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Abstract 

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi 
agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent 
Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in 
MMDP is proposed. In the proposed algorithm, MMDP problem is described as a directed graph in which the nodes are 
the states of the problem, and the directed edges represent the actions that result in transition from one state to another. 
Each state of the environment is equipped with a generalized learning automaton whose actions are moving to different 
adjacent states of that state. Each agent moves from one state to another and tries to reach the goal state. In each state, the 
agent chooses its next transition with help of the generalized learning automaton in that state. The experimental results 
have shown that the proposed algorithm have better learning performance in terms of the speed of reaching the optimal 
policy as compared to existing learning algorithms.  

 

Keywords: Generalized Learning Automata, Multi agent systems, Markov Games. 

 

1. Introduction 

Learning Automata (LA) are adaptive decision 
making devices suited for operation in unknown 
environments [1]. One of the principal contributions 
of LA is that a set of decentralized LA is able to 
control a finite Markov Chain with transition 
probabilities and rewards are unknown [2]. Recently 
this result has been extended to the framework of 
Markov Games, which is a straightforward extension 
of single-agent Markov Decision Problems (MDPs) to 
distributed multi agent decision problems [2], [3].In a 

Markov Game, actions are the result of the joint 
action selection of all agents while rewards and state 
transitions depend on these joint actions obeying the 
Markov property. In multi agent system research, two 
main perspectives are found in the literature; the 
cooperative and non-cooperative perspective [4], [5]. 
In cooperative multi agent systems, the agents pursue 
a common goal and the agents can be built expect 
benevolent intentions from other agents. In contrast, a 
non- cooperative multi agent systems setting has non-
aligned goals, and individual agents try to obtain only 
to maximize their own profits. In multi agent caused 
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by the fact that the environment of agent is dynamic 
and just empirically observable while the environment 
(there ward Functions and the transition states) is 
unknown. Hence, the reinforcement learning methods 
may be applied in MAS to find an optimal policy in 
MGs In a purely cooperative MG, which is called a 
Multi agent MDP (MMDP); all agents share the same 
reward function. In MMDPs, the agents should learn 
to find and agree on the same optimal policy. In 
general MGs, an equilibrium point is sought; i.e. a 
situation in which no agent alone can change its policy 
to improve its reward when all other agents keep their 
policy fixed. In [6] will first demonstrate how GLA 
can help take the correct actions in large unknown 
multi agent environments. in [7] propose to use 
Generalized Learning Automata (GLA), which are 
capable of identifying regions within the state space 
with the same optimal action, and as such aggregating 
states. In [8] proposed several learning automata 
based multi agent system algorithms for finding 
optimal policies in fully cooperative Markov Games. 
In the proposed algorithms, Markov problem is 
described as a directed graph in which the nodes are 
the states of the problem, and the directed edges 
represent the actions that result in transition from one 
state to another. In [3] a learning automata based 
multi agent systems in which the concepts of 
stigmergy and entropy are used to enhance the 
performance of system and used to find optimal 
policies in Markov Games was proposed. In this 
paper, a generalized learning automata based 
algorithm for finding optimal policies in Markov 
Games is proposed. This algorithm consists of 
multiple agents that use generalized learning automata 
in order to optimize their own behavior that can be 
effectively used to find the optimal policy in Markov 
games. In the proposed algorithm, the environment of 
Markov problem is modeled as a directed graph. The 
nodes of this graph represent the states and directed 
edges between nodes represent the actions that result 
in transition from one state to another. Each node of 
the graph is equipped with a generalized learning 
automaton.  

The actions of each learning automaton are the 
outgoing edges of corresponding node. The agents 
move on this graph and in each state, they get help 
from corresponding generalized learning automaton to 
choose a desirable action and move to the next state. 
Based on the path taken by agents and its goodness in 
terms of speed and cost, the probability vectors of 
generalized learning automata will be updated. This 
process is performed in parallel by all agents, and it 
iterates several times until the path taken by each agent 
converges to the optimal path. The rest of this paper is 
organized as follows: Section 2 briefly presents the 
concept of Generalized Learning Automata. 
Definitions for Markov Decision Process and Markov 
Games as well as the concept of solution in them are 
discussed in section 3. The proposed algorithm and its 
variations are given in section 4. Section 5 presents the 
experimental results. Section 6 concludes the paper. 

2.  Generalized Learning Automata (GLA) 

The generalized learning automata (GLA) is an 
extended learning automaton where there is provision 
for an extra input. The GLA model, where the 
automaton can take an additional input, is also useful 
in many other situations [9]. Based on this input and 
its own internal state the unit then selects an action. 
This action serves as input to the environment, which 
in turn produces a response for the GLA. Based on 
this response the GLA then updates its internal state 
[10].Figure 1 shows the general agent learning setup. 
Each time step a vector x(n) giving a factored 
representation of the current system state is generated. 
This vector is given to each individual agent as input. 

 

Fig. 1. Learning setup. Each agent receives factored state representation as 
input. GLA decide action to be performed. 
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Formally, a GLA is described by the tuple X, A, β, 

u, g, U, where X is the set of inputs to the GLA and 

A = {a1,..,ar}is the set of outputs or actions the GLA 

can produce. Β  [0, 1] again denotes the feedback the 

automaton receives for an action. The vector u is used 
in conjunction with the probability g to determine the 

action probabilities, given an input x  X: 
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U is a learning algorithm which updates u, based 
on the current value of u, the given input, the selected 
action and response. The earliest algorithm suggested 
is the REINFORCE algorithm [11] which has the 
following form: 
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In this update scheme, λ is the learning rate and Li,  
Ki >0 are constants. The update scheme can be 
explained as follows. The first term allows the system 
to locally optimize the action probabilities. The next 
term uses the hi(u) functions to keep parameters ui 

bounded within predetermined boundaries [−Li, Li]. In 
[9] it is shown, that the adapted algorithm described 
above, converges to local maxima of f(u) = E[β|u], 
showing that the learning automata find a local 

maximum over the mappings that can be represented 
by their internal state in combination with the 
function g. 

The context vectors represent features of objects to 
be classified and the GLA output represents class 
labels. We use a factored representation of the state 
space as the input for the GLA, whereas the outputs 
are the actions the agent should take. In such a 
representation the state information is represented as a 
set of random variables X={X1, . . . , Xn}, where every 
state variable Xi can take values in a finite domain 
Dom(Xi) and every possible state in the system 

corresponds to a value assignment Xi  Dom(Xi ) for 

every state variable, Xi. With T a parameter that 
represents the temperature to control the exploration. 

With every action ai  A the automaton can perform, it 

associates a vector ui. We use the Boltzmann 
distribution as probability generating function which 
is written as: 
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3. Control of Markov Game Using Learning 
Automata 

The problem of controlling Single Agent MDPs 
can be modeled as a network of interconnected 
generalized learning automata in which the control is 
transferred from one learning automaton to 
another[15]. Each state in MDP has a learning 
automaton that tries to learn the optimal probability 
distribution of actions during the process. Agents 
move on this network and in each state they get help 
from the generalized learning automaton assigned to 
that state to move to the next state. This is done by 
using the probability vector of the corresponding 
earning automaton. In this model, only one learning 
automaton is active in each time and the transition 
from one state to another will activates the learning 
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automaton of that state. The activated generalized 
learning automaton LAi in the state i will not be 
informed about the immediate reward yielded from its 
action ai in transition from state i to state j. Instead, 
when state i is visited again, LAi receives two parts of 
data: the cumulative reward from the beginning of the 
process up to the current time step and current global 
time. Using these data, GLAi calculates the reward 
received since the last visit of state i and the 
corresponding elapsed global time. Then, the input to 
LAi is calculated using the following equation: 
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Where i(ti+1) is the cumulative total reward 

generated for action ai in state i and i(ti+1) is the 

cumulative total elapsed time. This process continues 
until all probability vectors converge or a pre-
specified condition is met. When the number of 
agents increase and the model extends to multi agent 
case, more than one learning automaton should be 
active simultaneously because the states depend on 
the problem and the environment and the agents could 
be in different states. 

4. The Proposed Algorithm 

Here a new algorithm for solving problems in the 
environment with the goal for learning automata 
based multi agent system (MAS) is proposed. In this 
algorithm, the Markov environment as a directed 
graph is mapped. This mapping is done as a node of 
the graph indicate the states and directed edges 
between nodes represent the actions that lead to the 
transfer agent of the state to another. Each node of the 
graph, the GLA will be associated with a condition 
that is on that node mapping. An automaton procedure 
according to the number of neigh boring nodes is 
determined. At first, all of the learning automata in all 
states choose their actions with equal probabilities. It 
is assumed that the final state of the environment that 
has the most immediate rewards, as the target. The 
agents start from the initial situation to achieve the 
goal, in parallel on the corresponding graph is 

moving. Each agent continues moving on the graph 
until it reaches the goal state. After reaching the goal, 
the path πj for each agent j (Lπj), is computed based 
on the length of the traversed path πj divided by the 
reward of reaching the goal state, (RG), the cost of the 
path is compared with a threshold value, such as Tj. 
Depending on the result of comparing all the learning 
automata along the way receive reward or penalties. 
This process is repeated for each agent if the path 
converges to the optimal path or a predetermined 
criterion is satisfied. For example, assume that the 
path πj for agent j is traversed k times. The threshold 
is defined as the average cost varies according to the 
following equation. This algorithm is called 
AlgorithmG1 seen in Figure3.  

Tj = Tj + (Lπj-Tj) / k (7) 

 Algorithm G1 suffers from the possibility of 
existence of cycles in the paths taken by agents. This 
possibility increases with increase in learning rate or 
reward. Generalized Learning Automata is including a 
fixed number of action, but in some applications need 
to Learning automata with the number of variables. 
Selection is done by an external agent and randomly. 
To evaluate the performance of network generalized 
learning automata to control the Markov chain several 
experiments have been conducted. The environment 
of experiment is a Grid-world game that includes a 
3×3 grid with a goal cell. This environment has also 
been used previously in [12, 13].Two agents start 
from the two bottom corners (location 1 and 3) and 
try, with the least possible number of moves, to find 
the goal square, which is the top centre. After 
observing the current state, agents choose their 
actions simultaneously. They then observe the new 
location, both agents’ rewards, and the action taken 
by the other agent. In the new location, agents repeat 
the process above. When at least one agent moves 
into its goal position, the game restarts. In the new 
episode, each agent is randomly assigned a new 
position (except its goal cell). If both agents try to 
move to the same cell both receive -1. If agents move 
to two different non-goal cells, both receive zero 
rewards and if one reaches the goal position, it 
receives 100 units of reward. 
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Fig. 2. Grid-world game and learning automata model[5]. 

5. Experimental Results and Discussions 

In order to evaluate the performance of the 
proposed algorithm, several experiments have been 
conducted. The environment of experiment is a Grid 
world game that includes a 3×3 grid with a goal cell. 
Two agents start from the two bottom corners 
(location 1 and 3) and try, with the least possible 
number of moves, to find the goal square, which is the 
top center. After observing the current state, agents 
choose their actions simultaneously. They then 
observe the new location, both agents’ rewards, and 
the action taken by the other agent. In the new 
location, agents repeat the process above. When at 
least one agent moves into its goal position, the game 
restarts. In the new episode, each agent is randomly 
assigned a new position (except its goal cell). 

To convert the problem to an MMDP, we consider 
each cell as a state and the allowable transitions to 
adjacent cells as actions. In this MMDP the objective 
is that both agents reach the goal state using distinct 
paths. If both agents try to move to the same cell, both 
of their moves will fail and both receive 0.01 units of 
punishment and stay in their previous position. If 
agents move to two different non goal cells, both 
receive zero rewards and if one reaches the goal 
position, it receives 1 units of reward. The reward 
function ri(t)for each agent i is based on Equation 8, 
i=1, 2. 

 
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A path in this game represents a sequence of 
actions from the start to the goal position. In game 
terminology, such path is called a policy or strategy. 
The shortest path not interfering the path taken by the 
other agent is called the optimal path. 

ALGORITHM G1 

 1:  Create one Generalized learning automaton for each 
state s and define the set of actions based on equation (5). 

2:   Place all agents in  starting state;  

3:    for every agent j do 

4:    set  threshold ,  kj 

   //kj number of the path traversed by agent j from   
starting state to goal state// 

5:     end for 

6:     for every agent  j do in parallel 

7:   Repeat 

8:    Activate Generalized learning automat onto   
state s in which the agent j is residing and  
determine the next state m to which the agent  
Moves. 
9:    if state m is the goal state then 

10: Compute the value of path j taken by agent j 

Lj(j), to be Lj(j) /RG 

  //RG is the reward of reaching the goal  

state, tj(j) is the length of the traversed pathj// 

 //Compute the cost of path j taken by agent j// 

11:   if Lj(j<Tj) then 

12:   Give reward  with  (k) = Lj(j)             

13:   else  

14:   Give penalty with (k) = 1-  Lj (j) ;                             

15:end if 

16:    Tj = Tj + (Lj(j)- Tj )/ kj;      

        // Tj is the average cost of traversed path//  

17:   kj=kj+1   

18:   end if 

19:Until ( the probability of  path j  taken by agent j 
exceeds a pre-specified threshold or a fixed number of 
iterations are passed) 

20: end for 

Fig 3. Algorithm G1. 
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Experiment 1: This experiment is conducted to 

study the impact of learning parameter  on the 

probability of optimal path in Algorithm G1. The 
probability of optimal path is defined as the product 
of probabilities of the selection of the edges along the 
optimal path. The plots of average probability of 
optimal path over the converged runs out of 100 runs 
are given in Figure 4. For example, It can be seen that 
in terms of accuracy the best result is obtained when 

= 0. 1.  

 

Fig. 4. Probability of optimal path for agent 1 for Algorithm G1 for 
different learning rate. k=0/01, L=1 , T=0/1. 

Experiment2: This experiment is conducted to 

study the impact of learning parameter  on the 

amount of reward received by agent 1 during an 
episode in Algorithm G1. For this purpose, we plot 
the reward received by agent 1 per episode for 

different values of learning parameter : 0.01, 0.05, 
0.1 and 0.4. Each value reported in this experiment is 
obtained by averaging over 100runs. We assume that 
at the beginning of an episode ,each agent starts from 
starting cell. Figure 5 illustrates the results of this 
experiment. The result illustrates clearly that choice 

of value for parameter  has a large effect on the 

performance of the proposed algorithm. The results 

indicate that the best result is obtained when = 0.1. 

 

Fig. 5. The impact of learning rate on the reward received by 
agent1.k=0/01, L=1 , T=0/1. 

Experiment 3: This experiment is conducted to 

study the impact of learning parameter  of 

generalized learning algorithm on the number of agent 
collisions during an episode in Algorithm G1. For this 
purpose, we plot the number of collisions between 
agents per episode for different values of learning 
parameter a: 0.01, 0.05, 0.1 and 0.4. We assume that 
at the beginning of an episode, each agent starts from 
starting cell. Each value reported in this experiment is 
obtained by averaging over 100 runs. Figure 6 
summarizes the results of this experiment and shows 
the results indicate that the best result is obtained 

when = 0.1. 

 

Fig. 6. The impact of learning rate on the number of agent collisions 
during an episode.k=0/01, L=1 , T=0/1. 

Experiment4: In this experiment we compare 
Algorithm G1 with Algorithm1 [5] in terms of the 
reward received by agent 1and the number of agent 
collisions made during an episode Learning parameter 

for both algorithms is set to 0.1. Each value reported 
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is the average over 100 runs. It is assumed that at the 
beginning of an episode, each agent starts from 
starting cell. Figure7 shows the result of experiment. 
As it is seen Algorithm1 with GLA outperforms 
Algorithm1 with LA in terms of the number of agent 
collisions and the average reward received during an 
episode and Probability of optimal path for agent 1. 

 

 

 

Fig. 7. Comparison of Algorithm G1 with Algorithm1 [5] in terms ofa) 
average rewardreceivedb) the number of agent collisions c)Probability of 

optimal path for agent 1.k=0/01, L=1 , T=0/1, =0/ 1. 

Experiment 5: In this experiment, we investigate 
the performance of the proposed algorithm and 
algorithm ILA [14] and 2[5]. In Grid world game 
state transitions are deterministic, which means the 
current state and agent's joint action will uniquely 
determine the next state. In this experiment, the 
optimal path probability and the reward received by 
agent 1 per episode have been observed. Table 1 gives 
the number of iterations required by each algorithm in 
order the probability of optimal path exceeds 
0.97.Figure 8 shows the results compared with the 
proposed algorithm. As it is seen algorithm G1 
outperforms all the other algorithms. Notice that 
algorithm ILA performs the worst. 

Table 1 

Maximum number of iterations for the first agent to reachthe optimal path. 
 

Used Algorithm 
Maximum Iterations 

λ=0/1 

Algorithm G1 1000 

Algorithm 2 2500 

Algorithm ILA 4000 

 

 

 
Fig. 8. Comparison of the Algorithms G1 with Algorithms 2[5] and 
AlgorithmILA[14] in terms of a) average rewardreceived,b) optimal path 
for agent 1,k=0/01, L=1, T=0/1, =0/1. 
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6. Conclusion 

In this paper a new multi agent reinforcement learning 
algorithm based on generalized learning Automata for 
finding optimal policies in Markov games was 
proposed. In the proposed algorithm, the environment 
of Markov problem is modeled as a directed graph. 
The nodes of this graph represent the states and 
directed edges between nodes represent the actions 
that result in transition from one state to another. Each 
node of the graph is equipped with a generalized 
learning automaton whose actions are the outgoing 
edges of the corresponding node. The agents move on 
this graph and in each state, they get help from 
corresponding generalized learning automaton to 
move to the next state. The proposed multi agent 
systems were evaluated by applying them to an 
example of a MMDP called Grid Game. Simulation 
results showed that the choice of the learning rate has 
a great impact on the performance of all the proposed 
algorithms. The results of experimentations showed 
that the proposed generalized learning automata 
outperforms the previous learning automata based 
multi agent system in terms of cost and speed of 
convergence. In the proposed algorithm there are 
limitations, such as requiring that the problem 
involves reaching a goal state. As future work can be 
examined to improve the efficiency of multi agent 
systems by generalized learning automata that agents 
are better able to adapt to changing circumstances and 
unforeseen events. 
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