
Journal of Computer & Robotics 1 (2011) 1-7

1

An Enhanced MSS-based Checkpointing Scheme for Mobile Computing

Environment

M. Reza Salehnamadi* , Mohammad Hadi Asgari

Department of Computer Engineering, Postgraduate Engineering Centre Islamic Azad University, South Tehran Branch, Tehran, Iran

Received 3 December 2010; revised 11 March 2011; accepted 25 May 2011

Abstract

Mobile computing systems are made up of different components among which Mobile Support Stations (MSSs) play a key role. This paper

proposes an efficient MSS-based non-blocking coordinated checkpointing scheme for mobile computing environment. In the scheme

suggested nearly all aspects of checkpointing and their related overheads are forwarded to the MSSs and as a result the workload of Mobile

Hosts (MHs) will reduce substantially. Moreover, the total amount of exchanging checkpoint requests will be decreased in order to have a

batch transmission of such requests. The scheme is also enhanced using a simple data structure to have fewer propagating checkpoint

requests and avoid the avalanche effect in the system. Simulation results show that compared to other existing algorithms, in the proposed

scheme the average number of propagating requests and checkpoints, the average elapsed time for each checkpointing process, and the size

of system messages are significantly lower and smaller, respectively. Thus considering its distinguishing features, the proposed approach

would be efficient and suitable for mobile computing environment.

Keywords: mobile computing; fault tolerance; coordinated checkpointing; MSS-based; non-blocking.

1. Introduction

Various applications of distributed systems are

developing rapidly. In addition, the idea of running the

processes of the distributed systems on the mobile hosts

(MHs), which will lead to developing the concept of mobile

computing environment, has been attracting much more

attention recently. In such an environment, the processes

running on the MHs communicate with each other only by

sending messages routed exclusively in the Mobile Support

Stations (MSSs) which are interconnected by a fixed wired

network, and therefore there is not a global shared memory

or a global physical clock among the system processes. On

the other hand, a cell is a geographical area covered by an

MSS, and so an MH can directly communicate with an MSS

through a wireless channel only if it is geographically in the

cell serviced by that MSS.

Mobility requiring different hand-off and routing

strategies, low bandwidth of wireless communication

channels, lack of stable storage on the MHs, and

disconnections and limited battery power of the MHs are

some of the restrictions of mobile computing environment.

The wireless network connection in a mobile

environment is more fragile compared to the fixed wired

architecture of distributed systems. Thus for mobile

computing systems, it must be equipped with a recovery

facility. Checkpointing and rollback recovery is one of the

most significant approaches for providing fault tolerance in

distributed systems. But considering the restrictions of

mobile computing environment, traditional checkpointing

techniques which have been proposed for distributed

systems are not suitable.

Non-blocking coordinated checkpointing as one of the

most interesting groups of checkpointing protocols for

distributed systems have been recently capturing more

attention in the retrofitting mobile environment as well [3],

[8], [12]. Since it can guarantee that the system will be

consistent after recovery under the assumption of FIFO

communication channels [4], [5], and no other process will



Corresponding Author. Email: m_saleh@azad.ac.ir

M.R. Salehnamadi et al. / An Enhanced MSS-based Checkpointing Scheme for Mobile Computing Environment 2

be also blocked during the global checkpoint construction, it

will be fascinating for mobile systems. In particular, if there

exists a minimum number of processes involved in a

coordinated checkpointing session, that would be those

processes which have communicated with the checkpoint

initiator either directly or indirectly since the last checkpoint

[11]. Obviously, the blocking types of coordinated

checkpointing are not suitable for mobile systems,

considering the issues of their structures.

Communication-induced checkpointing (CIC) as another

group of checkpointing protocols and their various

derivatives are common in distributed systems and also in

mobile environment. CIC protocols have been classified

into two main types of model-based and index-based.

Several algorithms based on the index-based CIC have been

proposed for mobile systems [1], [3], [15]. Although there is

no distinct message as checkpoint request in these protocols

and therefore they will not impose the overhead of such

messages to the system, there is a major incompetency in

general CIC protocols. In fact, there is the possibility of

creating orphan processes in a system with taking advantage

of them [5].

Several checkpointing algorithms have been proposed for

mobile computing systems based on checkpointing

schemes. Since checkpoints must be stored in the MSSs due

to the lack of stable storage in the MHs, and also because of

the bandwidth limitations of such systems, an algorithm that

takes fewer or no useless checkpoints in a system would be

much more efficient. Moreover, decreasing the amount of

propagating checkpoint requests is considered another

aspect of checkpointing efficiency.

Among the existing proposed schemes, some have a

more practical attitude while some others just have a

theoretical or mathematical perspective. For example in [3]

the authors proposed a checkpointing approach for mobile

computing environment based on practical issues. Thus the

proposed approach is a combination of non-blocking

coordinated checkpointing and index-based CIC, in which

the system initially would take mutable or tentative

checkpoints for each process according to the proposed

algorithm. Then if a mutable checkpoint is not converted to

a tentative one, it would be redundant. The authors claimed

that the scheme would lead to few number of redundant

checkpoints, but after a precise consideration of the

algorithm it will be clear that one of the most important

causes of such few redundant checkpoint creations is the

small number of mutable checkpoints which is created in the

checkpointing process. Therefore, it seems that the

complexity of this algorithm could be reduced without a

considerable loss of its reasonable benefits. In another study

[2], the author proposed an approach for dependency

tracking in mobile computing environment based on some

mathematical concepts including graphs. But it seems that

the practical aspects of such systems are not mentioned. In

other words, there is no guarantee for a system to be

consistent after recovery using this approach since the

generated dependency list would be altered after its creation

and before being used for recovery purposes according to

the conditions of real systems.

In this paper, we present an MSS-based non-blocking

coordinated checkpointing scheme as there are many valid

reasons behind the efficiency of MSS-based approaches

with all of them coming from the fact that the MSSs play a

key role in the MHs communications inside a mobile

computing environment. Using this approach in a mobile

system, there would be a large decrease in the number of

checkpoint request messages in such a system.

Additionally, to further reduce the amount of cascading

checkpoint requests, we present a simple and lightweight

data structure. By manipulating and piggybacking the data

structure on such requests which are sent from an MSS to

another, this goal will be accomplished and also the system

will be released from the avalanche effect.

The rest of the paper is organized as follows. Section 2

develops some assumptions about the features of the system

model employed in this study. In Section 3, the proposed

MSS-based non-blocking checkpointing algorithm for

mobile computing systems is presented in detail. Then a

correctness sketch about the algorithm’s consistency is

given in Section 4. The results of a software simulation of

the proposed approach in comparison with another famous

algorithm are provided in Section 5. Finally, Section 6

concludes the paper.

2. SYSTEM MODEL

We consider a mobile computing system (Figure 1)

containing a set of MHs and a relatively fewer number of

MSSs [1], [10]. In a mobile computing environment, a cell

is a geographical location that is covered by various services

of an MSS, which is providing them to support the MHs

which are in that cell. There exist wireless communication

links between an MH and its supporting MSS. On the other

hand, the MSSs communicate with each other using fixed

high-speed communication links. All of these channels

which have arbitrary but finite transmission delays are

reliable and they also support FIFO communication in both

directions.

The considered distributed computation consists of N

processes denoted by P0, P1, P2, …, PN which are running

on the MHs, and each MH runs just one of the processes at a

time. Like other standard distributed systems, the processes

will not share a common memory or a common clock, so

they will take advantage of message passing as the only way

of communicating with each other. An MH can move to

another neighboring cell which is called a hand-off.

There are two kinds of messages in the system, namely

computational and system messages. The computational

messages are generated by the underlying distributed

application and the system messages are generated by the

system processes in order to generate new consistent global

checkpoints.

Journal of Computer & Robotics 1 (2011) 1-7

3

Fixed High-speed

Wired Network

MSS MSS

MSS MSS

MH

MH
MH

MH

MH

MH

MHMH

MHMH

Wireless

Link

Fig. 1. Mobile Computing System Architecture

Since the MHs are typically powered by batteries, they

can power down its particular components during their low

activity phases for energy saving reasons [7]. This method is

indicated as the sleep mode or the doze mode operation.

THE NON-BLOCKING MSS-BASED HECKPOINTING

SCHEME

In this section we firstly present our basic non-blocking

MSS-based checkpointing scheme and then an improvement

approach to further reduce the number of messages

containing checkpoint requests, which is based on

generating and updating a simple data structure and

piggybacking it on such requests, is described.

A. The MSS-based Approach

The MSSs play a key role in MHs communications

inside a mobile computing environment. In fact, each

message that has been sent by an MH must be routed among

the MSSs to reach the destination MH. Furthermore, the

checkpoints must pass from the MHs to the MSSs in order

to be stored in their stable storage because the MHs do not

have such a reliable storage as mentioned before. So it

seems that the approach suggested here make the transfer of

almost the total overhead of checkpointing and rollback

recovery and their related algorithms and data structures

from the MHs to the MSSs possible. It is also much more

efficient than the other approaches that do not have such an

operation inside themselves. Moreover, as the MSSs are

more appropriate for data storage than the MHs according to

their hardware and software structures, it is better to store

the data structures in the MSSs rather than in the MHs.

After all, in this approach we could have the batch sending

and receiving of checkpoint requests from an MSS to

another, and this would greatly decrease the amount of such

messages in the system which is highly desirable in mobile

environment as well as other types of distributed systems.

The general description of our approach is as follows.

While each MH is running its own computations and

passing messages to other MHs in order to advance

computations of the general application, one of the MHs

that finds itself ready to initiate a checkpointing process

informs its supporting MSS about the situation and sends its

current state to it. When the MSS receives the initiator

MH’s request, it stores the initiator MH’s state as its

temporary checkpoint and then forwards it to other MSSs

that are supporting the MHs related to the initiator MH. In

other words, the MSS generates packages containing

checkpoint requests for each MSS that supports at least one

MH related to the initiator, and then it sends them to the

corresponding MSSs. This batch style of request sending,

which would be utilized in other aspects of the proposed

scheme too, greatly decreases propagation of such

checkpoint requests. At the other point of request transition,

the receiver MSS sends the same requests to other MSSs

which are supporting the MHs related to each of its desired

MHs according to the received package’s information in a

batch style too after it takes a temporary checkpoint for each

one of its desired MHs. Clearly, since an MSS must receive

an MH’s status from itself in order to store it as that MH’s

checkpoint in its permanent storage, it may send a request to

that MH and receive its status in response to the request

whenever it needs. This temporary manner of taking

checkpoints and batch request propagation process

continues until all the MHs related to the initiator are

covered. Thus when the initiator MH’s supporting MSS is

informed about this situation, it broadcasts a commit

message, again in a batch style, to other MSSs, and then

each MSS makes its respective temporary checkpoints

permanent by receiving the commit message, and removes

its former checkpoints which are not useful anymore. As a

result, a global consistent system state is provided using this

approach.

B. The Improved MSS-based Checkpointing Scheme

The basic proposed scheme may lead to the avalanche

effect in which there would be a recursive request sending

condition in a system. In order to have an avalanche effect

free scheme, we introduce a simple data structure containing

the identification numbers of the MHs which have been

mentioned in a checkpoint request sending operation by

another MSS before. Each MSS manipulates its copy of

such data structure to complete it according to its future

request sending operations, and piggybacks it on such

messages. When the receiver MSS catches a copy of such a

data structure, it notices that it should not attempt to send a

request relating to its aforementioned MHs, and thus

complete it using its future request sending operations, and

then piggyback it on such messages. Other aspects of the

scheme are exactly like the basic one above.

C. Notations and Data Structures

In this section we will present a basic description about

the main concepts and data structures of our proposed

algorithm:

1) MH_Data: The data structure containing the MHs’

required data, which is stored in the MSSs. This complex

structure consists of the following variables:

 Is_In_This_Cell: A flag which is set if the

corresponding MH is in the MSS’s cell. Its default value is

false.

M.R. Salehnamadi et al. / An Enhanced MSS-based Checkpointing Scheme for Mobile Computing Environment 4

 R (Received): An array almost like the one in [3]

but here each block of it is related to an MH. So this array

has N blocks, in which N is the total number of the system’s

MHs. According to the block index number, the value of

each block of this array which is related to its corresponding

MH is 1 if the corresponding MH has sent at least one

computational message to this MH in the current interval

and 0 if it has not. All of the array’s blocks would be set to 0

as their initial value.

 weight: A nonnegative variable of real type with a

maximum value of 1. We use it to detect the termination of

the checkpointing algorithm as in [9]. Its default value is 0.

 Initiator_ID: This variable indicates the

identification number of the checkpointing initiator MH that

started the latest checkpointing process. We assume that at

any time there will be a single checkpoint initiation. Since

the identification numbers of MHs starts from 1, and 0 does

not belong to any MH, the initial value of Initiator_ID

would be 0.

2) not_sent_counter: This counter is utilized to find the

special case in which the initiator MH does not receive any

messages from any other MHs in the interval. In this

situation there is no need for any other MSSs to store the

state of some of their supporting MHs as their checkpoints,

except for the initiator’s MSS.

3) Sent_Req: A data structure that is put to practical use

in order to decrease the amount of propagating checkpoint

requests and also to have an avalanche effect free approach.

The MSS which is supporting the initiator MH generates a

new copy of the data structure and fills it with the relevant

information according to its checkpoint request activities

and piggybacks it for the MSSs that it should. So such

MSSs will receive a copy of this data structure and use and

update it and then piggyback it for the other relevant MSSs.

Sent_Req consists of these variables:

 CP_Initiator: An integer variable containing the

identification number if the MH triggered current

checkpointing process.

 Req_Deliv_List: A binary array of size N, in which

N is the total number of the system’s MHs. If the MSS

notices that it must send a checkpoint request related to an

MH to its supporting MSS, it will set the flag having an

index number equal to that MH’s identification number.

4) CSMHW (Corr_Supp_MHs_and_weights): An array

that has M blocks, in which M is the total number of the

system’s MSSs. Each block of this array points to a list

(e.g. an arraylist) containing the information about some of

MSSs supporting the MHs which are related to at least one

of the sender MSS’s supported MHs, and their weights.

This data structure is utilized to have batch checkpoint

request transmission in the system. Each element of the list,

which each block of this array points to, consists of these

variables:

 MH_ID: An integer variable containing the

identification number of the corresponding MH.

 MH_Weight: A nonnegative variable of real type,

containing a portion of the sender MSS’s respective

supported MH’s weight that it allocated to the

corresponding MH.

5) SPhCSMHW

(Sec_Ph_Corr_Supp_MHs_and_weights): This data

structure is utilized to create batch second phase responding

in the system and its type and variables are exactly the

same as CSMHW’s.

D. The Enhanced MSS-based Algorithm

In this section we present a pseudo code of the proposed

algorithm to provide a more clear understanding of it. The

pseudo code will be presented from two different

perspectives of MHs and MSSs.

1) MHs Participation in the algorithm

As mentioned before, nearly all the overhead of this

scheme is forwarded to the MSSs, thus participation of the

MHs in this checkpointing algorithm is very low. In other

words, they would just send requests to their supporting

MSSs in order to send computation messages or checkpoint

initiation, and in the case of receiving a computation

message they just need to process it and there is no need for

any kind of information storage.
MHm on sending a computation message to MSSp (its

supporting MSS) in order to deliver it to MSSq (MHn’s

supporting MSS):
Send_Comp_Message(MHn)

{

 Send the computation message, containing (MHm, MHn) to

MSSq;

}

MHm on receiving a computation message from MSSp (its

supporting MSS) which has been sent by MSSq (MHn’s

supporting MSS):
Receive_Comp_Message(MHn)

{

 Process the message (no other activity needed);

}

MHm on finding itself ready to initiate a checkpointing

process through MSSp (its supporting MSS):
Initiate_Ckp()

{

 Send checkpoint initiation request, containing (MHm) to

MSSp;

 Send its local state as the checkpoint to MSSp;

}

2) MSSs Participation in the algorithm

As the MSSs are responsible for providing correct

checkpointing processes in the system, they are in charge of

storing needed information about the MHs in the related

data structures and also other relevant activities. Since it

could be possible for the MHs to leave a cell and enter a

new cell (hand-off), the proposed algorithm also include

some pertinent functions to meet hand-off requirements

properly.
MSSp on receiving a checkpoint initiation request from

MHm (one of its supported MHs):

Initiate_Checkpoint(MHm)

{

 MH_Data[m].Initiator_ID = m;

 MH_Data[m].weight = 0;

 Sent_Req.CP_Initiator = m;

 Store MHm's state as its temporary checkpoint;

 Spread_CP_Req(MH_Data[m].R, MHm, Sent_Req,

 MH_Data[m].Initiator_ID, 1.0);

 Reset MH_Data[m].R;

Journal of Computer & Robotics 1 (2011) 1-7

5

}

Spread_CP_Req(Rm, MHm, Sent_Req, MH_Init_ID,

received_weight)

{

 MH_Data[m].weight = received_weight;

 for(i=1 to the number of MHs)

 if((Rm[i] == 1) && (Sent_Req.CP_Initiator ==

MH_Init_ID)

 && (Sent_Req.Req_deliv_List[i] == 0))

 {

 MH_Data[m].weight = MH_Data[m].weight / 2;

 CSMHW[MHi's current supporting MSS’s ID]

 .add(MHi, MH_Data[m].weight);

 Sent_Req.Req_deliv_List[i] = 1;

 }

 else

 not_sent_counter++;

 for(j=1 to the number of MSSs)

 if(CSMHW[j] is not empty yet)

 Send Checkpoint Request to MSSj, containing(Sent_Req,

 CSMHW[j], MH_Data[m].Initiator_ID);

 if((not_sent_counter == total number of MHs) && (m ==

MH_Init_ID))

 Broadcast(commit, MH_Init_ID) to all MSSs;

 not_sent_counter = 0;

}

MSSp on receiving a checkpoint request from MSSq

(another MSS)

on behalf of MHm (one of MSSq’s supported MHs):

Receive_Checkpoint_Request(Sent_Req, Rec_CSMHW,

MH_Init_ID)

{

 for(i = 0 to the size of Rec_CSMHW)

 if (MH_Init_ID ==

MH_Data[Rec_CSMHW.get(i).MH_ID].Initiator_ID)

 SPhCSMHW.add(Rec_CSMHW.get(i).MH_ID,

 Rec_CSMHW.get(i).MH_Weight);

 else

 {

 MH_Data[Rec_CSMHW.get(i).MH_ID].Initiator_ID =

MH_Init_ID;

 Spread_CP_Req(MH_Data[Rec_CSMHW.get(i).MH_ID].R

,

 Rec_CSMHW.get(i).MH_ID,

 Sent_Req, MH_Init_ID,

Rec_CSMHW.get(i).MH_Weight);

 Store the state of the MH with the ID

Rec_CSMHW.get(i).MH_ID

 as its temporary checkpoint, after requesting and

receiving its state;

 SPhCSMHW.add(Rec_CSMHW.get(i).MH_ID,

 MH_Data[Rec_CSMHW.get(i).MH_ID].weight);

 Reset R of the MH with the ID

Rec_CSMHW.get(i).MH_ID;

 }

 Send Second Phase Response to the supporting MSS of the

initiator MH

 with the ID MH_Init_ID, containing(MH_Init_ID,

SPhCSMHW);

}

MSSp on receiving a computation message sending request

from MHm

(one of its supported MHs) to MHn:

Send_Comp_Message(MHm, MHn)

{

 Send the computation message, containing(MHm, MHn)

 to MHn's supporting MSS;

}

MSSp on receiving a computation message sending to MHm

(one of its supported MHs) request from MSSq on behalf

of MHn (one of its supported MHs):
Receive_Comp_Message(MHn, MHm)

{

 MH_Data[m].R[n] = 1;

 Send the computation message, containing(MHn) to MHm;

}

MSSp on receiving a second phase response from MSSq,

related to MHm (the checkpoint initiator):
Receive_Sec_Ph_Resp(MHm, Rec_SPhCSMHW)

{

 for(i = 0 to the size of Rec_SPhCSMHW)

 {

 MH_Data[m].weight = MH_Data[m].weight +

 Rec_SPhCSMHW.get(i).MH_Weight;

 if(MH_Data[m].weight == 1.0) Broadcast(commit, MHm) to

all MSSs;

 }

}

MSSp on receiving a broadcasted commit message, which is

related to MHn (the checkpoint initiator)
Receive_Broadc_Msg(commit, MHn)

{

 for(All supported MHs)

 {

 Make all temporary checkpoints of supported MHs

permanent;

 Delete all checkpoints of supported MHs, except each one's

last checkpoint;

 }

}

MSSp on facing the departure of MHm from its area to

MSSq’s (another cell)
Send_MH_Data(MHm, MSSq)

{

 Send MHm’s data, containing(MHm, MH_Data[m]) to

MSSq;

 MH_Data[m].Initiator_ID = m; Reset MH_Data[m].R;

 MH_Data[m].weight = 0; MH_Data[m].Is_In_This_Cell =

false;

}

MSSp on receiving the data of MHn in order to face its

entry from MSSq’s area
Receive_MH_Data(MHn, MHn_Data)

{

 MH_Data[n].Initiator_ID = MHn_Data.Initiator_ID;

 MH_Data[n].R = MHn_Data.R;

MH_Data[n].Is_In_This_Cell = true;

 MH_Data[n].weight = MHn_Data.weight;

}

CORRECTNESS SKETCH

 As mentioned before, the proposed algorithm is based

on the coordinated checkpointing scheme which is

completely free of orphan messages and orphan processes

and therefore it always makes consistent system states [5].

Even non-blocking coordinated schemes would be free of

inconsistent checkpoints under the assumption of FIFO

communication channels [4], [5]. There are also other

M.R. Salehnamadi et al. / An Enhanced MSS-based Checkpointing Scheme for Mobile Computing Environment 6

alternative solutions to have consistent non-blocking

coordinated schemes without the assumption of FIFO

channels. Piggybacking markers which are some kind of

checkpoint requests on every post-checkpoint message

[13], or checkpoint indices which can serve the same role

as markers [6], [14] and are partly similar to the actions

utilized in the CIC schemes are some of these alternative

methods.

 Although the concept of having batch checkpoint

requests seems to be beyond the scope of standard

coordinated checkpointing schemes, we should argue about

the scheme’s consistency with regard to this idea. If we

assume a set of messages which is being sent by an MSS to

another MSS as a single but large message, and then

reanalyze the algorithm with such an idea, we would find

out that the algorithm exactly matches with the standard

coordinated checkpointing methods which we argued about

their consistency before. Now as we assumed that we have

FIFO channels in our system and also as the transposition

of different request messages in a set of system messages

which is being sent to another MSS obviously is not related

to the system’s consistency, by extending the large message

assumption to a set of messages, we can find out that the

algorithm does not disrupt the system’s consistency after

the checkpointing process.

A PERFORMANCE EVALUATION BASED ON

SIMULATION

In order to evaluate our proposed algorithm and obtain a

worthwhile comparison between the algorithm and other

existing algorithms, we take advantage of the software

modeling and simulation. In other words, we simulate a

mobile computing system with a number of MSSs and a

relatively larger number of MHs which are randomly placed

in these MSSs initially, and each one of them can leave a

cell and enter another cell over time (hand-off) with the time

intervals following an exponential distribution. The MHs

send messages to each other through their supporting MSSs

again with the time intervals following an exponential

distribution. In fact, an MH sends a message to its

supporting MSS in order to deliver it to another MH. This

message is routed among the system’s MSSs in order to

reach the supporting MSS of the destination MH, and finally

it reachs the destination MH through its supporting MSS.

We consider random delivery delays for each of these

message transmissions. An MH triggers a checkpointing

process randomly so it sends the related request to its

supporting MSS, and other relevant reactions based on

sending and receiving batch checkpoint requests take place

in response to this checkpoint initiation according to the

implementation of our proposed algorithm in the simulation.

We also implement the Cao and Singhal’s algorithm [3]

as one of the most famous and fairly efficient algorithms in

the field of mobile computing systems’ fault tolerance based

on checkpointing and rollback recovery according to their

published information. Thus we can compare the results of

our proposed algorithm with those of the Cao and Singhal’s

algorithm.

The average number of the propagating checkpoint

requests and checkpoints, the average elapsed time for each

checkpointing process (in milliseconds) and the average size

of system messages (in bytes) are four important factors of

checkpointing algorithms in distributed systems and in

mobile computing environment as well. Figures 2 to 5 show

the simulation results in relation to these four factors in

different message sending rates.

Fig. 2. The number of checkpoint requests

Fig. 3. The number of checkpoints

0

5

10

15

20

25

30

0.0001 0.001 0.01 0.1

A
ve

ra
ge

 N
u

m
b

e
r

o
f

C
h

e
ck

p
o

in
t

R
e

q
u

e
st

s

Message Sending Rate

Cao and Singhal's MSS-based

Enhanced MSS-based

0

1

2

3

4

5

6

7

8

9

0.0001 0.001 0.01 0.1

A
ve

ra
ge

 N
u

m
b

e
r

o
f

C
h

e
ck

p
o

in
ts

Message Sending Rate

Cao and Singhal's

MSS-based

Enhanced MSS-based

Journal of Computer & Robotics 1 (2011) 1-7

7

Fig. 4. The elapsed time for each checkpointing process (milliseconds)

Fig. 5. The size of system messages (bytes)

CONCLUSIONS

In this work, we presented an MSS-based checkpointing

scheme for mobile computing systems, and then an

enhancement for the scheme using a simple and lightweight

data structure. In the approach suggested here, the imposed

overhead of the checkpointing and its entire ingredients

(data structures, protocols, etc.) would be transferred to the

MSSs so that the MHs will have no concerns about them.

Batch checkpoint request transmission which is possible is

utilized in this scheme too, thus the amount of such

messages would decrease to a considerable extent in the

system. On the other hand, since our scheme is based on

non-blocking coordinated checkpointing approaches, the

system would take a minimum number of checkpoints in

comparison with the other algorithms which are not based

on such protocols or take advantage of other approaches in

addition. Moreover, in the proposed algorithm there is no

possibility of orphan message creation since it fully

complies with the coordinated checkpointing approaches

which are orphan-free. The advantages mentioned indicate

that the proposed checkpointing scheme presents a more

practical perspective of tolerating mobile computing

systems against faults, and is also efficient and suitable for

such systems.

REFERENCES

[1] A. Acharya and B. R. Badrinath, Checkpointing distributed
applications on mobile computers, Proceedings of the Third
International Conference on Parallel and Distributed Information
Systems, 1994.

[2] S. Bhalla, Independent dependency tracking in a mobile adhoc
computing environment, First International Conference on
Communication System Software and Middleware (Comsware),
2006.

[3] G. Cao and M. Singhal, Mutable checkpoints: a new checkpointing
approach for mobile computing systems, IEEE Transactions on
Parallel and Distributed Systems, Vol. 12, No. 2, February 2001.

[4] M. Chandy and L. Lamport, Distributed snapshots: determining
global states of distributed systems, ACM Transactions on
Computing Systems, Vol. 31, No. 1,pp. 63-75, 1985.

[5] E.N. Elnozahy, L. Alvisi, Y.M. Wang, and D. B. Johnson, A survey
of rollback-recovery protocols in message-passing systems, ACM
Computing Surveys (CSUR), Vol. 34 , No. 3, pp. 375-408, 2002.

[6] E.N. Elnozahy, D.B. Johnson, and W. Zwaenepoel, The performance
of consistent checkpointing, Proceedings of Eleventh Symposium on
Reliable Distributed Systems, pp. 39-47, 1992.

[7] G.H. Forman and J. Zahorjan, The challenges of mobile computing,
IEEE Computer, pp. 38-47, April 1994.

[8] B. Gupta, S. Rahimi, R. A. Rias, and G. Bangalore, A low-overhead
non-block checkpointing algorithm for mobile computing
environment, GPC 2006, LNCS 3947, pp. 597-608, 2006.

[9] S.T. Huang, Detecting termination of distributed computations by
external agents, Proc. Ninth Int'l Conf. Distributed Computing
Systems, pp. 79-84, 1989.

[10] T. Imielinski and B.R. Badrinath, Mobile wireless computing,
Commun. ACM, Vol. 37, No. 10, pp. 18-28, Oct. 1994.

[11] R. Koo and S. Toueg, Checkpointing and rollback-recovery for
distributed systems, IEEE Transactions on Software Engineering,
Vol. 13, No. 1, pp. 23-31, 1987.

[12] L. Kumar, M. Mishra and R.C. Joshi, Low overhead optimal
checkpointing for mobile distributed systems, Proceedings of the
19th International Conference on Data Engineering (ICDE’03),
2003.

[13] T.H. Lai and T.H. Yang, On distributed snapshots, Information
Processing Letters, Vol. 25, pp. 153-158, 1987.

[14] L.M. Silva, Checkpointing mechanisms for scientific parallel
applications, Ph.D. Thesis, University of Coimbra, Department of
Computer Science, 1997.

[15] J. Yang, J. Cao and W. Wu, Efficient global checkpointing
algorithms for mobile agents, Concurrency and Computation:
Practice and Experience, Vol. 20, pp. 825-838, 2008.

0

5000

10000

15000

0.0001 0.001 0.01 0.1A
ve

ra
ge

 E
la

p
se

d
 T

im
e

 f
o

r
Ea

ch

C
h

e
ck

p
o

in
ti

n
g

P
ro

ce
ss

 (
m

ill
is

e
co

n
d

s)

Message Sending Rate

Cao and Singhal's MSS-based

Enhanced MSS-based

0

10000

20000

30000

40000

50000

0.0001 0.001 0.01 0.1

A
ve

ra
ge

 S
iz

e
 o

f
Sy

st
e

m
 M

e
ss

ag
e

s
(b

yt
e

s)

Axis Title

Cao and Singhal's MSS-based

Enhanced MSS-based

