
 Journal of Computer & Robotics 6 (2), 2013 15-22

* Corresponding author. Email: Samaneh.Assar@qiau.ac.ir

15

Utilizing Generalized Learning Automata for Finding Optimal Policies in
MMDPs

Samaneh Assar *, Behrooz Masoumi

Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Received 23 May 2012; accepted 5 July 2012

Abstract

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi
agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent
Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in
MMDP is proposed. In the proposed algorithm, MMDP problem is described as a directed graph in which the nodes are
the states of the problem, and the directed edges represent the actions that result in transition from one state to another.
Each state of the environment is equipped with a generalized learning automaton whose actions are moving to different
adjacent states of that state. Each agent moves from one state to another and tries to reach the goal state. In each state, the
agent chooses its next transition with help of the generalized learning automaton in that state. The experimental results
have shown that the proposed algorithm have better learning performance in terms of the speed of reaching the optimal
policy as compared to existing learning algorithms.

Keywords: Generalized Learning Automata, Multi agent systems, Markov Games.

1. Introduction

Learning Automata (LA) are adaptive decision
making devices suited for operation in unknown
environments [1]. One of the principal contributions
of LA is that a set of decentralized LA is able to
control a finite Markov Chain with transition
probabilities and rewards are unknown [2]. Recently
this result has been extended to the framework of
Markov Games, which is a straightforward extension
of single-agent Markov Decision Problems (MDPs) to
distributed multi agent decision problems [2], [3].In a

Markov Game, actions are the result of the joint
action selection of all agents while rewards and state
transitions depend on these joint actions obeying the
Markov property. In multi agent system research, two
main perspectives are found in the literature; the
cooperative and non-cooperative perspective [4], [5].
In cooperative multi agent systems, the agents pursue
a common goal and the agents can be built expect
benevolent intentions from other agents. In contrast, a
non- cooperative multi agent systems setting has non-
aligned goals, and individual agents try to obtain only
to maximize their own profits. In multi agent caused

S. Assar et al. / Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

16

by the fact that the environment of agent is dynamic
and just empirically observable while the environment
(there ward Functions and the transition states) is
unknown. Hence, the reinforcement learning methods
may be applied in MAS to find an optimal policy in
MGs In a purely cooperative MG, which is called a
Multi agent MDP (MMDP); all agents share the same
reward function. In MMDPs, the agents should learn
to find and agree on the same optimal policy. In
general MGs, an equilibrium point is sought; i.e. a
situation in which no agent alone can change its policy
to improve its reward when all other agents keep their
policy fixed. In [6] will first demonstrate how GLA
can help take the correct actions in large unknown
multi agent environments. in [7] propose to use
Generalized Learning Automata (GLA), which are
capable of identifying regions within the state space
with the same optimal action, and as such aggregating
states. In [8] proposed several learning automata
based multi agent system algorithms for finding
optimal policies in fully cooperative Markov Games.
In the proposed algorithms, Markov problem is
described as a directed graph in which the nodes are
the states of the problem, and the directed edges
represent the actions that result in transition from one
state to another. In [3] a learning automata based
multi agent systems in which the concepts of
stigmergy and entropy are used to enhance the
performance of system and used to find optimal
policies in Markov Games was proposed. In this
paper, a generalized learning automata based
algorithm for finding optimal policies in Markov
Games is proposed. This algorithm consists of
multiple agents that use generalized learning automata
in order to optimize their own behavior that can be
effectively used to find the optimal policy in Markov
games. In the proposed algorithm, the environment of
Markov problem is modeled as a directed graph. The
nodes of this graph represent the states and directed
edges between nodes represent the actions that result
in transition from one state to another. Each node of
the graph is equipped with a generalized learning
automaton.

The actions of each learning automaton are the
outgoing edges of corresponding node. The agents
move on this graph and in each state, they get help
from corresponding generalized learning automaton to
choose a desirable action and move to the next state.
Based on the path taken by agents and its goodness in
terms of speed and cost, the probability vectors of
generalized learning automata will be updated. This
process is performed in parallel by all agents, and it
iterates several times until the path taken by each agent
converges to the optimal path. The rest of this paper is
organized as follows: Section 2 briefly presents the
concept of Generalized Learning Automata.
Definitions for Markov Decision Process and Markov
Games as well as the concept of solution in them are
discussed in section 3. The proposed algorithm and its
variations are given in section 4. Section 5 presents the
experimental results. Section 6 concludes the paper.

2. Generalized Learning Automata (GLA)

The generalized learning automata (GLA) is an
extended learning automaton where there is provision
for an extra input. The GLA model, where the
automaton can take an additional input, is also useful
in many other situations [9]. Based on this input and
its own internal state the unit then selects an action.
This action serves as input to the environment, which
in turn produces a response for the GLA. Based on
this response the GLA then updates its internal state
[10].Figure 1 shows the general agent learning setup.
Each time step a vector x(n) giving a factored
representation of the current system state is generated.
This vector is given to each individual agent as input.

Fig. 1. Learning setup. Each agent receives factored state representation as
input. GLA decide action to be performed.

 Journal of Computer & Robotics 6 (2), 2013 15-22

17

Formally, a GLA is described by the tuple X, A, β,

u, g, U, where X is the set of inputs to the GLA and

A = {a1,..,ar}is the set of outputs or actions the GLA

can produce. Β [0, 1] again denotes the feedback the

automaton receives for an action. The vector u is used
in conjunction with the probability g to determine the

action probabilities, given an input x X:

 ),,(],[)(uaxgxuakaprob ii 

(1)

Where g has to satisfy following conditions:

xauaxg

xuauaxg

i

r

i
i

ii

,,1),,(

,,,0),,(

1








 (2)

U is a learning algorithm which updates u, based
on the current value of u, the given input, the selected
action and response. The earliest algorithm suggested
is the REINFORCE algorithm [11] which has the
following form:

))()(((

))(),(),((
ln

)()()1(

tutuhk

thtatx
u

g
ttutU













(3)

Where  )2211 (),...(),()(rr uhuhuhuh  with each hi

defined as:

ii

i

ii

i

LL

L

LL

h










 0)(

(4)

In this update scheme, λ is the learning rate and Li,
Ki >0 are constants. The update scheme can be
explained as follows. The first term allows the system
to locally optimize the action probabilities. The next
term uses the hi(u) functions to keep parameters ui

bounded within predetermined boundaries [−Li, Li]. In
[9] it is shown, that the adapted algorithm described
above, converges to local maxima of f(u) = E[β|u],
showing that the learning automata find a local

maximum over the mappings that can be represented
by their internal state in combination with the
function g.

The context vectors represent features of objects to
be classified and the GLA output represents class
labels. We use a factored representation of the state
space as the input for the GLA, whereas the outputs
are the actions the agent should take. In such a
representation the state information is represented as a
set of random variables X={X1, . . . , Xn}, where every
state variable Xi can take values in a finite domain
Dom(Xi) and every possible state in the system

corresponds to a value assignment Xi Dom(Xi) for

every state variable, Xi. With T a parameter that
represents the temperature to control the exploration.

With every action ai A the automaton can perform, it

associates a vector ui. We use the Boltzmann
distribution as probability generating function which
is written as:




j

ai

T

aux

i

T

ux
e

e
uaxg

i

ii

)(

)(

),,(



 (5)

3. Control of Markov Game Using Learning
Automata

The problem of controlling Single Agent MDPs
can be modeled as a network of interconnected
generalized learning automata in which the control is
transferred from one learning automaton to
another[15]. Each state in MDP has a learning
automaton that tries to learn the optimal probability
distribution of actions during the process. Agents
move on this network and in each state they get help
from the generalized learning automaton assigned to
that state to move to the next state. This is done by
using the probability vector of the corresponding
earning automaton. In this model, only one learning
automaton is active in each time and the transition
from one state to another will activates the learning

S. Assar et al. / Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

18

automaton of that state. The activated generalized
learning automaton LAi in the state i will not be
informed about the immediate reward yielded from its
action ai in transition from state i to state j. Instead,
when state i is visited again, LAi receives two parts of
data: the cumulative reward from the beginning of the
process up to the current time step and current global
time. Using these data, GLAi calculates the reward
received since the last visit of state i and the
corresponding elapsed global time. Then, the input to
LAi is calculated using the following equation:

 
 

 1

1
1






i

i

i

i

i

i

t

t
t




(6)

Where i(ti+1) is the cumulative total reward

generated for action ai in state i and i(ti+1) is the

cumulative total elapsed time. This process continues
until all probability vectors converge or a pre-
specified condition is met. When the number of
agents increase and the model extends to multi agent
case, more than one learning automaton should be
active simultaneously because the states depend on
the problem and the environment and the agents could
be in different states.

4. The Proposed Algorithm

Here a new algorithm for solving problems in the
environment with the goal for learning automata
based multi agent system (MAS) is proposed. In this
algorithm, the Markov environment as a directed
graph is mapped. This mapping is done as a node of
the graph indicate the states and directed edges
between nodes represent the actions that lead to the
transfer agent of the state to another. Each node of the
graph, the GLA will be associated with a condition
that is on that node mapping. An automaton procedure
according to the number of neigh boring nodes is
determined. At first, all of the learning automata in all
states choose their actions with equal probabilities. It
is assumed that the final state of the environment that
has the most immediate rewards, as the target. The
agents start from the initial situation to achieve the
goal, in parallel on the corresponding graph is

moving. Each agent continues moving on the graph
until it reaches the goal state. After reaching the goal,
the path πj for each agent j (Lπj), is computed based
on the length of the traversed path πj divided by the
reward of reaching the goal state, (RG), the cost of the
path is compared with a threshold value, such as Tj.
Depending on the result of comparing all the learning
automata along the way receive reward or penalties.
This process is repeated for each agent if the path
converges to the optimal path or a predetermined
criterion is satisfied. For example, assume that the
path πj for agent j is traversed k times. The threshold
is defined as the average cost varies according to the
following equation. This algorithm is called
AlgorithmG1 seen in Figure3.

Tj = Tj + (Lπj-Tj) / k (7)

 Algorithm G1 suffers from the possibility of
existence of cycles in the paths taken by agents. This
possibility increases with increase in learning rate or
reward. Generalized Learning Automata is including a
fixed number of action, but in some applications need
to Learning automata with the number of variables.
Selection is done by an external agent and randomly.
To evaluate the performance of network generalized
learning automata to control the Markov chain several
experiments have been conducted. The environment
of experiment is a Grid-world game that includes a
3×3 grid with a goal cell. This environment has also
been used previously in [12, 13].Two agents start
from the two bottom corners (location 1 and 3) and
try, with the least possible number of moves, to find
the goal square, which is the top centre. After
observing the current state, agents choose their
actions simultaneously. They then observe the new
location, both agents’ rewards, and the action taken
by the other agent. In the new location, agents repeat
the process above. When at least one agent moves
into its goal position, the game restarts. In the new
episode, each agent is randomly assigned a new
position (except its goal cell). If both agents try to
move to the same cell both receive -1. If agents move
to two different non-goal cells, both receive zero
rewards and if one reaches the goal position, it
receives 100 units of reward.

 Journal of Computer & Robotics 6 (2), 2013 15-22

19

Fig. 2. Grid-world game and learning automata model[5].

5. Experimental Results and Discussions

In order to evaluate the performance of the
proposed algorithm, several experiments have been
conducted. The environment of experiment is a Grid
world game that includes a 3×3 grid with a goal cell.
Two agents start from the two bottom corners
(location 1 and 3) and try, with the least possible
number of moves, to find the goal square, which is the
top center. After observing the current state, agents
choose their actions simultaneously. They then
observe the new location, both agents’ rewards, and
the action taken by the other agent. In the new
location, agents repeat the process above. When at
least one agent moves into its goal position, the game
restarts. In the new episode, each agent is randomly
assigned a new position (except its goal cell).

To convert the problem to an MMDP, we consider
each cell as a state and the allowable transitions to
adjacent cells as actions. In this MMDP the objective
is that both agents reach the goal state using distinct
paths. If both agents try to move to the same cell, both
of their moves will fail and both receive 0.01 units of
punishment and stay in their previous position. If
agents move to two different non goal cells, both
receive zero rewards and if one reaches the goal
position, it receives 1 units of reward. The reward
function ri(t)for each agent i is based on Equation 8,
i=1, 2.

 
stategoalnonsamethereachedagentsbothif

stategoalnondifferentareachedagentsif

stategoalthereachediagentif

tri







0

01.0

1

(8)

A path in this game represents a sequence of
actions from the start to the goal position. In game
terminology, such path is called a policy or strategy.
The shortest path not interfering the path taken by the
other agent is called the optimal path.

ALGORITHM G1

 1: Create one Generalized learning automaton for each
state s and define the set of actions based on equation (5).

2: Place all agents in starting state;

3: for every agent j do

4: set threshold , kj

 //kj number of the path traversed by agent j from
starting state to goal state//

5: end for

6: for every agent j do in parallel

7: Repeat

8: Activate Generalized learning automat onto
state s in which the agent j is residing and
determine the next state m to which the agent
Moves.
9: if state m is the goal state then

10: Compute the value of path j taken by agent j

Lj(j), to be Lj(j) /RG

 //RG is the reward of reaching the goal

state, tj(j) is the length of the traversed pathj//

 //Compute the cost of path j taken by agent j//

11: if Lj(j<Tj) then

12: Give reward with (k) = Lj(j)

13: else

14: Give penalty with (k) = 1- Lj (j) ;

15:end if

16: Tj = Tj + (Lj(j)- Tj)/ kj;

 // Tj is the average cost of traversed path//

17: kj=kj+1

18: end if

19:Until (the probability of path j taken by agent j
exceeds a pre-specified threshold or a fixed number of
iterations are passed)

20: end for

Fig 3. Algorithm G1.

S. Assar et al. / Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

20

Experiment 1: This experiment is conducted to

study the impact of learning parameter  on the

probability of optimal path in Algorithm G1. The
probability of optimal path is defined as the product
of probabilities of the selection of the edges along the
optimal path. The plots of average probability of
optimal path over the converged runs out of 100 runs
are given in Figure 4. For example, It can be seen that
in terms of accuracy the best result is obtained when

= 0. 1.

Fig. 4. Probability of optimal path for agent 1 for Algorithm G1 for
different learning rate. k=0/01, L=1 , T=0/1.

Experiment2: This experiment is conducted to

study the impact of learning parameter on the

amount of reward received by agent 1 during an
episode in Algorithm G1. For this purpose, we plot
the reward received by agent 1 per episode for

different values of learning parameter : 0.01, 0.05,
0.1 and 0.4. Each value reported in this experiment is
obtained by averaging over 100runs. We assume that
at the beginning of an episode ,each agent starts from
starting cell. Figure 5 illustrates the results of this
experiment. The result illustrates clearly that choice

of value for parameter has a large effect on the

performance of the proposed algorithm. The results

indicate that the best result is obtained when = 0.1.

Fig. 5. The impact of learning rate on the reward received by
agent1.k=0/01, L=1 , T=0/1.

Experiment 3: This experiment is conducted to

study the impact of learning parameter of

generalized learning algorithm on the number of agent
collisions during an episode in Algorithm G1. For this
purpose, we plot the number of collisions between
agents per episode for different values of learning
parameter a: 0.01, 0.05, 0.1 and 0.4. We assume that
at the beginning of an episode, each agent starts from
starting cell. Each value reported in this experiment is
obtained by averaging over 100 runs. Figure 6
summarizes the results of this experiment and shows
the results indicate that the best result is obtained

when = 0.1.

Fig. 6. The impact of learning rate on the number of agent collisions
during an episode.k=0/01, L=1 , T=0/1.

Experiment4: In this experiment we compare
Algorithm G1 with Algorithm1 [5] in terms of the
reward received by agent 1and the number of agent
collisions made during an episode Learning parameter

for both algorithms is set to 0.1. Each value reported

 Journal of Computer & Robotics 6 (2), 2013 15-22

21

is the average over 100 runs. It is assumed that at the
beginning of an episode, each agent starts from
starting cell. Figure7 shows the result of experiment.
As it is seen Algorithm1 with GLA outperforms
Algorithm1 with LA in terms of the number of agent
collisions and the average reward received during an
episode and Probability of optimal path for agent 1.

Fig. 7. Comparison of Algorithm G1 with Algorithm1 [5] in terms ofa)
average rewardreceivedb) the number of agent collisions c)Probability of

optimal path for agent 1.k=0/01, L=1 , T=0/1, =0/ 1.

Experiment 5: In this experiment, we investigate
the performance of the proposed algorithm and
algorithm ILA [14] and 2[5]. In Grid world game
state transitions are deterministic, which means the
current state and agent's joint action will uniquely
determine the next state. In this experiment, the
optimal path probability and the reward received by
agent 1 per episode have been observed. Table 1 gives
the number of iterations required by each algorithm in
order the probability of optimal path exceeds
0.97.Figure 8 shows the results compared with the
proposed algorithm. As it is seen algorithm G1
outperforms all the other algorithms. Notice that
algorithm ILA performs the worst.

Table 1

Maximum number of iterations for the first agent to reachthe optimal path.

Used Algorithm
Maximum Iterations

λ=0/1

Algorithm G1 1000

Algorithm 2 2500

Algorithm ILA 4000

Fig. 8. Comparison of the Algorithms G1 with Algorithms 2[5] and
AlgorithmILA[14] in terms of a) average rewardreceived,b) optimal path
for agent 1,k=0/01, L=1, T=0/1, =0/1.

S. Assar et al. / Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

22

6. Conclusion

In this paper a new multi agent reinforcement learning
algorithm based on generalized learning Automata for
finding optimal policies in Markov games was
proposed. In the proposed algorithm, the environment
of Markov problem is modeled as a directed graph.
The nodes of this graph represent the states and
directed edges between nodes represent the actions
that result in transition from one state to another. Each
node of the graph is equipped with a generalized
learning automaton whose actions are the outgoing
edges of the corresponding node. The agents move on
this graph and in each state, they get help from
corresponding generalized learning automaton to
move to the next state. The proposed multi agent
systems were evaluated by applying them to an
example of a MMDP called Grid Game. Simulation
results showed that the choice of the learning rate has
a great impact on the performance of all the proposed
algorithms. The results of experimentations showed
that the proposed generalized learning automata
outperforms the previous learning automata based
multi agent system in terms of cost and speed of
convergence. In the proposed algorithm there are
limitations, such as requiring that the problem
involves reaching a goal state. As future work can be
examined to improve the efficiency of multi agent
systems by generalized learning automata that agents
are better able to adapt to changing circumstances and
unforeseen events.

References

[1] A. Nowé, K.Verbeeck,M.Peeters,"Learning Automataas a
Basis for Multi Agent Reinforcement Learning,"in Computer
Science. vol. 3898: Springer, Berlin,2006, pp 71-85

[2] P. Vrancx, “Decentralised Rein forcement Learning in
Markov Games," for the degree Doctor of philosophy in
Sciences, Computational Modeling Lab Department of
Computer Science Faculty of Sciences Vrije Universiteit
Brussel, 2010, pp. 33.

[3] B. masoumi, M. R. Meybodi, "Speeding up learning
automata based multi agent systems using the concepts of
stigmergy and entropy,"in Expert Systems with Applications,
8105–8118,2011.

[4] L. Busniu, R. Babuska, and B. Schutter, "A Comprehensive
Survey of Multiagent Reinforcement Learning," IEEE
Transaction on System, Man, Cybern, vol. 38, pp. 156-171,
2008.

[5] M. Song, J. Bai, and R. Chen, "A New Learning Algorithm
for Cooperative Agents in General-Sum Games," in the Sixth
International Conference on Machine Learning and
Cybernetics Hong Kong, 2007, pp. 50-54.

[6] P. Vrancx, K. Verbeeck, and A. Nowé, "Generalizedlearning
automata for Multi-agent Reinforcement Learning", AI
Communications, 2010.

[7] K.Verbeeck, P. Vrancx, and A. Nowé, "Using Generalized
Learning Automata for State Space Aggregation in MAS,"
Computational Modeling Lab, 2010.

[8] B.Masoumi, M. R. Meybodi and F. Abtahi, “Learning
Automata based Algorithms for Finding Optimal Policies in
Fully Cooperative Markov Games" in Conf. Przeglad
Elektrotechniczny, 2012.

[9] M. Thathachar and P. Sastry, "Networks of Learning
Automata for Online Stochastic Optimization," Kluwer
Academic Publishers, 2004.

[10] P. Vrancx, K. Verbeeck, and A. Nowé, "Generalized learning
automata for Multi-agent Reinforcement Learning", AI
Communications, 2010.

[11] R. Williams, “Simple statistical gradient- following
algorithms for connectionist reinforcement learning,” Journal
of MachineLearning, vol. 8, no. 3, pp. 229–256, 1992.

[12] B. masoumi, M. R. Meybodi, " Learning automata based
multi-agent system algorithm for finding optimal
policies in markov games " Asian Journal of Control, Vol.
14, No. 4, pp. 116, July 2012 .

[13] H. Qio, F. Szidarovszky, Rozenblit, and L. Yong, " Multi-
agent Learning Model with Bargaining," in the 38th
Conference on Winter Simulation Monterey, California,
2006, pp. 934 - 940.

[14] A. Nowe, K. Verbeeck, Colonies of Learning Automata,
IEEE Transactions on Systems, Man and Cybernetics, 32
(2002) ,pp 772-780.

[15] R. M. Wheeler and K. S. Narendra, "Decentralized Learning
in Finite Markov Chains," IEEE Transactions on Automatic
Control, vol. 31, pp. 519-526, 1986.

