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Abstract 

Coverage quality of targets is one of the most significant criteria for some applications such as surveillance and environmental monitoring. 

Cost is also an important factor for the coverage problem in visual sensor networks. Therefore, the present study aims to investigate a novel 

coverage problem by considering both cost and coverage quality. To accomplish this purpose, firstly a criterion for the coverage quality of 

visual sensors is defined with regard to the attributes of lens of their camera. Then, considering cost and quality objective functions, Max-

Quality Min-Cost Selection problem (MQMCS) is addressed and formulated as a bi-objective programming. Finally, two centralized and 

distributed algorithms that with a high probability can find a cover set with the maximum coverage quality and the minimum number of 

sensors are proposed.  
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1. Introduction  

In recent years, visual sensor networks have emerged as 

promising platforms for many applications like 

environmental monitoring [1], [2] and battlefield 

surveillance [3]. Coverage is one of the fundamental 

functionalities of sensor networks. Practically, visual 

sensors in most of the environments such as [4], [5], [6], [7] 

and [8] have been distributed densely. Therefore, we should 

select a set of them in order to cover interested targets. 

In a WSN, a sensor covers a target if the target is in the 

sensing range of the sensor. There are three coverage 

models depending on how targets are defined: 

1) Targets form a contiguous region and the objective is 

to select a subset of sensors to cover the region [9]. Typical 

solutions involve geometry properties based on the 

positions of sensor nodes. 

2) Targets form a contiguous region and the objective is 

to select a subset of sensors to cover the rest of sensors 

[10]. This model assumes the network is sufficiently dense 

so that point coverage can simulate area coverage. Typical 

solutions involve constructing dominating sets or connected 

dominating sets [11] based on traditional graph theory. 

3) Targets are discrete points and the objective is to 

select a subset of sensors to cover all of the targets. Typical 
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solutions [12] use the traditional set coverage or bipartite 

graph models. 

In this paper, we focus on the third coverage problem. 

In the coverage problem, cost that can be defined as a 

function of the number of selected sensors is a major issue. 

Therefore, we should select the minimum number of visual 

sensors that can cover targets. Moreover, seeing targets 

with high quality can be one of the goals of monitoring 

applications.  

A visual sensor has a non-uniform sensing region. That 

is to say, because of the attributes of lens of its camera, it 

can cover a target with different qualities in different 

orientations. Thus, we define a criterion for the coverage 

quality of visual sensors. Then, we define Max-Quality 

Min-Cost Selection problem (MQMCS) that finds a cover 

set with the maximum coverage quality and the minimum 

cost. We also formulate this problem as a bi-objective 

linear programming and solve it with the weighted-sum 

method. Since the number of selected sensors does not 

affect the coverage quality, we could solve problem for the 

exact weight and find an efficient cover set. By considering 

a higher weight for the cost function and a smaller weight 

for the quality function, we select the minimum number of 

sensors that cover all targets with the maximum quality. 

Afterwards, since finding a directional cover set is NP-

complete [13], we propose two centralized and distributed 
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algorithms in order to have a cover set with the maximum 

coverage quality and the minimum cost.  

For solving MQMCS problem, the following 

assumptions and scenario are adopted in this paper. Some 

targets with known locations are deployed in a two-

dimensional Euclidean plane. Visual sensors are distributed 

densely in the defined area. We use two algorithms 

(MQMCS-C and MQMCS-d) for finding a set of 

distributed sensors as a cover set. This cover set will be 

able to cover the interested targets with the maximum 

coverage quality and the minimum cost. Then, we evaluate 

these algorithms by three criteria (success rate, coverage 

percentage and coverage quality) and show that these 

algorithms with a high probability are able to find efficient 

cover set. It is important to note that different sensing 

regions of each directional sensor do not overlap. However, 

in this paper we do not put restrictions on the overlaps 

between shapes of directions of different sensors. The 

selected direction of one sensor is named working 

direction. Furthermore, if the target is placed in the 

working direction of the sensor, it will be covered by the 

sensor.  

The rest of the paper is organized as follows: Section 2 

briefly surveys the related literature. In Section 3, a 

criterion for the coverage quality of visual sensors is 

presented. In Section 4, Mix-Quality Min-Cost Selection 

problem is defined and in Section 5 it is formulated as a bi-

objective linear programming. In Section 6, two algorithms 

(MQMCS-c and MQMCS-d) are suggested that select 

sensors with the maximum quality and the minimum cost 

as a cover set, and then they are evaluated. Finally, the 

conclusion is provided in Section 7. 

Table 1  

Summary of some studies on the coverage problem  (TC: Target Coverage, AC: Area Coverage    C: Centralized, D: Distributed. NL: Network Lifetime) 

Paper Field Method Dimension Algorithm  Primary objective Secondary objective 

[14] AC D 2D DGreedy Max coverage - 

[15] AC D 2D - full coverage Prolonging NL 

[16] AC D 2D EFCEA Enhancing AC Max NL 

[17] AC D 2D E-SURE Prolonging NL - 

[18] AC D 2D Self-orienting Max coverage - 

[19] AC C 2D Adaptive deployment Min total cost / 

satisfying coverage  requirement 

- 

[20] AC C 2D Coverage enhancing Max coverage - 

[21] AC/TC C 2D Greedy Guaranteeing k-coverage / 

Min sensors 

- 

[21] AC/TC D 2D DGA Guaranteeing k-coverage / 

min sensors 

- 

[22] TC C 2D Model direction partition Prolonging NL - 

[23] TC C 2D ILP,SNCS Max coverage / 

Min sensors 

Prolonging NL 

[23] TC C 2D CGA,SNCS Max coverage / 

Min sensors 

Prolonging NL 

[23] TC D 2D DGA,SNCS Max coverage / 

Min sensors 

Prolonging NL 

[24] TC C 2D DCS-GA, WT_Greedy Full coverage Prolonging NL 

[24] TC D 2D DCS-GA, WT_Dist Full coverage Prolonging NL 

[25] TC C 2D WCGA Max coverage - 

[25] TC D 2D EDO Covering critical targets Max coverage/ NL  

[26] TC D 2D NSS Max NL - 

[27] TC C 2D ILP Min total cost Max coverage/ NL 

[28] TC C 2D ILP Prolonging NL - 

[28] TC D 2D CBDA Prolonging NL - 

[29] TC D 3D VFA-ACE Improving coverage - 

[29] TC D 3D Simulated annealing Improving  coverage - 

[30] TC C 2D Direction partition Full coverage / min sensors - 

[31] TC C 2D ILP Min sensors - 

[32] TC C 2D ILP Min total cost - 

[33] TC C 2D Greedy algorithm connected network / min sensors - 

[33] TC C 2D Strip-based algorithm connected network / min sensor - 
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2.  Related work 

In contrast to omni-directional sensors that have an 

omni-angle of sensing range, directional sensors have 

diverse sensing regions with each being defined by a sector 

of the sensing disk centred at the sensor in a certain 

direction with a sensing radius. 

The sensing sector of a directional sensor   is 

characterized by the following parameters: 

1)        : the Cartesian coordinates that denote the 

physical location of the sensor in a two-dimensional plane, 

2)   
 
: the maximum angle of sensing that can be 

achieved by the sensor. It is also called the Field of View 

(FOV), 

3)   : the maximum sensing range of the sensor 

beyond which a control point cannot be monitored, and 

4)  ⃗  : the unit vector that cuts the sensing sector into 

half. 

These parameters define the direction of sensors. It is 

important to note that in this paper we assume that the 

sensor nodes have been equipped with a device that enables 

them to switch or rotate in different directions in order to 

meet the sensing coverage requirements. Therefore, we 

don’t distinguish between the terms sensor and node. The 

coverage problem in directional sensors has been attracting 

more attention recently. Coverage in general answers the 

questions about the surveillance that can be provided by a 

particular sensor network. Thus, we need a coverage that 

meets goals of the problem such as increasing the lifetime, 

covering all targets or enhancing coverage quality. In this 

regard, [32] discussed area coverage problems, and 

provided a directional sensor model in which each sensor 

has a fixed direction and analyzes the possibility of full 

area coverage. But [34] assumed that each sensor is 

allowed to work in several directions, and therefore 

proposed a directional sensor model, similar to that 

suggested in [32], in order to find a minimal set of 

directions that can cover the maximal number of targets.  

In [14] there were several non-disjoint cover sets and a 

special work time for each of them to maximize the 

network lifetime. Therefore, three heuristic algorithms 

based on Linear Programming were proposed and 

evaluated. Most of the current studies, described in Table 1, 

develop algorithms for the 2D environment. There are a 

few algorithms proposed for the 3D environment [29]. 

Adjusting sensor parameters may fill coverage holes or 

help to cover more target points [32]. Nevertheless, 

increasing the sensing radius and/or field of view has a cost 

in terms of energy depletion and budget. In this paper, we 

focus on maximizing the coverage quality and minimizing 

the cost in order to cover all targets not mentioned in the 

studies conducted into the coverage problem summarized 

in Table 1. These studies provided centralized or 

distributed algorithms for the target coverage or area 

coverage problem, and pursued different objectives such as 

maximizing coverage, minimizing total cost or prolonging 

network lifetime. 

3.  The coverage quality of visual sensors 

In this section we define a criterion for the coverage 

quality of visual sensors. Because of the properties of the 

lens of their camera, one sensing range of visual sensors 

becomes non-uniform. That is to say, a visual sensor senses 

one target in diverse dimensions with different coverage 

qualities. Based on the attributes of lens, we know that 

targets that are closer to the center of the field of view of 

the visual sensor will be seen with a higher quality. 

Therefore, the coverage quality of the visual sensor for one 

target can be defined by the angle between the unit vector 

of the visual sensor and the vector of orientation from the 

sensor to the target (Figure 1). This angle changes 

continuously from zero to FOV/2. When the angle equals 

zero, the target is in the center of the field of view, and thus 

it is seen with the highest quality. 

 

 

Fig. 1. Sensor i in direction j covers target k.   is the angle between 

unit vector j and the vector, connecting sensor i with target k 

Moreover, the nearer to FOV/2 the angle is, the farther 

from the center of the field of view the target is placed. As 

a result, the visual sensor covers the target with a lower 

quality. According to the points illustrated we can define 

the coverage quality of sensors as follows: 
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It is obvious that for targets placed in the frontier 

points        ,          . In addition, when targets are 

placed on vector of orientation j,     and consequently  

            It is important to note that the coverage quality 

of sensors for the targets placed out of the sensing range is 

equal to zero. By using this criterion, we describe two 

different methods for the coverage quality of target k in the 

following sections. 
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4. Max-Quality Min-Cost Selection problem 

In this section, after presenting notations, we describe 

Max-Quality Min-Cost Selection problem (MQMCS). 

4.1. Notations and Assumptions 

We adopt the following notations and definitions   

throughout the paper. 
 M: the number of targets. 

 N: the number of sensors. 

 W: the number of directions per sensor. 

   : the kth target,      . 

   : the ith sensor,      . 

 A: the set of target               . 
 S: the set of sensors.               . 
     : the jth direction of the ith sensor, 

      ,      . We define 

          |                               

And    {    |         . Hence, if  

        ,    is covered by     . 

 D: the set of the directions of all sensors. Notice that ⋃   
 
    

is a non-overlapped partition of D. 

   {    |              . 

 C: a subset of D consisting of the directions of the     selected 

sensors.   {    |                            . 

  And         |⋃     
 
   |         . 

 

4.2. Problem definitions 

Definition1. Cover Set: Given a collection D of subsets 

of a finite set A and a partition S of D, a cover set for A is a 

subset     such that every element in A belongs to at 

least one member of C and every two elements in C cannot 
belong to the same member of S. 

Definition2.  Directional Cover Set Problem (DCS): 

Given a collection D of subsets of a finite set A and a 

partition S of D, find a cover set for A. 

Definition3. Max-Quality Min-Cost Selection problem 

(MQMCS): Problem of finding a directional cover set that 

has maximum coverage quality and minimum cost. 

According to Definition 1, because a sensor can be 

selected at one of its directions, |C| is the number of sensors 

that have been selected by the DCS. 

The DCS is to be NP-complete by reduction from the 3-

CNF-SAT problem [13]. As the MQMCS is a kind of DCS 

problem too, it is NP-complete. 

5. The Optimization Formulation of MQMCS Problem 

In this section, a bi-objective mixed integer 

programming formulation is developed to find an optimal 

subset of visual sensors and their directions in order to 

minimize the total cost and maximize the coverage quality 

while covering all interested targets. We first introduce the 

notations used in the formulation. Then, the BMIP model is 

described. 

5.1. Notations 

The notation is composed of sets, decision variables, and 

parameters. 

 

5.1.1. Sets 

- S , Sensors 

- T, Targets 

- D, Directions (or orientations) for a sensor 

 

5.1.2. Variable 

-     ,  A 0-1 variable such that        if and only if 

a sensor     has orientation     

-   , A 0-1 variable such that      if and only if 

target     is covered by at least one sensor 

 

5.1.3. Parameter  

- C, cost of a sensor 

- G , coverage  matrix           where          if 

sensor     covers target     in direction     

-  Q, quality  matrix           where        is the 

coverage quality of sensor     for target     

in direction     (calculated based on the 

criterion in section 3) 

5.2. The Formulation of MQMCS problem 

In this section, we present the objective functions and 

essential constraints in terms of the above notation in order 

to formulate the multi-objective MQMCS problem. 

We assume that only one type of sensor with different 

directions is available. For each sensor, the FOV 

parameters r and α are given. We assume that the positions 

of all N sensors and M targets are given and fixed. 

Similarly each pose of sensor is able to select among W 

directions for each sensor. 

 

5.2.1. The Cost Objective function 

One of the goals of MQMCS problem is to minimize the 

total cost of the selected sensors. Since C is the cost of each 

sensor and     is the binary variable that shows sensor i is 

selected in direction j, we can formulate the cost objective 

function according to the following equation: 

 

   ∑ ∑                                                                          (2) 

  

5.2.2. The Quality Objective function 

Another goal of MQMCS problem is to maximize the 

coverage quality. Therefore, we should calculate the total 

coverage quality that can be presented by summing the 

coverage quality of targets. As a result, first we should 

calculate the coverage quality of each target. 

In target coverage problems, the number of visual 

sensors covering one target does not affect the coverage 
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quality of that target. In other words, seeing one target from 

different directions by diverse sensors does not provide 

additional information. In fact, the coverage quality of the 

target is equal to the coverage quality of the visual sensor 

that covers it with the best view. Consequently, if some 

visual sensors cover one target, the coverage quality of this 

target will be equal to the maximum coverage quality 

among all sensors. As a result, the coverage quality of 

target k will be calculated by equation 3. In this equation, 

   is the coverage quality of target k and        is calculated 

according to equation 1. 
 

                                                                              (3) 

 

According to the points demonstrated, we can formulate 

the quality objective function as follows (equation 4): 

 

   ∑                                                                   (4) 

 

The term                  in the quality objective 

function is non-linear because it involves the maximum 

function. To avoid the complexity of such mixed integer 

non-linear programming (MINLP) models, the above 

model is linearized by defining a new variable and 

reformulating the objective function as follows: 

 

                                                                        (5) 

Therefore, we replace                  with the new 

variable defined as    , and introduce the following 

constraints: 

 

                                                                                        (6) 

∏                                                                             (7) 

As equation 7 is a non-linear constraint. It should be 

linearized. We can rewrite it as follows: 

 

(             )                                                       (8) 

       Or  

(             )                                                        (9) 

       Or  

                

 
 
 
 

       Or  

                                                                 (10) 

       Or  

                                                                       (11) 

       Or  

        

 
 
 
 

                                                                       (12) 

       Or  

               

 
 
 
 

       Or  

                                                                      (13) 

       Or  

               

 
 
 
 

       Or  

                                                                    (14) 

Moreover, each                   in the 

illustrated constraints can be replaced with two equations 

15 and 16: 

 

(             )                                                        (15) 

(             )                                                        (16)   

At the end, by defining some new binary variables, we 

have: 

 

(             )                                                (17) 

(             )                                              (18) 

                  

 
 
 
 

 

(             )                                          (19) 

(             )                                        (20) 

                                                (21)           

It is important to note that P is a very large number such 

as    . As a result, all the points mentioned help us 

formulate the multi-objective MQMCS problem for the max 

method according to Figure 5. 

 

5.2.3. Constraints 

In this subsection, we present the constraints that define 

MQMCS problem. We need to express the variables 

defining coverage in terms of the other defined variables 

just mentioned as follows. Since     , if and only if at 

least one sensor covers target k, we introduce the following 

two inequalities: 

 

   (∑              )                                                         (22) 

        (∑            )                                                    (23) 
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The first two constraints (22) and (24) involve products 

of binary variables, thus they are nonlinear. To linearize the 

inequalities, we introduce a new binary variable for each 

nonlinear term as well as two additional constraints [35]. 

Therefore, we replace each        term with a binary 

variable     , and describe equations 22 and 23 as same as 

equations 24 and 25: 

 

∑                  ∑                                                    (24) 

 

∑                                                                            (25)         

 

To introduce variable       we should use the following 

constraints: 

 

                                                                                 (26)                                                              

                                                                             (27)                                                       

                                                    

 

   ∑∑     

  

 

 

   ∑  

 

 

Subject to: 

 

                                                                    

                                                            

∑             

   

 ∑          

   

                                                           

∑             

   

                                                                                 

∑  

 

   

∑   

 

                                                                                                       

 

                                                                         

 

(             )                                                              

                                                                                                  

 

(             )                                                           

                                                                                                 

                     
 

                                                   

                                                             
 

       
 

Fig. 2. The Formulation of MQMCS problem 

To ensure that exactly one pose is assigned to each 

sensor, we also use the following constraint (equation 28) 

for each sensor i. 

 

∑                                                                                       (28)                                                                   

Further, to guarantee that the all targets are covered, the 

following constraint is needed as well: 

 
∑                                                                                 (29)     

By using the provided objective functions and 

constraints, our sensor deployment problem can now be 

formulated as a BMIP model. The result is shown in Figure 

2. 

We use the weighted-sum method to solve the BMIP 

model. First, we convert the minimum to the maximum for 

the cost objective function as follows [36]: 

 

   ∑ ∑                 ∑ ∑                              (30) 

Thus, we have this objective function: 

 

    
 ∑ ∑          

  
      

 ∑     

  
                              (31) 

 

Now, two objective functions are mutually maximized, 

   and    are the normalization factors for the cost and 

quality objective functions, respectively, and w is the 

weighting factor which shows the relative importance of 

two objective functions. We also add         to the 

previous constraints [37]. 

We should solve this problem by considering the 

weighted objective function for different weights and then 

drawing the Pareto front diagram. 

Figure 3 shows the Pareto front solutions obtained by 

AIMMS 11.0. In this scenario 100 sensors and 10 targets 

are deployed uniformly in a region of    , where R = 

200. The X axis indicates the total cost calculated 

by ∑ ∑        , and the Y axis shows the quality per target 

that is the average of the coverage quality of targets and 

calculated by 
∑    

 
. 

 

 
Fig. 3. Relationship between the cost and quality objective functions 

for 100 sensors and 10 targets 
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As shown in Figure 3, there is one point with maximum 

quality and minimum cost. This point presents a law weight 

for the quality objective function and a high weight for the 

cost objective function. 

Below, two diagrams (Figure 4 and Figure 5) are 

presented that describe the relationship between w and each 

objective function in order to show this point. All in all, 

according to the three figures, by considering an exact 

amount for w, we can gain an efficient cover set that has 

the minimum cost and the maximum quality. Therefore, if 

we select by solving weighted objective functions for this 

weight, we will have a cover set with the minimum cost 

with each of its members covering at least one target with 

the maximum quality. 

 

 
Fig. 4. Relationship between the cost objective function and w for 100 

sensor and 10 targets 

 
Fig. 5. Relationship between the quality objective function and w for 

100 sensors and 10 targets 

We solve the presented weighted objective function by 

considering w=0.9 in order to find a cover set. In this 

scenario 200 sensors and 10 targets are deployed uniformly 

in a region of    , where R = 200. Figure 6 shows the 

cover set that is gained by AIMMS 11.0. As you see, 9 

sensors are selected in order to cover 10 targets. 

 

 
Fig. 6. The cover set found by the BMIP model of the max method for 

w=0.9 for 200 sensors and 10 targets. (diamond = target, dot=sensor and 

star=selected sensor) 

6.  The Solution to MQMCS   

In this section, first we present a centralized target-based 

algorithm named MQMCS-c that has a high possibility to 

find a cover set with minimum cost (minimum number) and 

maximum coverage quality. Then we propose a distributed 

target-based algorithm named MQMCS-d that has more 

scalability in comparison with MQMCS-c. Finally, we 

evaluate these algorithms. 

6.1. The MQMCS-c algorithm  

In this subsection, we propose a target-based algorithm 

named MQMCS-c. This algorithm has two stages: main 

stage and cropping stage.  

 

6.1.1. Main stage 

In the main stage, we have a visual sensor network with 

a set A of M targets, a set S of N sensors and a set D of 

directions. Because the algorithm firstly selects one target 

and then find the sensor that can cover this target, we name 

it a target-based algorithm.   

The algorithm firstly prioritizes targets by the following 

strategy: The number of sensors that can cover each target 

is defined as   . Now, for two targets   and  , if       , 

target i will has a higher priority in comparison with target 

j.  

Besides, we classify the sensors by using the two 

definitions below. If a sensor has more than one direction 

that can cover at least one member of set A, we say that 

these directions conflict with each other and they are named 

conflicting directions. Otherwise, if the sensor only has one 

direction that covers at least one of the targets, it is named a 

non-conflicting direction. For example, if the directions      

and       of sensor    with each covering at least one of the 

members of set A exist, they will be in conflict with each 

other. We classify non-conflicting and conflict directions as 

two separate sets and name them non-conflict and conflict 
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sets, respectively. Furthermore, we calculate the coverage 

quality of the sensors for all the targets. 

MQMCS-c uses the following strategy in order to 

present a cover set that has the maximum quality and the 

minimum cost (minimum sensors): 

We use   to denote a selected set of directions for 

covering A. First, it picks up the target with the highest 

priority. Then if the non-conflict set is not empty, we search 

it to find the direction of the sensor that can cover the 

selected target with the highest quality. It is important to 

note that the coverage quality of the sensor for each target 

is calculated according to the criterion in section 3.  This 

policy leads u to select the sensor that is able to monitor the 

target with the best quality. We remove the targets that are 

covered by the selected non-conflict direction from A. 

Then, we select another target with the highest priority in 

A, and do all the steps just mentioned.  

It should be pointed out that if the non-conflict set was 

empty or we cannot find any non-conflict direction that 

covers the selected target, we will search among the 

conflict directions for finding the sensor that can cover the 

selected target. By repeating these steps, a set of 

directions   is gained. When    is empty, the algorithm 

succeeds to find a cover set that is named  . When   is not 

empty and we cannot find any sensor in neither the non-

conflict nor the conflict set for its members, the algorithm 

fails to find a cover set. Therefore, it returns    . 

The cover set provided by the MQMCS-c algorithm at 

the end of the main stage is able to cover all the targets of 

  but as it may have some redundancy in some situations, 

the cropping stage is presented to reduce this redundancy. 

 

6.1.2. Cropping stage 

Goals of an application form its policy to find a cover 

set. Thus, our policy has significant effects on the 

algorithm efficiency. It is also obvious that algorithms with 

less redundancy will be more efficient, but in some cases if 

we first consider the redundancy, we may not achieve our 

main goals. Therefore, in such cases finding results without 

paying attention to the redundancy and then deleting 

redundant results is the best way. 

In this paper, our main goal is to find a cover set with a 

high coverage quality and minimum number of sensors 

(minimum cost). Subsequently, selecting sensors that cover 

targets with a good field of view (the illustrated criterion in 

section 3) leads us to finding a cover set with a reasonable 

coverage quality. We must also select minimal number of 

directions. Since in each iteration of the main stage we 

select one target and then try to cover it, a sensor selected 

in one iteration may cover targets that were covered in the 

previous iterations. In other words, we may select one 

direction for the covering targets of which some are 

covered by the direction selected in the previous iterations. 

Selecting this new direction changes previously selected 

directions from essential directions to redundant directions. 

Therefore, we present the cropping stage that removes 

surplus directions. After this stage, each member of C will 

be useful and covers at least one target of A that other 

selected directions cannot cover. 

In each iteration of the cropping stage, we select a 

direction of C that covers most number of the targets and 

add it to   . Then we delete all targets that are covered by 

this direction from A and repeats until    . Finally    is 

a cover set with the least redundancy. The two stages of the 

MQMCS-c algorithm are illustrated below.  

 

MQMCS-c algorithm: 

Main stage: 

1: Get      |             as an input variable 

2: Get      |             

3: Get   {    |
  

            } 

4: Calculate              and          sets 

5: For each       

   {  |             } 

6: End for;  

7: For each       
8:         For each        

9:                 Calculate       

10:         End for; 

11: End for; 

12: A are sorted decreasingly according to      |  | 
13:     

14: while     

15:   pick up one member of   as a    that has                                 

 the biggest    

16:  If                

17:                            |                            

18:                     If     

19:                            Pick        in   that      is max in   

20:                                                                    

21:                                    {   } 

22:                                                              

                                                                         {   |      } 

23:                     End if; 

24:           End if; 

25:           If (               ⋁    ) 

26:                           {    |                      } 

27:                         If     

28:                                     Pick        in  that      is max in   

29:                                                           

30:                                              {   }     

31:                                                                  

                                                                  {   |      }      
32:                          End if; 

33:        End if; 

34: End while; 

35: If      

36:      

37: End if; 

38: Return   
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Cropping stage: 

39:      

40:       

41: While       

42:       Pick up      of   that covers more targets of    

43:              |                  

44:                 
45:               {    } 

46: End while; 

47: Return    

6.2. The MQMCS-d algorithm  

In this subsection, we propose a distributed algorithm 

called MQMCS-d to find a cover set when centralized 

algorithms are inapplicable. In this algorithm, a sensor only 

communicates with its neighbours in its communication 

rang. There are two stages in this algorithm: the 

communicating stage and the decision stage. 

Because in this algorithm each sensor prioritizes targets 

that can cover, we name it a target-based algorithm.  

 

6.2.1. Communicating stage  

In the communicating stage, each sensor scans the 

targets that its directions can cover and assigns three 

numbers    ,     and     as priorities to each target 

locally. A target can be covered by the directions of a 

sensor and its neighbours fewer times. Initially, each sensor 

is in the active state. First, each sensor    scans the 

environment to detect the targets, denoted as     , that can 

be covered by each of its directions. Then it calculates its 

coverage quality for each       , denoted as     . Sensor 

   maintains     and     , for       locally. Then    

broadcasts a message indicating      as its coverage quality 

in each of its directions for the targets that can be covered 

by it to its neighbours, denoted as   . After waiting for a 

period to receive the broadcasted messages of its 

neighbours,    assigns priorit       ,   and    to each 

target   in ⋃    
 
   . 

 

    
 

  |{     |            ⋃    
 
                   }|

                (32) 

    

   {     |    ⋃    
 
                      }    (33)         

        |                                  (34)                 

The denominator of     indicates how many times a 

target    in ⋃    
 
    can be covered by the directions of    

and its neighbours.     shows the coverage quality of the 

sensor that has the maximum value among the sensors that 

can cover    , and     maintains the id of this sensor. 

After each sensor assigns the priorities to all targets that 

its directions can cover, it moves to the decision stage. 

 

6.2.2. Decision stage 

In this stage, a sensor probes the states of its neighbours 

and decides about its work direction. First, each sensor    

initializes a timer    as a value uniformly distributed in 

       and goes to sleep. When the timer    decreases up to 

zero,    wakes up and marks itself as the PREWORK. Note 

that the sensor in the PREWORK state does not respond to its 

neighbours. Then    broadcasts a probing message and 

waits for a period for its neighbours’ replies. On receiving 

the message, any active neighbour     which is not in the 

PREWORK state responds to    with a message which 

contains its      . At last,    makes a decision based on its 

neighbours’ replies. Among the uncovered targets, it picks 

up   with the highest priority    , then if    can cover 

  with         , it will erase the PREWORK mark, and 

works in the direction that covers this target; otherwise, it 

checks whether     belongs to one of its active neighbours 

or not: if it belongs,    will erase the PREWORK mark, and 

works in the direction that covers this target; otherwise, it 

will select    having     with the highest value after the 

previously selected target. These steps will be repeated 

until one of the directions of the sensor is select. At the end, 

if no direction of the sensor is selected, it can simply go to 

sleep. 
 

QMCS-d algorithm: 

Communicating stage: 

  

1.  Each sensor    detects the targets that can be covered 

by each of its directions     , for     as a     

2.    calculates     for each    ⋃    
 
   for       

3.    broadcasts a message including      for each 

   ⋃    
 
   for      , to its neighbors    

4.    waits for a period for receiving the broadcasted 

messages of its neighbors 

5. for each    ⋃    
 
    

6.            assigns priority     
 

              
 

  |      |            ⋃    
 
                    |

 

    

7.             assigns priority     

                |    ⋃   

 

   

                   

                                                                       
8.             assigns priority     

 

                      |                                  
 

9. End for; 

10.   Initializes a timer    and goes to sleep 

11. If      

12.       Wait 

13. Else  

14.       Go to the decision phase 
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15. End if; 

 

Decision stage: 

16.    wakes up and marks itself as the PREWORK 

17.    broadcasts a probing message and waits for a period 

for replies. 

18. For each        

19.        If    is  active but not in the PREWORK state 

20.                     responds to    and indicates      

21.        End if; 

22. End for; 

23. For     ⋃    
 
    

24.         If   is uncovered 

25.                             
26.         End if; 

27. End for; 

28.     picks up   with the highest     in   

29.           
30. For       

31.          If          

32.                      erases its PREWORK mark 

33.                     Works in the     direction 

34.          Else if                              

35.                      erases its PREWORK mark 

36.                     Works in the     direction 

37.           End if; 

38. End for; 

39. If    is the PREWORK and     

40.           Go 13 

41. End if; 

42. If     is the PREWORK and     

43.               goes to sleep; 

44. End if; 

 

6.3. Evaluation 

We assess the performance of the MQMCS-c and 

MQMCS-d algorithms through simulations running on a 

computer with a 3 GHz CPU and 1 GB of memory. N 

sensors with sensing radius r and M targets are deployed 

uniformly in a region of    , where R = 400. Each sensor 

has W directions. 

Each algorithm runs 1000 times through the random 

placement of sensors and targets. For the QCS-d algorithm, 

we assume that the communication radius is twice the size 

of the sensing radius. We evaluate the algorithms using the 

three criteria of success rate, coverage percentage and 

coverage quality. 

 

6.3.1. Success Rate 

Figure 7 shows the success rate of the MQMCS-c and 

MQMCS-d algorithms. The success rate is the ratio of the 

number of samples where a cover set is successfully found 

by each algorithm to the total number of samples. We 

consider two scenarios: M = 40, r = 100, W = 3 and M = 40, 

r = 100, W = 8. According to the figure, the MQMCS-c 

algorithm has a higher success rate than the MQMCS-d 

algorithm in both scenarios. In addition, it shows that 

increasing the number of sensors increases the success rate 

while increasing the number of directions per sensor 

decreases it. Figure 8 illustrates the relationship between 

the success rate of the two algorithms and r, the radius of 

sensor for M = 40, N= 50, W = 3 and M = 40, N = 50, W = 

8. As you see, increasing the r increases the success rate, 

but the success rate drops when W increases.  

 
Fig. 7. Success rate vs. number of sensors N with r=100, M=40, W=3 

and r=100, M=40, W=8. 

 

 

 
Fig. 8. Success rate vs. sensing radius of sensor r with N=50, M=40, 

W=3 and N=50, M=40, W=8. 

 

6.3.2. Coverage Percentage 

Figure 9 shows the coverage percentage of the MQMCS-

c and the MQMCS-d algorithms. The coverage percentage 

is the ratio of the number of covered targets to the total 

number of targets M. We consider two previous scenarios. 

We can see from this figure that the coverage percentages 

of both algorithms increase quickly when N increases from 

10 to 25 and somehow slowly after 25. The coverage 

percentage of the MQMCS-d algorithm is slightly smaller 
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than that of the MQMCS-c algorithm. The figure also 

shows that the coverage percentages of the two algorithms 

drop when W grows.  

Figure 10 shows the relationship between the coverage 

percentage and r for the two scenarios mentioned above. 

From this figure we can see that the MQMCS-c algorithm 

can have a relatively higher coverage percentage even 

when W = 8. 

 

6.3.3. Coverage quality  

Figure 11 indicates the coverage quality of the MQMCS-

c and the MQMCS-d algorithms. The coverage quality is 

the average of coverage quality per each covered target. For 

our two scenarios, the figure reveals that when more 

sensors are developed, the coverage quality of both 

algorithms will be higher.  

 
 
 

 
Fig. 9. Coverage percentage vs. number of sensor N with r=100, M=40, 

W=3 and r=100, M=40, W=8. 

 

 

 
Fig. 10. Coverage percentage vs. sensing radius of sensor r with N=50, 

M=40, W=3 and N=50, M=40, W=8. 

 

The coverage percentage drops when W decreases as 

well. Figure 12 shows the relationship between this 

criterion and r. From this figure we can see that in the two 

scenarios for different values of r, MQMCS-c has a higher 

coverage quality than MQMCS-d. What's more, the 

coverage quality of both algorithms quickly increases when 

r increases from 15 to 85. Then it somehow slowly drops 

after 85. It is important to note that up to r=85, by 

increasing the r, the number of selected sensors increases to 

swell the coverage percentage (Figure 13). As a result, the 

coverage quality also increases. After r=85, the coverage 

percentage slowly increases while the number of the 

selected sensors decreases, because by increasing the r, one 

sensor can cover more targets but with a lower quality. 

Thus, fewer sensors to cover all targets are needed. 

Consequently, after r=85, the number of both selected 

sensors and coverages drop. 

 

 
Fig. 11. Coverage quality per target vs. number of sensor (N) with r=100, 

M=40, W=3 and W=8. 

 

 

Fig. 12. Coverage quality per target vs. sensing radius of sensor(r) with   

N=50, M=40, W=3 and W=8 
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Fig. 13. Number of selected sensors vs. sensing radius of sensor (r) with 

N=50, M=40, W=3 and W=8. 

7. Conclusion  

In this paper, we studied the problem of finding a 
cover set in order to minimize cost and maximize 
quality (max-Quality Min-Cost Selection problem). To 
do so, we defined a criterion for the coverage quality 
of visual sensors and then formulated MQMCS 
problem as a bi-objective mixed integer programming. 
A centralized algorithm named MQMCS-c and a 
distributed algorithm named MQMCS-d were proposed 
for presenting a cover set with the maximum quality 
and the minimum cost. It is concluded that the 
MQMCS-c algorithm has a higher possibility to find a 
cover set, and has a greater coverage percentage 
and coverage quality than the MQMCS-d algorithm.  

References 

[1] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson,  and D. Culler, 

"An analysis of a large scale habitat monitoring application," pp. 214-

226, 2004. 

[2] M. Li and Y. Liu, "Underground structure monitoring with wireless 

sensor networks," pp. 78, 2007. 

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey 

on sensor networks," IEEE communications magazine, vol. 40, No.8, 

pp. 102-114, 2002. 

[4] D. Tian and N. Georganas, "A coverage-preserving node scheduling 

scheme for large wireless sensor networks," in Proceedings of the 1st 

ACM international workshop on Wireless sensor networks and 

applications (WSNA '02), pp. 32-41, 2002. 

[5] S. Slijepcevic and M. Potkonjak, "Power efficient organization of 

wireless sensor networks," in Proceeding of IEEE International 

Conference on communications (ICC '1), pp. 472-476, 2001. 

[6]  M. Cardei, D. MacCallum, X. Cheng, M. Min, X. Jia, D. Li, and D.-Z. 

Du, "Wireless Sensor Networks with Energy Efficient Organization," 

Journal of Interconnection Networks, vol. 3, no. 3-4, pp. 213-229, 

2002. 

[7] T. Yan, T. He, and J. Stankovic, "Differentiated surveillance for sensor 

networks," in Proceeding of Conference On Embedded Networked 

Sensor Systems ( SenSys) , pp. 51-62, 2003. 

[8] H. Sanli and H. Cam, "Energy Efficient Differentiable Coverage 

Service Protocols for Wireless Sensor Networks," in Proceeding of  

Third IEEE International Conference on Pervasive Computing and 

Communications (PerCom 2005), pp.406-410, 2005. 

[9] D. Tian and N. Georganas, "A coverage-preserving node scheduling 

scheme for large wireless sensor networks," in Proceeding of the 1st 

ACM Workshop on Wireless Sensor Networks and Applications, 

2002. 

[10] J. Carle and D. Simplot-Ryl, "Energy efficient area monitoring by 

sensor networks," IEEE Computer, pp. 40–46, 2004. 

[11] J. Wu and H. Li, "On calculating connected dominating set for 

efficient routing in ad hoc wireless networks," in Proceeding. of the 

3rd Int’l Workshop on Discrete Algorithms and Methods for Mobile 

Computing and Communications (Dial M), 1999. 

[12] M. Cardei, J. Wu, M. Lu, and M. O. Pervaiz, "Maximum network 

lifetime in wireless sensor networks with adjustable sensing ranges," 

in Proceeding of IEEE International Conference on Wireless and 

Mobile Computing, Networking and Communications (WiMob), 

2005. 

[13] Y. Cai, W. Lou, M. Li, and X. Li, "Target-oriented scheduling in 

directional sensor networks," in Proceeding of  26th IEEE 

International Conference on Computer Communications 

(INFOCOM), pp. 1550-1558, 2007. 

[14] W. Cheng, S. Li, X. Liao, S. Changxiang, H. Chen, "Maximal 

coverage scheduling in randomly deployed directional sensor 

networks," in  Proceeding of International Conference on Parallel 

Processing Workshops (ICPPW’07), pp. 68–68, 2007. 

[15] A. Makhoul, R. Saadi, C. Pham, "Adaptive scheduling of wireless 

video sensor nodes for surveillance applications," in Proceeding. of 

ACM Workshop on Performance Monitoring and Measurement of 

Heterogeneous Wireless and Wired Networks (PM2HW2N’09), pp. 

54-60, 2009.  

[16] J. Zhao, J.-C. Zeng, "An electrostatic field-based coverage-enhancing 

algorithm for wireless multimedia sensor networks," in Proceeding of 

IEEE International Conference on Wireless Communications, 

Networking and Mobile Computing (WiCom’09), pp. 1–5, 2009. 

[17] Y. Bai, H. Qi, "Redundancy removal through semantic neighbor 

selection in visual sensor networks," in Proceeding of ACM/IEEE 

International Conference on Distributed Smart Cameras (ICDSC’09), 

pp. 1–8, 2009. 

[18] N. Tezcan, W. Wang, "Self-orienting wireless multimedia sensor 

networks for occlusion-free viewpoints," Computer Networks: 

International Journal of Computer and Telecommunications 

Networking, vol. 52, No. 13, pp.2558–2567, 2008. 

[19] Y.-T. Lin, K. Saluja, S. Megerian, "Cost efficient wireless camera 

sensor deployment strategy for environment monitoring applications," 

in Proceeding of  IEEE GLOBECOM Workshops, pp. 1–6, 2008. 

[20] D. Tao, H. Ma, L. Liu, "Coverage-enhancing algorithm for 

directional sensor networks," Lecture Notes in Computer Science: 

Mobile Adhoc and Sensor Networks, vol. 4325, pp. 256–267, 2006. 

[21] G. Fusco, H. Gupta, "Selection and orientation of directional sensors 

for coverage maximization," in Proceeding of IEEE International 

Conference on Sensor, Mesh and Ad Hoc Communications and 

Networks (SECON’09), pp. 1–9, 2009,  

 [22] G.G. Wang, G. Cao, P. Berman, T.F. La Porta, "Bidding protocols 

for deploying mobile sensors," IEEE Transactions on Mobile 

Computing, vol.6, No.5,  pp.563–576, 2007. 

[23] J. Ai and A. Abouzeid, "Coverage by directional sensors in randomly 

deployed wireless sensor networks," Journal of Combinatorial 

Optimization, vol. 11, pp. 21-41, 2006. 

[24] Y. Cai, W. Lou, M. Li, "Cover set problem in directional sensor 

networks," in Proceeding of IEEE International Conference on Future 

Generation Communication and Networking (FGCN’07), pp. 274–

278, 2007.  

[25] U.-R. Chen, B.-S. Chiou, J.-M. Chen, W. Lin, "An adjustable target 

coverage method in directional sensor networks," in Proceeding of 

Asia-Pacific Conference on Services Computing, pp. 174–180, 2008. 

[26] J. Wen, L. Fang, J. Jiang, W. Dou, "Coverage optimizing and node 

scheduling in directional wireless sensor networks," in Proceeding of 

IEEE International Conference on Wireless Communications, 

Networking and Mobil Computing (WiCom’08), pp. 1–4, 2008. 

[27] Y. Osais, M. St-Hilaire, F. Yu, "Directional sensor placement with 

optimal sensing range, field of view and orientation,' in Proceeding of 

IEEE International Conference on Wireless and Mobile Computing 

(WIMOB’08), pp. 19–24, 2008. 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7452
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7452
http://academic.research.microsoft.com/Conference/1660/sensys-conference-on-embedded-networked-sensor-systems
http://academic.research.microsoft.com/Conference/1660/sensys-conference-on-embedded-networked-sensor-systems
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9593
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9593


Journal of Computer & Robotics 1 (2011) 19-31 

 

31 

[28] Y. Wu, J. Yin, M. Li, Z. En, Z. Xie, "Efficient algorithms for 

probabilistic k-coverage in directional sensor networks," in 

Proceeding of IEEE International Conference on Intelligent Sensors 

Networks and Information Processing (ISSNIP’08), pp. 587–592, 

2008. 

[29] H. Ma, X. Zhang, A. Ming, "A coverage-enhancing method for 3d 

directional sensor networks," in Proceeding  of IEEE International 

Conference  on Computer Communications (INFOCOM’09), pp. 

2791–2795, 2009. 

[30] J. Wang, C. Niu, R. Shen, "Priority-based target coverage in 

directional sensor networks using a genetic algorithm," Computers 

and Mathematics with Applications, vol. 57, No. 11, pp.1915–1922, 

2009. 

[31] Y. Osais, M. St-Hilaire, F. Yu, "On sensor placement for directional 

wireless sensor networks," in Proceeding of IEEE International 

Conference on Communications (ICC’09), pp. 1–5, 2009. 

[32]Y. Osais, M. St-Hilaire, F. Yu, "The minimum cost sensor placement 

problem for directional wireless sensor networks," in  Proceeding of 

IEEE International Conference on Vehicular Technology (VTC’08), 

pp. 1–5, 2008. 

 

[33] X. Han, X. Cao, E. Lloyd, C.-C. Shen, "Deploying directional sensor 

networks with guaranteed connectivity and coverage," in Proceeding 

of IEEE International Conference on Sensor, Mesh and Ad Hoc 

Communications and Networks (SECON’08), pp. 153–160, 2008. 

[34] L. Liu, H. Ma, and X. Zhang, "On Directional K-Coverage Analysis 

of Randomly Deployed Camera Sensor Networks," in Proceeding of  

IEEE International Conference on Communications (ICC '08), pp. 

2707–2711, 2008. 

[35] H. Williams and R. Mladineo, Model building in mathematical 

programming, Wiley, New York, 1990. 

[36] S. H. Ghodsypour, Multiple Objective Decision Making (MODM): 

Methods for a Posteriori Articulation of Preference Information 

Given, Amirkabir University of Thecnology, 2010 

[37] I. Kim and O. Weck, "Adaptive weighted-sum method for bi- 

objective optimization: Pareto front generation," Struct Multidisc 

Optim, Vol. 29, pp. 149158, 2005. 

 

 

 

  

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4533035
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4533035

