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Abstract 

One of the major challenges in robotic arms is to diagnosis sensor fault. To address this challenge, this paper presents an 

LPV approach. Initially, the dynamics of a two-link manipulator is modelled with a polytopic linear parameter varying 

structure and then by using a descriptor system approach and a robust design of a suitable unknown input observer by means 

of pole placement method along with linear matrix inequalities, in addition to providing an estimate of state variables for 

using in state feedback, the detection, isolation, and identification of sensor faults in the manipulator are addressed. The 

proposed observer provides a robust estimate of the faults along with attenuating the disturbance effects. Further, the desired 

angles of the joints are calculated for achieving the desired trajectory of the robot’s end-effector using the inverse kinematics 

and by designing a suitable state feedback law with integral mode, the reference signals are tracked. The sufficient condition 

for stability of the closed-loop system is obtained as a set of linear matrix inequalities at the vertices of the system. The 

efficiency and effectiveness of the control system, along with the designed fault diagnosis unit, are shown using numerical 

simulations. 

Keywords: Fault Diagnosis, Linear Parameter Varying, Polytopic Model, Descriptor System, Unknown Input Observer, Robotic Manipulator, Inverse 

Kinematics.  

 

1. Introduction 

Fault diagnosis is one of the major and challenging issues 

in the field of engineering. Common faults in robotic 

systems are mainly related to either the actuators used in the 

robot, such as electrical motors that transfer torque to the 

manipulator, or the robot’s sensors that measure positions 

and the angular velocities. If the sensors’ faults remain 

undetected, the controller will receive incorrect information 

about the manipulator and this issue itself will cause 

significant problems in the system. Since diagnosing the 

faults in the manipulator is complicated and there is a need 

for isolation of the fault effects from the disturbance effects, 

the robust fault diagnosis is a very important task for the 

robot’s proper function. 

For the manipulator, different methods are considered to 

diagnose and identify faults. In [1, 2], utilizing the dynamic 

model of the robot, fault diagnosis is done. Then, using a 

linear matrix inequality approach, without considering 

disturbance in the system, the faults are compensated by 

using a fault-tolerant control method in the manipulator. In 

[3], the nonlinear model of manipulator and optimal 

estimation methods are used for fault diagnosis. The 

disadvantage of this method is the complexity of the 

equations. This process can be facilitated using linear 

parameter varying models. In [4, 5], the neural network 

method is used for diagnosis of the actuator faults in a 

flexible manipulator. In this method, by determining the 

 

Computer 
& Robotics



A.H. Hassanabadi et al. / An LPV Approach to Sensor Fault Diagnosis of Robotic Arm. 
 

 

16 

range of input and output membership functions, the desired 

functionality of the system is achieved. In [6, 7], by using a 

linear quadratic regulator and the descriptor linear parameter 

varying modelling approach, an optimal controller is 

designed for a flexible two-link manipulator. In [8, 9], a 

flexible manipulator with six degrees of freedom is 

considered and by using the dynamic model of the robot in 

LPV format, a state feedback with integral mode is designed 

to track the reference signals. One of the issues with this 

method is that isolating several faults in the system by using 

only one residual generator which is sensitive to only a 

specific group of faults is impossible; however, this can be 

done with a direct fault estimation approach. In [10,11], for 

a two-link manipulator, actuator fault is diagnosed and based 

on the fault estimation value, the compensation is done. One 

of the ways to compensate faulty systems is to use a fault-

tolerant control system in order to preserve the system 

stability and performance [12-15]. This article is arranged as 

follows: In section two, the dynamic and kinematics model 

of the manipulator is explained. In section three, the 

unknown input observer will be formulated. In section four, 

designing state feedback law with integral mode to track the 

reference signal is addressed. In section five, simulating the 

proposed method and the numerical results are presented and 

the final section concludes the paper.  

2. Dynamic Model of a Two-link Manipulator 

The two-link manipulator moves in a vertical plane and 

its equilibrium point is the upper vertical position of the 

robot. The position of the robot is represented with the vector

1 2

T
      , which corresponds to the angle of the two 

joints. The input of the system is the vector , 

which includes the torque applied to the two robot joints. 

The two-link manipulator discussed in this paper is depicted 

in Fig. 1. The dynamics of the manipulator is formulated in 

the following equation:  

( ) ( , ) ( ) uO g       Ξ     (1) 

In equation (1), vectors   and   represent the velocities 

and accelerations of the joints respectively, and ( ) ku ku  �  

is the moment of inertia matrix of the robot, ( , ) ku kuO    �  

is the vector function including centripetal and coriolis 

torques and ( ) kug  �  is the gravitational torque of the 

robot. 

 

Fig. 1. Two-link manipulator structure. 

Nonlinear model of the two-link manipulator is as 

follows: 
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 

  



 

 
 (3) 

In the equations (2) and (3), 
1L  is the length of link one. 

1cL   is the distance between the joint one to the mass center 

of the link one. 2cL  is the distance between the second joint 

to the mass center of the second link. 
1m is the mass of arm 

one and 
2m  is the mass of arm two. 

1I is the moment of 

inertia of the arm one and the load, and 
2I  is the moment of 

inertia of the arm two. In equation (1), the quadratic term 

( , )O    is omitted due to its boundlessness [11], and as the 

result, (1) is converted to: 

( ) ( ) ug   Ξ   (4) 

In which ( )Ξ  is as follows: 

1 1 2

2 2

2 2
1 2 1 1

1

2 1

2
2 1 2 2

( )
C C C

C C

m L m L I m L L

m L L m L I






  
 

  
Ξ  (5) 

Where: 

 1 2

Tu u u
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1 1 2 1co s( ); 1 1         (6) 

( )g   is modeled as follows: 

1

2

1 2 1 2 1

22 3

( )g
(( ))

C g

C

m L m L
G

m L
g

g

 





    
         

 (7) 

in which: 

1

2

1 2 1 2

2 3

( )g 0

0
( )g C

C

m L m L

m gL
G






  
  

  

 (8) 

and: 

1
2 2

1

2
3 3

2

sin
; 0.2 1

sin
; 0.2 1


 




 



   

   

 
(9) 

2.1. Polytopic Linear Parameter Varying Modeling 

There are various methods for linearizing a nonlinear 

system. Linear parameter varying approach is one of the 

multiple model approaches. The method used in this paper 

is the polytopic linear parameter varying modeling that is 

based on the concepts of polytopes and convex hull. Based 

on this, if 
1 2( ) ( ( ), ( ),...., ( ))lt t t t     is the vector of 

parameters, it is desired to find a set that vector   for all 

variations of 
i i i    . The set is a polytope that is based 

on the 2 lh  vertices (
1 2{ , , ...., }h   ). Each of these 

vertices has the same dimension with   which its elements 

will only take the maximum and minimum values for

[1, 2,..., ]i h   corresponding i  values. Therefore: 

1 2
1 1

{ , ,...., } { : 0, 1}, 2
h h

l
n i i i i

i i

co h      
 

      (10) 

In (10), l  is the number of parameters and h  is the 

number of subsystems. For a system with three parameters, 
32 8h   , so there will be eight subsystems which are 

depicted in Fig. 2. 

 

Fig. 2. The polytopic system with three parameters. 

Weight of each of the subsystems is calculated as follows: 

1 1 2 3
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    

  

   

   

    

   

    
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     

 

(11) 

In (11), 1 , 2 , 3  are obtained from the following 

equations respectively: 

1max 1 2max 2 3max 3
1 2 3

1max 1min 2max 2min 3max 3min

; ;
     

  
     

    (12) 

There are three parameters in the system, so the linear 

parameter varying system is a weighted combination of 
32 8  subsystems and thus ( )Ξ  will be as follows: 

 1 2 3 4 5 6 7 8( ) , , , , , , ,i Co Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ  (13) 

Considering (5), matrices ( ), [1,2,...8]i i Ξ  are 

dependent on the parameter 1 . In the matrices 1( )Ξ , 

2
( )Ξ , 

3
( )Ξ  and 

4
( )Ξ , the value of 

1 is 1min 1    

so: 

1 1 2

2 2

2 2
1 2 1 2 1

2
2 1 2 2

1 2 3 4
( ) ( ) ( ) ( )

C C C

C C

mL mL I mLL

mLL mL I
      

   
 

   
Ξ Ξ Ξ Ξ  (14) 
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In the matrices,  
5

( )Ξ ,
6

( )Ξ ,
7

( )Ξ  and 
8

( )Ξ the 

value of  is 1max 1  , so: 

1 1 2

2 2

2 2
1 2 1 2 1

2
2 1 2 2

5 6 7 8
( ) ( ) ( ) ( )

C C C

C C

mL mL I mLL

mLL mL I
      

  
 

  
Ξ Ξ Ξ Ξ  (15) 

According to (8): 

 1 2 3 4 5 6 7 8( ) , , , , , , ,g g g g g g g g g
iG Co G G G G G G G G   (16) 

 are dependent on . For , 

, therefore: 

1

2

1 2 1

1 5

2

0.2[ ]g 0
( ) ( )

0 0.2

Cg g

C

mL m L
G G

m gL
 

 
  

  

 (17) 

For , ,so: 

1

2

1 2 1

2 6

2

[ ]g 0
( ) ( )

0 0.2

Cg g

C

mL mL
G G

m gL
 

  
  

  
 (18) 

For ,  hence: 

1

2

1 2 1

3 7

2

0.2[ ]g 0
( ) ( )

0

Cg g

C

mL m L
G G

m gL
 

 
  

  
 (19) 

For ,  therefore: 

1

2

1 2 1

4 8

2

[ ]g 0
( ) ( )

0

Cg g

C

mL m L
G G

m gL
 

  
  

  
 (20) 

By defining the following state variable vector for the 

system: 

11

22

3 1

4 2

( )

( )
( )

( )

( )

x t

x t
x t

x t

x t









  
  
   
  
  
    





 
(21) 

The system’s state space equation is as follows: 

0
( ) (t) ( )

( ) 0
ku

i bg
i

I
x t x w u t

G




 
   

  (22) 

in which: 

0 0

0 0
w

1 0

0 1

b

 
 
 
 
 
 

 
(23) 

And the nonsingular matrix  is: 

( )

0

0 i

i

I




 
  
 Ξ

 (24) 

The following linear parameter varying system with 

disturbance and sensor fault is considered: 

           

     
1

h

i i i d
i

f

x t t A x t B u t B d t

y t Cx t D f t

 



  


  

  
(25) 

In (25),  is the state vector,  is the input 

vector,  is the output vector,  is the 

unknown input vector and  is the sensor fault 

vector.  is the disturbance distribution matrix,  is the 

fault distribution matrix, and  is the parameter 

vector of the system which is measurable online.  

for 1, 2, .....,i h  are the weights of different subsystems in 

the vertices which satisfy: 

1

( ) 1, ( ) 0 [1,2,....... ]
h

i i
i

i h   


     (26) 

The matrices  are fixed matrices with 

appropriate dimensions, and  for 1,2,.......i h  are the 

matrices of vertices that are obtained as follows: 

1
0

0i i g
i

I
A

G
   

   

 (27) 

1
i i bB w   (28) 

According to measuring the positions and the velocities 

of the two joints of the robot: 

1

( )g
iG 

3 2( ), ( )    1 5( ), ( )g gG G 

2min 3min0.2, 0.2  

2 6( ), ( )g gG G  2max 3min1, 0.2  

3 7( ), ( )g gG G  2min 3max0.2, 1  

4 8( ), ( )g gG G  2max 3max1, 1  

i

( ) nx t  � ( ) kuu t  �

( ) my t  � ( ) kdd t �

( ) kff t  �

dB fD

(t) l  �

  i t 

, ,d fC B D

,i iA B
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mC I  (29) 

Consider ing the fault  in  the posi t ion sensors: 

1 0 0 0

0 1 0 0

T

fD
 

  
 

 (30) 

and the disturbance distribution matrix is considered as 

follows: 

 0 0 0.7 0
T

dB   (31) 

2.2. Kinematics of the Two-Link Manipulator 

Forward kinematics of the two-link manipulator which 

relates the Cartesian position of the end effector according 

to the joint angles is as follows: 

1 1 2 1 2

1 1 2 1 2

cos( ) cos( )

sin( ) sin( )

x l l

y l l

  

  

  


  

 (32) 

In equation (32),  is the length of the 1st link,  is the 

length of the 2nd link,  is the angle of the 1st joint and  

is the angle of the 2nd joint of the manipulator.  

To obtain the inverse kinematics from the direct 

kinematics, by using trigonometric relations, the joint angles 

2  and 1   are calculated as follows respectively: 

2 2 2 2
1 1 2

2

1 2

cos ( )
2

x y l l

l l
    

  (33) 

1 1 2 2
1

1 2 2

sin( )
tan ( ) tan ( )

cos( )

ly

x l l





  


(34) 

3. Unknown Input Observer Design 

In methods based on disturbance decoupling, the 

disturbance will be considered as unknown input. The 

aim in designing the unknown input observer is to 

decouple the unknown inputs and to estimate the fault. In 

order to estimate the faults as well as the state variables, 

the following augmented state vector is defined [16]: 

( ) (t) (t)
TT Tx t x f     (35) 

By defining this state vector, (25) is rewritten as follows: 

           

   
1

h

i i i d f
i

Ex t A x t Bu t B d t B f t

y t Cx t

 


    

 

     

 

 
(36) 

in which E s s �  ( )s n kf   is a singular matrix and 

the matrices of the augmented system (36) is as follows: 

0 0
, , E

0 0 0 0

0
, ,

0

i i n

i i

d

d f f

n

A B I
A B

I

B
B C C D B

I

     
            

  
        

   

 

 

 
(37) 

The system (36) is a singular (descriptor) system which 

in addition to dynamic equations, it contains algebraic 

equations, too. In the following, the observer will be 

designed to estimate the state ( )x t  (simultaneous 

estimation of the fault and the original state). The following 

unknown input observer is proposed: 

       

   

1

2

(t) ( )

ˆ ( )

h

i i i i
i

z t N z t G u t L y t

x t z t T y t

 



  




  





 
(38) 

In (38), Sz  �  is the observer state variable, ˆ s sx  �  

is the estimate of the augmented state vector, and matrices

iN ,
iL ,

2T  
and 

iG  
have proper dimensions. The state 

estimation error is defined as follows: 

ˆ( ) ( ) ( )e t x t x t    (39) 

By substituting (38) into (39): 

2( ) ( ) ( ) (t)e t I T C x t z     (40) 

The following change of variable is applied: 

2 1I T C T E   (41) 

Substituting (41) into (40) results in: 

1( ) ( ) ( t )e t T E x t z     (42) 

1l 2l

1 2
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Substituting (36) and (38) into (42) results in: 

1 1
1

1 1 1

( ( )){ ( ) x( )

( ) ( ) ( ) ( )}

(t)
h

i i i ii
i

i i f d

t N e T A N T E L C t

T B G u t T B f t T B d t

e 


   

  

    

  

  
(43) 

By applying the following constraints: 

1 1 0i i iT A N T E L C     (44) 

1 0i iT B G   
(45) 

the error dynamics (43) reduces to: 

1 1
1

( ( )){ ( ) ( ) ( )}(t)
h

i i f d
i

t N e t T B f t T B d te 


      (46) 

Equation (41) is written in the matrix form as: 

 1 2T T     (47) 

in which: 

, S

E

C
I

 
 
 

  
 (48) 

The solution of (47) is: 

1 2
T T     

   (49) 

To facilitate the calculation of the unknown matrices 

,i iN L , the following new variables are defined [17, 18]: 

 2 1, 2,......,i i iK N T L i h     (50) 

By using (44) and (50), 
iN is calculated as follows: 

 1 1, 2,......,ii iN T A K C i h      (51) 

and: 

 2 1, 2,......,i i iL N T K i h     (52) 

iG  is obtained from (45) as follows: 

 1 1, 2,......,i iG T B i h    (53) 

If
iK are calculated, the matrices , ,i i iN L G  can be 

determined from (51), (52) and (53), respectively. The 

condition for robust stability of estimation error dynamics 

(46) in the presence of unknown inputs ( )f t  
and ( )d t  is 

formulated as the following linear matrix inequalities for 

 1,2,......,i h  : 

1 1 1 1

2

2

( )

* 0 0
0

* 0 0

* 0 0

T
i i i i d fPTA yC PTA yC PTB PTB I

I

I

I





   
 

 
 
 

  

     

  (54) 

In (54), the change of variable 
i iy PK  is used to linearize 

the nonlinear matrix inequalities. The condition for placing 

the observer error dynamic poles in the circular area ( , )D q r  

with the center ( ,0)q  and radius r, in addition to 

guaranteeing the robust stability, considering the method in 

[21, 22] is as the set of following LMIs for  1,2,......,i h  : 

1 2 3

1

2
2

2
3

0

0 0

0 0 0 0

0 0 0

0 0 0

T

T

T

rP

rP I

I

I

I I





    
   
   
 
  

  

 

(55) 

in which 

1 1

2 1

3 1

i i

d

f

qP PT A y C

PT B

PT B

   

 

 

 





  

If the linear matrix inequalities (55) are feasible, matrices 

0P   and 
iy  will be obtained and then: 

 1 , 1,2,......,i iK P y i h    (56) 

The matrices iN , iL  and iG for  1,2,......,i h 
 
are 

obtained  from (51), (52) and (53), respectively. 

4. Tracking Controller Design 

The system (36) is assumed to be controllable. The aim is 

to design a suitable state feedback to achieve the following 
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tracking goal in addition to guarantee the stability of the 

closed-loop system [19, 20]: 

lim ( ) ( )
t

y t w t


  (57) 

 In this paper, only tracking the first two outputs are 

considered. Therefore, the vector ( )y t  is defined as follows: 

1

2

( )
y

y t
y

 
  
 

 (58) 

Reference input  is obtained by using the inverse 

kinematics of the robot and the desired trajectory in the 

cartesian space. In other words,  1 2( ) ( ) ( )
T

d dw t t t   

is the desired vector of the joint angles. For the given 

reference input , the integral mode will be defined as 

follows which is depicted in Fig. 3: 

   ( ) ( ) ( ) ( ) ft w t y t w t Cx t D f t       (59) 

in which: 

kuC I  (60) 

f kuD I  (61) 

 

 

Fig. 3. Structure of the fault diagnosis loop and tracking controller. 

The following augmented state variable is considered: 

( ) ( ) ( )
TT T

cx t x t t   
 (62) 

Considering (25), (59) and (62), the following augmented 

system is resulted: 

           
1

i i c

h

c i c c c d
i

x t t A x t B u t B d t 


     (63) 

in which: 

 

0 00
, ,

00 0

( ) ( ) ( )

i i c

di i

c c d
f m

TT T T

BA B
A B B

D IC

d t d t f t w t

    
             

   


 
(64) 

A necessary and sufficient condition for the existence of 

a stabilizing state feedback controller for the system (63), is 

the controllability of the system. Now, the following state 

feedback control with the integral mode is considered: 

 1 2 1 2

( )
( ) ( ) ( ) ( )

( )
c

x t
u t M x t M t M M Mx t

t




 
    

 
 (65) 

Applying the control law (65) to (63) results in: 

       
1

( )
i i c

h

c i c c c d
i

x t t A B M x t B d t 


     (66) 

Assuming a constant unknown input vector, the condition 

for exponential stability of the state variable cx is obtained 

by the following matrix inequalities: 

   2 0 1,2,......,
i ic c isym A Q B X Q i h    (67) 

In (67), to linearize matrix inequalities, multiplication of 

the two sides of the inequality in  and introducing the new 

variables 1 ,Q P MQ X   are applied. 

If LMIs (67) are feasible, matrices 0Q    and X  are 

obtained and then: 

1P Q  (68) 

M XP  (69) 

Subsequently the matrices 1M  , 2M will be constructed 

from first columns and  last columns of M , 

respectively. 

( )w t

( )w t

 
1P

n
uk
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5. Simulation 

In this section, the considered manipulator with the 

designed controller and the UIO are simulated. 

In Table 1, the numerical values of the robot parameters 

are given. 

Table. 1. Parameters of the two-link manipulator 

g  
2m  1m  

2CL  
1CL  2L  1L  2I  1I  Parameters 

9.8 5 10 0.5 0.5 1 1 0.41 0.83 Values 

2/m s  kg  kg  m  m  m  m  2*kg m  
2*kg m  Units 

The UIO (38) is designed by solving the set of LMIs (55) 

with the attenuation level 1  and selecting 20q  and 

15r  . After solving these LMIs, the matrices iN , iL  and 

iG  for  1,2,......,i h 
 
are calculated  from (51), (52) and 

(53) respectively. The tracking controller (65) is designed by 

solving the set of LMIs (67) by choosing 2  . 
1M and 

2M  are calculated from (69) as follows: 

1

2

4426.747411 0.001668 420.832109 0.000786

0.003075 1440.412948 0.000361 145.310838

13268.9910017 0.0171864

0.0312571 3932.6833916

M

M

    
 

   

 
 

 

 

The considered manipulator should track the path being 

shown in Fig 4. This path is determined by the obstacle 

avoidance constraint in the robot environment. The reference 

signals for the two joint angles; 1 2,w w  are shown in Fig 6 

which are calculated from the path shown in Fig 4 by inverse 

kinematics. 

 

Fig. 4. Reference path in cartesian space. 

In the simulation, a white noise with mean and variance 

respectively equivalent to 0.2 and 0.9 is considered as the 

disturbance. Abrupt and incipient faults on the two sensors 

are considered which overlap on some periods as being 

depicted in Fig 5. 

 

Fig. 5. Sensor faults and their estimation. 

The joint angles ( 1 2,y y ) which track the reference inputs 

are shown in Fig 6. It is seen that the tracking is done with 

an acceptable performance in spite of disturbance and faults 

in the system. 

 

Fig. 6. Measured values of joint positions (including sensor faults) and 

their reference values. 

The system states (joint angles and velocities) and their 

estimates are shown in Fig 6. The estimation of these signals 

and its robustness can be seen from this figure. These robust 

estimates are used for state feedback controller and also for 
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direct fault diagnosis (including three stages of fault 

detection, isolation and reconstruction). 

 

Fig. 7. The positions and velocities of the robot joints with their 

estimation. 

The faults estimates are shown in Fig 5. The direct fault 

reconstruction scheme presented in this paper has the 

advantages of excluding the need for designing bank of 

UIOs for fault isolation and also achieving fault diagnosis of 

simultaneously appearing faults which is a challenge for 

many fault diagnosis schemes. 

The control signals applied by the two joint actuators are 

depicted in Fig 8 which both are bounded. As it is observed 

from this figure, the abrupt faults in the sensors have an 

abrupt effect on the two control -signals but incipient faults 

have a smooth effect. 

 

Fig. 8. Control signals applied by the two joint actuators. 

For evaluating the performance of the UIO in the fault 

and state estimation and also the controller tracking 

performance, Mean Integral of Square Error (MISE) index 

defined as follows is used: 

2

0

1/ ( )
t

MISE t e t dt   (70) 

In which, T is the total time of the simulation. The 

obtained results of this index for estimation error/tracking 

error of different signals are given in Table 2. It can clearly 

be seen that these values are very small for the robot being 

simulated which shows the effectiveness the UIO and 

controller being designed.  

Table. 2. Mise calculated for different signals 

Estimation error Tracking error 

Signal 1x
 2x

 3x
 4x

 1f  2f  1y
 2y

 1tre
 2tre

 

MISE 0.006 0.002 0.024 0.047 0.006 0.002 0.034 0.053 0.003 0.007 

6. Conclusion 

   In this paper, the LPV model of a two-link manipulator 

is presented. Based on this model, an unknown input 

observer which can estimate the joint angles and the 

velocities of the robot and also the sensor faults is designed. 

Then a state feedback controller enhanced with integral 

action is designed which by using the robust estimates of the 

system states can guarantee the exponential convergent of 

the joint angles to the reference signals calculated based on 

the reference path and inverse kinematics. The advantage of 

the proposed method is achieving direct fault diagnosis by 

estimating the fault vector as additional states in the 

augmented system. Designing an active fault tolerant 

controller based on this fault diagnosis scheme is the future 

line of this research. 
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