

����)|	is used to penalize fitness if the robot walks in the Y 
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direction. Three terminating conditions are considered for 

evaluating the fitness function: 1- Robot reaches the center 

of the field from the Penalty mark (170 cm). 2-The main 

simulation time finishes (15 seconds). 3- The Robot falls 

down. 

CHROMOSOME STRUCTURE 

Coefficient Array 

			∑ ��
�
��� . SIN(��� + ��)                             ���

� + �����
��� +⋯+ ���

� + ��� + ��										 

 

 

� � ��  ���� ���� … … … … �� 

Fig. 4. The chromosome structure (totally each chromosome has 87 GENS). 

 

Table. 2. Four different implementations of GA 

Model of 

implementation 
Selection Crossover Mutation 

GA-1 Random Random 10% 

GA-2 Roulette wheel Random 10% 

GA-3 Roulette wheel 
All pitches and all 

rolls 
10% 

GA-4 Hybrid  Random 10% 

3. Experimental Setup 

3.1. Framework 

Our proposed method is evaluated on the Darwin 

humanoid robot and experiments are performed using 

the Webots simulator as a generic three-dimensional 

simulator (Fig. 3). More than 400 universities and 

research institution work with the Webots. The Four 

basic stages that Webots provides are: 1) the model stage 

of the robot for designing physical body of the robot. 2) 

the program stage, in this stage the behaviour of the 

robot is programmed 3) simulating two previous steps, 

so the results can be seen in the simulation environment 

4) transfering the program to the real robot and run in 

the real world so the results can be compared with 

simulation results. The robot model has 20 DOF 

(Degrees Of Freedom) with a height of about 45.5cm, 

and a mass of 2.8kg (Fig. 1). Webots has the ability to 

define supervisor controller to check positions of the 

robot. The environment function calls of the Webots 

includes stop running process, revert the process and etc. 

At the beginning of the simulation the robot is set to a 

special position (penalty mark point) and robot’s joints 

are set to special offsets to get ready for walking. The 

robot starts walking until terminating conditions occur. 

In this situation the real time supervisor calls the revert 

method of the Webots and the robot will be set to its 

initial position and this process will be repeated. 

3.2. Algorithm Steps 

Only 12 joints of the robot’s legs (each leg has 6 

DOFs) moved according to Table 1. Although other 

DOFs are effective in the walking behavior, their main 

role is in smoothing the robot’s walking motion. At first, 

custom stable walk steps are generated in minimum time 

for the robot. Each step lasts 0.48 second and the angle 

positions of the joints of robot’s leg are recorded every 

0.04 second. There are three DOFs in each leg 

movement in sagittal plane: one in the hip, one in the 

ankle and one at the knee. Fig. 2 (a), (c) and (e) show 

hip, knee and ankle trajectories for support leg on the 

sagittal plane, which are modelled in the MATLAB by 

polynomial equations. For the swing leg on sagittal 

plane hip, knee and ankle trajectories are modelled in the 
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MATLAB by a Sinusoid Fourier series Equation (Fig. 

2(b), (d) and (f)). For balancing, there are two DOFs in 

each leg moving in the frontal plane: one in the hip, one 

in the ankle. The hip and the ankle trajectories can be 

seen for the support leg in Fig. 2(g) and (h), so the same 

equation can be calculated for the hip and the ankle 

trajectories for both legs (swing leg or support leg). The 

trajectories for hip and ankle joints can be modelled by a 

Sinusoid Fourier series equation. 

4. Experimental Results 

The results of the four proposed GAs can be found in 

Fig. 5. According to equation (4), to reduce the width of 

the confidence interval and to obtain more conclusive 

results, these results are calculated by averaging over 

five repetitions for each of the GA-1, GA-2, GA-3 and 

GA-4 models. 

if � ≥ 30	then	Confidence	Interval = � ± ��

�

�
�

√�
�	 

if � < 30	then	Confidence	Interval = 	� ± ��
�

�
�

√�
�                    

(4) 

In equation (4) � = sample mean, �= standard 

deviation, � = number of terms, �= the desired 

significance level, ��

�
	and ��

�
 are values corresponding to 

z table and t table for confidence interval formula [24] 

[25]. 

The convergence of all individuals for GA-1 to GA-4 

models can be found in Fig.5 (a), (b), (c) and (d). GA-1 

has the worst results because all the steps in this model 

are done randomly. GA-4 has the best convergence 

because its selection model is based on the best parents 

and guarantees selecting good individuals for the 

crossover operations. Due to random selections for 

swapping parts and generating new individuals, there is 

always a chance to have individuals with new abilities 

and unpredictable behaviour and find better solutions. 

In the crossover operation of GA-3, all gens of one 

individual that are responsible for producing motion in 

the x-z plane are swapped with another individual. In 

other words, all gens that produce motion in the y-z 

plane are swapped with another individual to create two 

new individuals. If all initial individuals have bad gens 

in just one equation (for example knee equation 

coefficients for the swing leg), which produces one joint 

trajectory in the x-z plane or in the y-z plane, this model 

will never reach  a good solution because bad gens are 

swapped with bad gens to create new individuals. The 

disadvantage of GA-3 is that it is dependent on good 

initial state of individuals for reaching to good results, as 

can be seen in Fig.5 (c.1). GA-1 has the worst results 

because all steps in this model are done randomly (Fig.5 

(a.2)). In the GA-4, individuals have the best 

convergence to the best solution (Fig.5 (b.2)). Table 3 

shows the experimental results with 5 repetitions. After 

8 generations, GA-4 reaches near 0.6 of the best fitness 

value, in this algorithm good individuals are always 

selected for crossover operation and because of random 

crossover there is always a chance to produce new 

individuals with new behaviour (new behaviour for all 

equations). Fig. 6 shows the best fitness values for the 

four GA algorithms. 

Table. 3. Experimental results 

Model 
No. of 

chromosomes 

No. of 

Generations 

Best Fitness 

value 

(average 5 

iteration) 

Min. iteration 

for 

converging to 

0.6 

GA-1 20 10 0.353547 - 

GA-2 20 10 0.501157 10 

GA-3 20 10 0.487875 - 

GA-4 20 10 0.832135 8 
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Fig. 5. (a), (b), (c) and (d) show the convergence of chromosomes in GA-1, GA-2, GA-3 and GA-4, respectively and also 

show the maximum, minimum, average and best fitness values for GA-1, GA-2, GA-3 and GA-4. (The results are achieved 

by averaging over five repetitions for each of four GA models with 20 Chromosomes and 10 generations). 

 

 

Fig. 6. Best fitness values for four GA models 

5. Conclusion 

In this paper a new gait generation model were 

introduced which consists of using optimized polynomial 

equations as a novel method for the support leg and TFS 

equation for the swing leg in the sagittal plane. TFS is also 

used for balancing in the frontal plane. The advantage of 

this model is its low computation time and possible usage 

in real-time calculations to achieve walking with proper 

speed similar to humans. Several implementations of GA 

have been explored to find the best values for coefficients 

of the proposed gait generation model in minimum time.  

According to the results, GA-4 has the best results and 

by using clever selection methods like Roulette wheel 

there’s always a chance for normal and bad chromosomes 
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to be chosen, producing new chromosomes with new 

capabilities. When the evaluation of the new generations is 

done, the best chromosomes of two generations (parents 

and children) are selected to produce the next generation 

this technique leads to the best solution in minimum time. 
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