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Abstract 
 

Semantic Textual Similarity (STS) is considered one of the subfields of natural language processing that has gained extensive 

research attention in recent years. Measuring the semantic similarity between words, phrases, paragraphs, and documents 

plays a significant role in natural language processing and computational linguistics. Semantic Textual Similarity finds 

applications in plagiarism detection, machine translation, information retrieval, and similar areas. STS aims to develop 

computational methods that can capture the nuanced degrees of resemblance in meaning between words, phrases, sentences, 

paragraphs, or even entire documents which is a challenging task for languages with low digital resources. This task becomes 

intricate in languages with pronoun-dropping and Subject-Object-Verb (SOV) word order specifications, such as Persian, due 

to their distinctive syntactic structures. One of the most important aspects of linguistic diversity lies in word order variation 

within languages. Some languages adhere to Subject-Object-Verb (SOV) word order, while others follow Subject-Verb-

Object (SVO) patterns. These structural disparities, compounded by factors like pronoun-dropping, render the task of 

measuring cross-lingual STS in such languages exceptionally intricate. In the context of low-resource languages like Persian, 

this study proposes a customized model based on linguistic properties. Leveraging pronoun-dropping and SOV word order 

specifications of Persian, we introduce an innovative enhancement: a novel weighted relative positional encoding integrated 

into the self-attention mechanism. Moreover, we enrich context representations by infusing co-occurrence information 

through pointwise mutual information (PMI) factors. This paper introduces a cross-lingual model for semantic similarity 

analysis between Persian and English texts, utilizing parallel corpora. The experiments show that our proposed model 

achieves better performance than other models. Ablation study also shows that our system can converge faster and is less 

prone to overfitting. The proposed model is evaluated on Persian-English and Persian-Persian STS-Benchmarks and achieved 

88.29% and 91.65% Pearson correlation coefficients on monolingual and cross-lingual STS-B, respectively. 
 

 

Keywords: Semantic Textual Similarity, English-Persian Semantic Similarity, Transformer, SOV Word Order Language, Pointwise 

Mutual Information 

 

1.Introduction  
 

In the realm of Natural Language Processing (NLP), 

the quest for understanding and quantifying the 

meaning encoded within textual content has been a 

central focus. A fundamental challenge in this 

pursuit is to measure the semantic similarity between 

pieces of text, which has paved the way for the 

emergence of the field of Semantic Textual  

 

Similarity (STS) analysis. STS aims to develop 

computational methods that can capture the nuanced  

degrees of resemblance in meaning between words, 

phrases, sentences, paragraphs, or even entire 

documents. This field holds substantial significance 

due to its implications across various NLP 

applications, such as information retrieval, question 

answering, machine translation, text summarization, 

and more. STS techniques play a pivotal role in 

tackling the complexities inherent in understanding 

natural language. Unlike traditional approaches that 
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often rely on syntactic or surface-level analysis, new 

STS methods delve deeper into the semantic 

underpinnings of language, striving to replicate the 

human capacity to assess and compare the meaning 

of textual content. As a result, STS holds the 

potential to enhance the capabilities of NLP systems 

by enabling them to discern not only the explicit but 

also the implicit connections between words and 

concepts. 

Over the past years, the field of STS has witnessed 

remarkable growth, driven by advancements in 

machine learning, deep learning, and the availability 

of large-scale linguistic resources. Researchers have 

explored various methodologies, ranging from 

traditional feature-based models to sophisticated 

neural network architectures, all aimed at capturing 

the intricate nuances of semantic resemblance. A 

critical turning point in the field was the 

development of pre-trained language models like 

BERT [1], GPT [2] and their multilingual variants 

like XLM-R [3], which revolutionized the way 

textual information is encoded and compared. 

Despite the wealth of literature and studies on text 

similarity in English, there is a noticeable scarcity of 

research dedicated to text similarity analysis in 

Persian. This research gap not only raises questions 

about the applicability of existing models and 

methods to Persian but also underscores the 

importance of focusing on this specific linguistic 

context. Research on Persian language Semantic 

Textual Similarity is not very vast and the provided 

results do not meet the needs. Because of this lack of 

resources, the model of the process becomes more 

important for achieving better results in low-

resource languages.  

Unlike the English language In Persian, due to the 

SOV (subject-object-verb) word order structure, the 

subject and verb have positional distance from each 

other. The spatial distance between the verb and the 

subject should not reduce the attention to the relation 

between these two key parts of the sentence. The 

transformer-based models (like BERT [1], GPT [2], 

and their multilingual variants XLM-R [3]) designed 

for languages with SVO (subject-verb-object) 

structure have not given the necessary importance to 

this linguistic feature. We focus on SOV word order 

and pronoun-dropping properties of Persian and 

present our customized model. 

In this paper, considering pronoun-dropping and 

subject-object-verb (SOV) word order specifications 

of Persian, we propose customized relative 

positional encoding in the self-attention mechanism 

and we use existing STS Benchmark datasets to train 

and evaluate the system. We take advantage of the 

XLM-R [3] model to build a pre-trained language 

model. We modify relative positional encoding and 

we inject co-occurrence information by the sentence-

level graph of the PMI (point-wise mutual 

information) factor [4]. Through empirical 

evaluations and comparisons, we demonstrate the 

efficacy of our approach in STS across diverse 

languages, emphasizing its utility in subject-object-

verb (SOV) and subject-verb-object (SVO) word 

order languages. Thus, our contribution can be 

summarized as follows:  

 We introduce a new transformer-based model 

for Persian-English and Persian-Persian 

Semantic Textual Similarity, which uses the pre-

trained XLM-R [3] model and sentence-level 

graph of PMI (point-wise mutual information).  

 We remove the machine translation phase for 

measuring Persian-English cross-lingual 

semantic textual similarity 

 We modify the Transformer encoder, 

considering pro-drop (from "pronoun-dropping") 

linguistic property and subject-object-verb word 

order of Persian. 

 We inject co-occurrence information into 

context representation by modifying weighted 

relative position encoding, which can capture 

global sub-token mutual information. 

 We conduct extensive experiments on 

benchmark Persian and English STS datasets. 

The proposed model in this research achieves 

better performances regarding other multilingual 

and deep-hybrid architectures.  

The remainder of this article is organized as follows. 

Section 2 overviews related works on semantic 

textual similarity. Section 3 describes our 

customized Transformer-based approach to STS. 

Section 4 presents datasets and experimental results. 

Finally, Section 5 gives the conclusions. 

2.Related Works 

 

The computation of similarity between short texts 

was first reported in 2006 [5]. Since then, starting 

from 2012 in the International Workshop on 

Semantic Evaluation (SemEval), the task of semantic 

similarity has expanded beyond binary similarity or 

dissimilarity to compute the degree of similarity, 

typically represented by a numerical value ranging 

from 0 to 5, for each text pair or sentence [6]. This 
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workshop includes important aspects of natural 

language processing and artificial intelligence, with 

semantic similarity being one of them. In semantic 

similarity, the degree of similarity between two 

sentences is determined, usually on a scale from 0 to 

5. Initial ideas for identifying semantic similarity 

between two sentences were based on semantic 

alignment between words in the sentences, 

ultimately leading to algebraic summations of word 

similarities [7]. However, most contemporary 

research in this field focuses on sentence-level 

semantic representation using deep learning 

techniques. Sentences are transformed into 

numerical vectors with different dimensions through 

these methods, capturing the meanings of words in 

vector spaces. Words that are closer to each other in 

this space have semantic similarities. The generation 

of word vectors is typically done using large text 

corpora. In English, due to its widespread use and 

availability of extensive text corpora, more research 

has been conducted in this area. However, for 

languages with more limited resources and corpora, 

such as Persian, research in this domain has been 

relatively scarce. Here we introduce some of the 

prominent research studies in cross-lingual and 

monolingual STS. 

Multilingual BERT [1] is a groundbreaking 

transformer-based language model that has been pre-

trained on a massive multilingual corpus. M-BERT 

has been shown to perform exceptionally well on 

various cross-lingual NLP tasks, including cross-

lingual semantic similarity. Its ability to understand 

and generate contextually rich embeddings for 

multiple languages makes it a valuable tool for 

cross-lingual applications. 

Another variant of BERT called DistilBert [8]  

leverages knowledge distillation during the pre-

training phase and shows that it is possible to reduce 

the size of a BERT model by 40% while retaining 

97% of its language understanding capabilities and 

being 60% faster. 

XLM-R [3] is an extension of M-BERT that further 

improves cross-lingual modeling. It has been pre-

trained on a vast amount of data from 100 languages 

and achieves state-of-the-art results on a wide range 

of cross-lingual NLP tasks, including semantic 

similarity. XLM-R's robustness and effectiveness in 

handling low-resource languages make it a standout 

choice for cross-lingual research. 

Tang et al. in 2018 [9] presented a model for low-

resource languages such as Spanish, Arabic, 

Indonesian, and Thai. They extended a monolingual 

semantic similarity model framework to a 

multilingual setting, demonstrating that, by 

employing a shared multilingual encoder, each 

sentence can exhibit different embeddings depending 

on the target language. 

Brychcin in [10], introduced ideas in which 

multilingual semantic spaces are aligned within a 

common space using bilingual lexicons. They 

employed unsupervised methods to calculate 

sentence similarity solely based on semantic 

embeddings. They also demonstrated that enhancing 

common semantic spaces through word weighting 

can improve results. Their findings indicated a 

Pearson correlation coefficient of 61.8% in Arabic-

English sentence pairs. 

In [11] wordnet definitions in 7 different languages 

are used to create a semantic textual similarity 

testbed to evaluate cross-lingual textual semantic 

similarity methods. A document alignment task is 

created to be used between Wordnet glosses of syn-

sets in 7 different languages. Unsupervised textual 

similarity methods Wasserstein distance, Sinkhorn 

distance, and cosine similarity—are compared with a 

supervised Siamese deep learning model. The task is 

modeled both as a retrieval task and an alignment 

task to investigate the hubness of the semantic 

similarity functions and they found that considering 

the problem as a retrieval and alignment problem has 

a detrimental effect on the results 

Pires et al. [12] conducted studies on the quality of 

multilingual BERT for cross-lingual tasks. They 

performed various experiments on diverse datasets 

using the multilingual BERT model and achieved 

promising results. In some experiments conducted 

on two different languages, cross-lingual 

embeddings for sentence pairs in certain languages, 

such as English and Japanese, exhibited relatively 

low accuracy. This reduced accuracy can be 

attributed to the differences in linguistic structures 

between the two languages. Languages like English 

follow the SVO structure, where the typical sentence 

structure consists of subject-verb-object word order. 

In contrast, languages like Persian follow the SOV 

structure, where the typical sentence structure places 

the subject first, followed by the object, and finally 

the verb, usually at the end of the sentence. 

We follow the recent trends in STS, that is, using 

Transformer based and pretrained language models. 

To the best of our knowledge, none of the previous 

Transformer based Persian STS studies considered 

SOV word order and pronoun-dropping 

specifications of the Persian language. We customize 

the self-attention mechanism. We take advantage of 
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the XLM-R [3] and also apply the linguistic 

properties of Persian in the proposed model. 

3.The Proposed  Method 
 

In this section, the methodology of our proposed 

model for Persian-Persian and Persian-English STS, 

is presented. It consists of 3 main steps, including: 

(1) tokenization, (2) sentence-level graph generation 

and incorporating customized positional encoding 

for the Persian language into the attention layer, (3) 

computing similarity of embedding vectors of texts, 

generated by SOV encoder (Persian Customized 

model for Persian) and SVO encoder (pretrained 

XML-R model for English). The related symbols 

and notations are shown in Table 1. 

 
Table 1: 

Notations 

Notation Definition 

S training sentence set 

X input sentence embedding matrix 

xj j-th element of X 

E, P English and Persian sentence embedding 

vector 

Q, K, V query/key/value matrix 

Wq ,Wk ,WV learnable query/key/value weight matrix 

zi self-attention output vector of i-th element 

A attention matrix 

     i-th row and j-th column scalar of matrix A 

ai,j weighted relative position encoding of i,j 

bj-i j-i relative position embedding 

nh the number of heads 

n the length of sentences 

Vw ,Vc word and context vocabularies 

c context word 

wi i-th word of sequence 

PMI point-wise mutual information factor  
M co-occurrence adjacency matrix 

L MSE loss function 

N Number of sentences of dataset 

 

3.1.Tokenization 
  

The proposed approach for measuring semantic 

similarity between two sentences in two different 

languages uses parallel corpora to transform them 

into a shared vector space using multilingual model 

embeddings, followed by fine-tuning for cross-

lingual semantic similarity between the source and 

target languages. While various methods exist for 

generating a shared vector space for words, there has 

been less work in creating a shared vector space for 

sentences. The proposed method leverages parallel 

corpora, mapping sentences in two different 

languages with different structures into a common 

vector space. In this paper, the XLM-R model is 

utilized for tokenization which is pre-trained on 

multilingual and English data. We employ parallel 

corpora and embedding vectors of texts, generated 

by the SOV encoder (Persian Customized model) 

and SVO encoder (pretrained XML-R model), to 

create a shared vector space between Persian and 

English and enhance the semantic richness of the 

output vectors. 

Our experimental results on tokenization of Persian 

Tests show that XLM-RoBERTa [3] in comparison 

to other multilingual tokenizers is a suitable 

pretrained tokenizer. For tokenization, we use the 

XLM-RoBERTa pretrained model which 

outperforms multilingual BERT (M-BERT) [13] on 

a variety of cross-lingual benchmarks, including 

+14.6% average accuracy on Cross-lingual Natural 

Language Inference, +13% average F1 score on 

Multilingual Question Answering, and +2.4% F1 

score on NER. XLM-RoBERTa was trained on 

2.5TB of created clean Common Crawl data in 100 

languages (including Persian language). It provides 

strong gains over previously released multi-lingual 

models like Multilingual BERT on downstream 

tasks like classification, sequence labeling, and 

question answering. XLM-RoBERTa utilized the 

Sentence-piece method [14] for sub-word 

tokenization which performs particularly well on 

low-resource agglutinative languages such as 

Persian. 
 

3.2.Sentence-Level PMI Graph Generation 
 

After tokenization process, we construct a sentence-

level heterogeneous graph from tokens. The output 

of the tokenization process is a sub-word tokens set 

with corresponding ids. To capture global tokens co-

occurrence within-corpus or dataset, first, we 

eliminate high-frequency tokens and stop words 

 so the PMI factor of them ,(… ,‘به ‘,‘از ‘,‘آن ‘,‘!‘,‘.‗)

will be zero. we build a heterogeneous text graph G 

= (V, E). The text graph contains token nodes (V) 

representing all the tokens in the corpus vocabulary. 

The text graph also contains token-token edges (E) 

which are built based on local token co-occurrence 

within sliding windows in the corpus, with edge 

weights measured by point-wise mutual information 

(PMI). As explained in 3.1, subject (at the beginning 

of the sentence) and verb (at the end of the sentence) 

are usually far from each other in SOV order 

language. We want to include their co-occurrence in 

PMI factor. Therefore, when the sliding window is at 

the beginning of the sentence, we also measure co-
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occurrence with the last words and vice versa. For 

example, if the length of the window is 4, for the 

first word, the co-occurrence with the last 3 words is 

also measured, and for the last word, the co-

occurrence with the first three words is measured. 

For measuring the co-occurrence of words, we 

calculate Pointwise mutual information. PMI is an 

information-theoretic association measure between a 

pair of discrete outcomes x and y, defined as:  
 

        , /,      PMI x y log P x y P x P y  (1) 

 

We assume a corpus of words w ∈ VW and their 

contexts c ∈ VC , where VW and VC are the word and 

context vocabularies. The words come from a textual 

corpus of words w1, w2, . . . , wn and the contexts for 

word wi are the words surrounding it in an L-sized 

window wi−L, . . . , wi−1, wi+1, . . . , wi+L. We denote 

the collection of observed words and context pairs as 

D. We use #(w, c) to denote the number of times the 

pair (w, c) appears in D. Similarly,  
 

#( ) #( , )
C

c V
w w c


  

(2) 

 

and  

 

#( ) #( , )
w

w V
c w c


  

(3) 

 

are the number of times w and c occurred in D, 

respectively. In our case, PMI(w, c) measures the 

association between a word w and a context c by 

calculating the log of the ratio between their joint 

probability (the frequency in which they occur 

together) and their marginal probabilities (the 

frequency in which they occur independently). PMI 

can be estimated empirically by considering the 

actual number of observations in a corpus:  

 

 ( , ) #( , )· / #( )·#( ) PMI w c log w c D w c     (4) 

The use of PMI as a measure of association in NLP 

was introduced by Church and Hanks [4] and widely 

adopted for word similarity tasks [15]. Working with 

the PMI matrix presents some computational 

challenges. The rows of PMI matrix contain many 

entries of word-context pairs (w, c) that were never 

observed in the corpus, for which PMI(w, c) = log 0 

= −∞. Not only is the matrix ill-defined, it is also 

dense, which is a major practical issue because of its 

huge dimensions. To solve this we set PMI(w, c) = 0 

in cases #(w, c) = 0, resulting in a sparse matrix. We 

note the matrix is inconsistent, in the sense that 

observed, but uncorrelated word-context pairs have a 

negative matrix entry, while unobserved ones have 0 

in their corresponding cell. For example, consider a 

pair of relatively frequent words (high P(w) and 

P(c)) that occur only once together. There is strong 

evidence that the words tend not to appear together, 

resulting in a negative PMI value, and hence a 

negative matrix entry. On the other hand, a pair of 

frequent words (same P(w) and P(c)) that is never 

observed occurring together in the corpus, will 

receive a value of 0. A sparse and consistent 

alternative from the NLP literature is to use the 

positive PMI (PPMI) metric, in which all negative 

values are replaced by 0:  
 

( , ) (  (w,c), 0)PPMI w c max PMI  (5) 

 

A positive PMI value implies a high semantic 

correlation of words in a corpus, while a negative 

PMI value indicates little or no semantic correlation 

in the corpus. Therefore, we only add edges between 

word pairs with positive PMI values. When 

representing words, there is some intuition behind 

ignoring negative values: humans can easily think of 

positive associations (e.g. ―دریا‖ means ―sea‖ and 

  means ―fish‖) but find it much harder to  ‖ماهی―

invent negative ones (―دریا‖ means ―sea‖ and ―بیابان‖ 

means ―desert‖). This suggests that the perceived 

similarity of two words is more influenced by the  
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positive context they share than by the negative 

context they share. It therefore makes some intuitive 

sense to discard the negatively associated contexts 

and mark them as uninformative (0) instead. Indeed, 

it was shown that the PPMI metric performs very 

well on semantic similarity tasks [16]. In particular, 

systematic comparisons of various word-context 

association metrics show that PMI, and more so 

PPMI, provide the best results for a wide range of 

word-similarity tasks [16, 17]. 

To utilize global word co-occurrence information, 

we use a fixed size sliding window on all documents 

for each sentence of NER Datasets to gather co-

occurrence statistics. After Computing PMI in all 

dataset, we create adjacency matrix below for each 

sentence. 

 
PMI( , ) , are words, PMI( , ) 0

1

0 otherwise

i j i j i j

ij

w w w w w w

M i j




 



 
 

(6) 

 
 

M is the adjacency matrix of the words of each 

sentence and (wi ,wj) are unique index of dataset 

words. Considering PMI co-occurrence factor, we 

realize three improvements in process of Persian 

language as a pro-dropping and SOV order 

language. First, considering global co-occurrence of 

pronoun subject and verb, the network is trained to 

learn the representation of the verb from sentences in 

which the pronoun is not omitted to sentences in 

which the pronoun is omitted. We realize that, by 

injecting global co-occurrence of pronoun and verb 

with PMI factor, our method improves the 

recognition of gender and singularity of verb 

(subject-verb agreement) when the pronoun is 

omitted. Second, benefiting from injected global 

word co-occurrence, presented model achieved high 

validation accuracy. Third, we considered not only 

the co-occurrence of words in the sentence, but also 

the co-occurrence in the whole dataset. Therefore, 

the model achieves stronger generalization ability to 

obtain stable performance. In Experiment section, 

we analyze the model generalization and effect of 

injecting PMI global word co-occurrence in 

recognition of semantic similarity and subject-verb 

agreement. 
 

 

 

 

3.3.Persian linguistic Properties that Affect Self-

Attention 
 

Persian has a subject-object-verb (SOV) word order 

and it is not strongly left-branching. However, 

because of pro-drop specification of Persian, the 

verb of a sentence is often not apparent until the end 

of a sentence. 

Subject and verb are key parts in expressing 

meaning of sentence and attention between them is 

very effective to generate better contextual 

representation of text. As you see in Figure 1, Unlike 

English language In Persian, subject and verb has 

positional distance with each other. If the attention 

layer does not accept the position of the whole 

sequence as input and truncates it (the subject and 

the verb are not in the same chunk), the output 

embedding vector does not contain the overall exact 

concept. In Figure 1, Examples 1-4 shows SOV 

(subject-object-verb) order of Persian compared to 

English as SVO (subject-verb-object) order 

language. Examples 2 and 3 are the same, but 

because of pro-dropping specification of Persian the 

pronoun subject in example 2 is omitted without 

changing the meaning of the sentence. According to 

these specifications of the Persian language, we 

presented our customized model. 
 

3.4.Incorporating Customized Positional 

Encoding for Text Representation 
 

Our customized model use vector embedding of 

XLM Roberta tokenization model [18] with suitable 

positional encoding for Persian language. In this 

section, we explain our approach for Persian-Persian 

and English-Persian textual similarity. In addition, 

we analyze the properties of Transformer and 

propose two specific improvements for computing 

Persian context vector. 

The first is that according to Persian language 

specification (explained in 3.3), we choose to 

consider maximum available relative position, based 

on length of sequences in learning dataset. Relative 

positional encoding [19] hypothesized that precise 

relative position information is not useful beyond a 

certain distance, Whereas in Persian as a pro drop 

language, subject and verb have distance (verb 

appears at the end of the sentence) and also they are 

semantically key parts of a sentence for generating 

whole context. Therefore, we don‘t use clipping in 

our model and we consider relative position weight 

between all tokens. 

https://en.wikipedia.org/wiki/Subject-object-verb
https://en.wikipedia.org/wiki/Left-branching_language
https://en.wikipedia.org/wiki/Pro-drop_language
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The second improvement is related to injecting point 

wise mutual information between sequence elements 

of whole corpus. We built full connected graph 

between tokens of sentences in preprocessing step as 

explained in section 3.2 and We used PMI factor in 

attention layer. The weights of relation edge between 

tokens comes from generated adjacency matrix M of 

eq. (6). In the following we formulate our 

improvement to vanilla transformer encoder [20]. 

The Transformer encoder takes input matrix X ∈ 

Rn×d, where n is the sequence length, d is the input 

embedding vector dimension. The input matrix comes 

from tokenization process of section 3.1. Then three 

learnable matrix Wq, Wk, Wv are used to project X into 

different spaces. Usually, the matrix size of the three 

matrix are all Rd×dk , where dk is a hyper-parameter. After 

that, the scaled dot product attention can be calculated by 

the following equations 

 

 

 

 

(7) 

 

where Qt is the query vector of the t‘th token, j is the 

token the t‘th token attends. Kj is the key vector 

representation of the j‘th token. The softmax is along 

the last dimension. 

We modify and supply Relative positional 

information to the model on two levels: values and 

keys. This becomes apparent in the modified self-

attention equations shown below. Customized 

relative positional information is supplied to the 

model as an additional component to the keys. We 

propose eq. (9) to propagate relative position edge 

weights which contains PMI global word co-

occurrence information. bj-i is learnable relative 

position, weighted by sigmoid of Mij (M matrix 

created in preprocessing steps, explained in section 

3.2). By eq. (10) we inject co-occurrence and 

relative position into self-attention layer as follow. 

 

1

z ( )
n

V V

i ij j ij

j

x W a


   (8) 

 

 

 

( )Q K K T

i j ij

ij

z

x W x W a
e

d




 

 
(9) 

 

 

 

 

( )ij j i ija b sigmoid M  (10) 

 

where  

 

 1,  . . . ,  nx x  are input sequence elements and 

 1,  . . . ,  znz  are vectors of attention matrix Attn 

1 1 1( ,..., ,..., )n nb b b   are vectors of position 

encoding learnable weights. bj-i represents j-i relative 

position embedding. For example, If the distance 

between two elements of the sentence is 3, b3 will be 

the vector representing this relative position 

encoding and the weights of the vector will be 

updated in the learning process at 3 relative positions 

(for a1,4). As you see in 8-10, Adding new position 

weights to key vector and multiplication with query 

vector implies more attention between corresponding 

sequence elements and also, using equation 10 

multiplication of bj-i and sigmoid(Mi,j) injects global 

word co-occurrence of i and j elements to the 

relative position encoding. In other word with this 

enhancement more co-occurrence of the sequence 

element causes more attention to relative position of 

them. The softmax operation remains unchanged 

from vanilla self-attention. For computing attention 

matrix we use  

 

1

exp

exp

ij

ij n

ij

k

e

e








 

 

(11) 

 
In order to achieve efficient implementation, eij is 

computed by eq. (12). 

 

( ) ( )Q K T Q K T

i j i ij

ij

z

x W x W x W a
e

d


  

(12) 

 

 

 

Instead of using one group of Wq, Wk, Wv, using several 

groups will enhance the ability of self-attention. When 

several groups are used, it is called multi-head self-

attention, the calculation can be formulated as follows, 

 
( ) ( ) ( ) ( ) ( ) ( ), , , , ,h h h h h h

q k vQ K V HW HW HW  (13) 

 
( ) ( ) ( ) ( )Attention( , , ),h h h hhead Q K V  (14) 
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where nh is the number of heads, the superscript h 

represents the head index. [head(1); ...; head(nh)] 

means concatenation in the last dimension. Usually 

dk × nh = d, which means the output of [head(1); ...; 

head(n) ] will be of size R n×d . Wo is a learnable 

parameter, which is of size R d×1. The output of the 

multi-head attention will be further processed by the 

position-wise feedforward networks to generate the 

text representation vector. 

The framework of our model is shown in Figure 2. 

Our model consists of a preprocessing module for 

computing PMI factor, a tokenization layer, a 

customized PMI weighted relative position encoding 

module and semantic textual similarity module. 

 

 
 

Fig.2. The framework of our model consists of a preprocessing 

module for computing PMI factor, a tokenization layer, a 

customized PMI weighted relative position encoding module 

and semantic textual similarity module. 

 

3.5.Semantic Textual Similarity 
 

After obtaining the representation vectors for each 

sentence using the proposed method in the 

architecture shown in Figure 2, the similarity 

between them in the vector space is computed by 

measuring the similarity or the inverse of the 

distance. Similarity metrics are distance metrics that 

determine the proximity or distance between two 

vectors. It is evident that similarity measures are 

inversely related to distance measures, meaning that 

the greater the similarity, the smaller the distance 

between two vectors. Various metrics are available 

for calculating distance, including Euclidean 

distance, Manhattan distance, and Minkowski 

distance, among others [21]. 

Cosine similarity is one of the most widely used 

metrics for measuring semantic similarity between 

vectors. In some articles related to semantic 

similarity detection, cosine similarity is transformed 

into angular distance. Arccos can be used for this 

purpose. Arccos converts cosine similarity into an 

angular distance that adheres to the triangle 

inequality. According to this approach, the absence 

of an angle yields better performance in detecting 

the semantic similarity between sentences compared 

to cosine similarity. Equation 16 describes how to 

calculate the similarity between two vectors, u and v, 

using Arccos [22]. 

 

 
(16) 

 

Using distance-based metrics such as Euclidean and 

Manhattan distance, we can determine the similarity 

between two vectors by taking the inverse of the 

distance. As stated in Equation 17, the Euclidean 

distance calculates the shortest distance between two 

vectors according to the Pythagorean theorem. If x 

and y are two p-dimensional embedding vectors of 

sentences, the Euclidean and Manhattan distance 

between these two sentences is expressed as 

Equation 17 and 18. 

 

 

(17) 

 

 

 

 

(18) 

 

 

3.6.Training  Algorithm 
 

Training our customized self-attention model from 

scratch is time consuming and resource intensive, 

especially in a low-resource language such as 

Persian, it causes overfitting. We overcome 

mentioned problems by using pre-training which 

allows models to be optimized quickly and prevents 

overfitting. Our model can achieve optimal 

performance quicker if a pre-trained model is used 

for generating input word embeddings. According to 

this we used word embedding of XLM-R as input 

embedding of customized model with suitable 

weighted positional encoding for Persian language 

as a SOV word order language. The proposed model 
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is trained in a mini-batch way, and we presented the 

training algorithm in revised manuscript. Embedding 

dimensions and the number of head are required 

inputs. The co-occurrence adjacency matrix is 

computed in preprocessing step. Tokenization and 

learnable parameters initialization are performed 

before training. During the training, the batch is 

sampled from STS benchmark with English and 

Translated Persian Pair texts and fed into customized 

weighted relative position Transformer encoder to 

get attention matrix and output embeddings. Then, 

the similarity module predicts the score of the STS. 

We use the STS score to compute the Mean Square 

Error (MSE) loss. Finally, the algorithm updates the 

model parameters according to the loss gradients. 

 

Algorithm 1: Training algorithm for presented model. 

 

Require: preprocessed adjacency matrix of global word 

co-occurrence M using (1-6) 

Require: training sentences set S from STS benchmark 

contains sentence pairs  

Require: embedding dimension d 

Require: number of head nh 

Require: initialize embeddings and learnable parameters 

 

for t = 1, 2, 3, … n epoch do 

           sample a train set Sbatch of size k 

           Loss ← 0  

           for (          )  in Sbatch do 

  ← compute representation of Persian text (9-

16) 

  ← compute representation of English text (9-

16) 

      ← Compute similarity score of P and E 

 ( ) ← compute MSE loss 

Loss ← Loss +  ( ) 
               Update embeddings and learnable parameters 

            end  

 

            w.r.t the gradients using  Loss 

end 

 

Output Similarity Score and Accuracy 

 

 

3.7.Parameter Settings 

 

We initialize the word embeddings with XLMR [3] 

pre-trained model. The dimensions of embeddings 

for sequence elements, relations, relative positions 

are set to 300, 128, 128, respectively. As you see 

parameter setting in Table 2, the hidden dimension 

of the self-attention layer of encoder is set at 512 

including 4 heads and dimension of each head is 

128. Random search strategy is used to find the 

optimal hyper-parameters and we use SGD with 0.9 

momentum to optimize the model. The model is 

trained in mini-batch size of 16 and we apply 

dropout at a fix rate of 0.1 to avoid overfitting. In 

addition, we use 5-fold cross-validation. we repeated 

training phase 5 times separately, each time, one of 

the 5 subsets is used as the test set and the remaining 

4 subsets are put together to form a training set. 

 
Table 2: 

 Parameters setting 

Parameters Value 

Batch size 16 

Max sentence length 512 

Learning rate 2e-5 

Momentum 0.9 

Number of epochs 50 

Number of heads 4 

Dropout rate 0.1 

 

4.Results and Discussion 
 

In this section, we present the results of our 

experiments, which demonstrate the effectiveness 

and robustness of our proposed model for semantic 

textual similarity (STS) tasks. We conducted 

comprehensive experiments on both monolingual 

and cross-lingual STS benchmarks, comparing our 

model against several state-of-the-art models. 
 

4.1.Experimental Setup 

4.1.1.Data Preparation 

 

In this study, we use the Persian evaluation 

benchmark dataset for semantic textual similarity. 

We created the dataset by translating the English 

STS benchmark (STS-B) dataset via Google Cloud 

Translation API and provided various benchmark 

results. To assess the quality of the generated model, 

we need labeled data by human experts. Since there 

is no benchmark corpus for measuring semantic 

similarity between Persian and English languages, 

we used the English STS Benchmark corpus. For 

Persian-Persian benchmark, we used machine 

translation for all samples. For Persian-English 

benchmark, we translated one side of its sentence 

pairs into Persian using a machine translation, 

allowing for model evaluation. This corpus includes 

8,628 sentence pairs along with a semantic similarity 

score ranging from 0 (lowest similarity) to 5 (highest 

similarity). It is divided into three parts: training 

(70%), validation (15%), and test (15%) datasets. 
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4.1.2.Evaluation Metrics 
 

To evaluate the output of semantic similarity system, 

metrics such as the Pearson correlation coefficient 

(PCC) [23] and Spearman rank correlation [24] are 

applicable. The goal is to calculate the correlation 

between the detected similarity by the system and 

the actual similarity. We calculate the Pearson 

correlation coefficient using Equation 19: 
 

 

 

(19) 

 

 

The above formula 𝑥𝑖 indicates the first (or 

predicted) score and  𝑖 indicate the second (or gold) 

score. x  indicates the average of first (or predicted) 

scores and    indicates the average of second (or 

gold) scores. Predicted or gold score is used in the 

testing phase. If the Pearson correlation coefficient is 

near to one, then the obtained model is more 

accurate. 
 

4.2.Comparative Experiment 
 

In this subsection, we provide a detailed analysis of 

our model's performance in both monolingual and 

cross-lingual STS tasks. We compare our results 

with those of other prominent models to showcase 

the superiority of our approach. We have trained and 

tested our model on Persian-Persian and English-

Persian STS-B. We divided each dataset into 5 equal 

subsets and used 5-fold cross-validation. we repeated 

the training phase 5 times separately, each time one 

of the 5 subsets was used as the test set, and the 

remaining 4 subsets were put together to form a 

training set. In all experiments, Pearson Correlation 

with Cosine similarity, Euclidean, and Manhattan 

distance is calculated as a metric for evaluating the 

performance of the model. 
 

4.2.1.Monolingual STS (Persian-Persian) 
 

Results of our model on Persian-Persian STS-B is 

given in Tables 3. On Persian-Persian STS-B, we 

reached 89.09% Pearson Correlation with Cosine 

similarity, 91.52% Pearson Correlation with 

Euclidean distance, and 91.65% Correlation with 

Manhattan distance. SOV Customized model 

achieved Maximum correlation with Manhattan 

distance better than XML-R, DistilBert, and M-

BERT fine-tuned models. All compared transformer-

based models obtained high cosine similarity scores, 

but in cases where there should not be high 

similarity between the sentences, they had weaker 

predictions and showed lower correlation with actual 

gold scores. 

 

 

 

 
Table 3: 

Results of our model in comparison to other models for 

Monolingual STS (Persian-Persian) on the STS Benchmark 

dataset  

Method 

Pearson 

Correlation with 

Cosine  

Similarity 

Pearson 

Correlation 

with 

Euclidean 

distance 

Pearson 

Correlation 

with 

Manhattan 

distance 

M-BERT  65.06 63.66 63.65 

M-BERT (Fine-

tuned model) 

73.77 75.34 75.37 

DistilBert 66.98 67.31 67.21 

DistilBert (Fine-

tuned model) 

72.63 74.50 75.75 

XLM-R 76.57 75.31 78.37 

XLM-R (Fine-

tuned model) 

84.57 84.11 85.68 

SOV 

Customized 
89.09 91.52 91.65 

 

As shown in Figure 3 (a), when directly adopting 

XML-R Transformer based sentence representations 

to semantic textual similarity, almost all pairs of 

sentences achieved a similarity score between 0.6 to 

1.0, even if some pairs are regarded as completely 

unrelated by the human annotators. In other words, 

the Vanilla Transformer-based sentence 

representations for SOV word order languages such 

as Persian are somehow collapsed, which means 

almost all sentences are mapped into a small area 

and therefore produce high similarity. As a result, it 

is inappropriate to directly apply XML-R native 

sentence representations for semantic matching or 

text retrieval. As shown in Figure 3 (b), the proposed 

enhancement solved this issue. The proposed 

customized model with weighted relative position 

encoding generated more accurate sentence 

representations and as a result, the predicted 

similarity was proportional to the actual similarity. 

Our method achieved low predicted cosine similarity 

in low golden similarity and higher predicted 

similarity for higher actual similarity. 
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Fig.3. (a) The correlation diagram between the gold similarity 

score (x-axis) and the XML-R model predicted cosine similarity 

score (y-axis) on the Monolingual STS benchmark (Persian - 

Persian) dataset. (b) The correlation diagram between the gold 

similarity score (x-axis) and the proposed Customized model 

predicted the cosine similarity score (y-axis) on the Monolingual 

STS benchmark (Persian - Persian) dataset. 
 

4.2.2.Cross-Lingual STS (Persian-English) 
 

Moving to cross-lingual STS, our results on the 

English-Persian STS-B dataset, shown in Table 4, 

continue to demonstrate the effectiveness of our 

model. The SOV Customized model achieved 

substantial improvements over other models, 

achieving 86.98% Pearson Correlation with Cosine 

similarity, 87.62% Pearson Correlation with 

Euclidean distance, and an impressive 88.29% 

Pearson Correlation with Manhattan distance. These 

results outshine XML-R, DistilBert, and M-BERT 

fine-tuned models, solidifying our model's position 

as a state-of-the-art solution. 
 

Table 4: 

 results of our model in comparison to other models for cross-

lingual STS (Persian-English) on the STS Benchmark dataset 

Method 

Pearson 

Correlation 

with Cosine 

Similarity  

Pearson 

Correlation 

with 

Euclidean 

distance 

Pearson 

Correlation 

with Manhattan 

distance 

M-BERT  63.88 64.03 64.11 

M-BERT (Fine-

tuned model) 

72.61 72.39 73.19 

DistilBert 65.74 65.82 66.12 

DistilBert (Fine-

tuned model) 

69.25 69.73 70.08 

XLM-R 72.02 72.85 72.28 

XLM-R (Fine-

tuned model) 

82.39 82.35 83.47 

SOV 

Customized 
86.98 87.62 88.29 

Our model's performance in the cross-lingual 

benchmark highlights its ability to effectively bridge 

the linguistic gap between SOV and SVO languages, 

such as Persian and English. These results 

emphasize the strength of our approach in capturing 

complex semantic relationships across languages. In 

the Persian-English cross-lingual case when we 

didn‘t utilize fine tuning the multilingual BERT 

model (without optimization using the parallel 

corpus), the correlation coefficient reaches 64.11%. 

However, when employing the parallel corpus, the 

correlation coefficient increases, and as the number 

of Persian-English sentence pairs in the parallel 

corpus increases, the Pearson correlation coefficient 

also rises. For instance, when we use pairs of 

Persian-English sentences from the parallel corpus 

for optimal multilingual BERT model, the 

correlation coefficient reaches 73.19%. Considering 

the linguistic features of the Persian, our model has 

reduced the distance between English and Persian 

context vectors of similar sentences. By obtaining 

88.29% correlation in cross-lingual benchmark our 

method outperforms XML-R, DistilBert and M-

BERT fined tuned models and achieved state-of-art 

results. 
 

4.3.Ablation Study 
 

To further validate the efficacy of our model, we 

conducted an ablation study. This study explores the 

impact of different components of our model on 

overall performance. As it is shown in Table 5, we 

conducted experiments on the two conditions of our 

model. Here, Basic RPE-Transformer indicates the 

Transformer model (XML-R model) which learns 

representation for each relative position within a 

clipping distance. SOV customized (suitable for 

SOV word order languages) indicates the self-

attention model which learns representation for each 

relative position in the whole sentence without 

clipping. PMI weighted SOV Customized, indicates 

the complete model that includes customization for 

SOV word order languages and injection of PMI 

factor for global word co-occurrence. As can be seen 

from the results in Table 5, SOV customization and 

PMI word co-occurrence both benefit the overall 

results and compared to the basic model, increase 

accuracy by 5.97% on Persian-Persian STS-B 

dataset and 4.82% on Persian-English STS-B 

dataset, respectively. 
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Table 5:  

Ablation study for Presented model 

 

Model 

STS-B 

Persian-

English 

STS-B 

Persian-

Persian 

Relative position encoding with 

clipping (Basic XML-R model) 
83.47 85.68 

Relative position encoding 

without clipping (SOV 

customized) 

87.91 89.01 

PMI weighted relative position 

encoding without clipping (PMI 

weighted SOV Customized) 

88.29 91.65 

 

When the model structure changes, the similarity 

scores are also different. Our method leads a 

significant improvement on cross-lingual and 

monolingual benchmarks. Reasonable explanation 

lies that, our method, despite the distance between 

subject and verb emphasizes the attention between 

them and injects PMI weighted global word co-

occurrence between words into the word embedding. 

According to this, we realize that proposed model 

generated better context embedding and as a result 

obtained more STS accuracy. 
 

4.3.1.Model Generalization 
 

Considering Persian-English STS-B dataset, Figure 

4 shows the Validation–Train Correlation curve 

under three conditions: basic model (the yellow 

curve), SOV customized (the blue curve), and PMI 

weighted SOV Customized (the red curve). Val PCC 

(Pearson correlation coefficient) and Train PCC 

indicate the model performance on validating set and 

training set respectively in the training process. 
 

 
Fig.4.Validation–Train correlation curves for different model 

conditions. 

 

 

The curves of Basic (yellow) and SOV customized 

(blue) in Figure 4 is close, indicating that they have 

similar generalization ability. The position of the red 

curve is on the upper side of the other curves, 

indicating that the Validation PCC value of complete 

model is higher under the same Train Correlation. 

Therefore, we can conclude that presented model has 

better generalization ability. Additionally, observing 

the upper right corner of Figure 4, it is obvious that 

Basic, SOV customized, and PMI weighted SOV 

Customized can reach upper and upper positions, 

respectively. It shows that the training level of the 

model is deepened in these three cases.  
 

4.3.2.Effect of PMI Weighted Relative Position 

Encoding Without Clipping 
 

Now we explore the effect of PMI weighted relative 

position encoding without clipping by presenting the 

indicators in the training process. Figure 5 shows the 

change of training loss and validation set correlation 

(accuracy) as the training epoch increases. We 

record the first 50 epochs to observe the situation 

during training. The blue curve represents the basic 

condition, and the red curve represents our model. 

Figure 5(a) shows that the training loss of our 

method is lower, and the convergence speed is faster 

during training, especially in the first 30 epochs. 

And the final training loss values are both close to 

0.05 since they are both overfitting at that time. 

From Figure 5(b), it can be seen that the validation 

set correlation of our method increased faster, and its 

final value is higher. It indicates that PMI weighted 

relative position encoding without clipping has an 

inhibitory effect on overfitting. 
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Fig.5. (a) Validation Set Correlation (b) Training loss. Indicators 

of training process with or without PMI weighted SOV 

customization. 

5.Conclusions 
 

In this paper, we presented a novel customized 

attention mechanism for generating context vectors 

of Persian texts which injected words co-occurrence 

information appropriated with the structure of the 

language. We found that, because of the linguistic 

properties of Persian, clipping in relative positional 

encoding is not suitable. We proposed fully 

connected relative position encoding, weighted by 

point-wise mutual information factor and we reached 

competitive performance in semantic textual 

similarity. An evaluation of our method on the STS-

B dataset was reported. The proposed model was 

evaluated on Persian-English and Persian-Persian 

STS-Benchmarks and achieved 88.29% and 91.65% 

Pearson correlation coefficients on monolingual and 

cross-lingual STS-B, respectively.  

Our future efforts will be in two directions. First, we 

are going to investigate a joint learning approach for 

semantic textual similarity on multilingual parallel 

STS benchmarks. Second, we want to extend our 

customized attention mechanism to cover a wider 

range of languages with distinct linguistic features 

and investigate how our approach works in other 

SOV languages such as Turkish and others. 
 

Data Availability 
STS Benchmark dataset used to support the findings of 

this study. Access links to the dataset is in the following 

Table 6. 

 

 

 

 

 

Table 6: 

 Access links to datasets 

Datas

et 

Access link 

STS-B http://ixa2.si.ehu.eus/stswiki/index.php/STSbe

nchmark  
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