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Abstract 
 

      Advanced control systems are required to maintain bicycle stability due to its unstable open-loop behaviour. This 

work is aimed at designing an optimal state feedback control system for bicycle stabilization. The performance index of 

the optimal control system is minimized using the newly developed adaptive particularly tunable fuzzy particle swarm 

optimization algorithm. The states of the system are estimated using a state observer. The obtained results are compared 

with those of the linear–quadratic regulator (LQR). The main advantage of the developed control system is that, unlike the 

LQR controller that is limited to linear systems, it can be extended to nonlinear control systems. 
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1.Introduction 
 

      Bicycles are one of the most popular ways to 

travel due to their entertainment value, 

environmental friendliness, and health benefits. 

However, the bicycles’ safety has always been an 

important issue since their debut. Novice bicyclists 

usually have difficulty controlling the bicycle due to 

unstable open-loop behavior. Therefore, bicycle 

stabilization has been a challenging problem for 

control ngineers. 
 

     A basic bicycle consists of four linked rigid 

bodies which have a symmetry plane [1]. The four 

main parts of a bicycle consists of two wheels that 

are placed behind each other, and the rear and front  

frame, to which the wheels are connected by 

revolute joints and that are interconnected by a 

vertical or inclined hinge [2]. For bicycles with more 

restricted steer rate and steer angle, the value 

iteration controller performs slightly better than the 

linear quadratic regulator (LQR) controller. For  

 

bicycles with less restrictive actuator limits, the LQR 

and value iteration controller have almost equivalent 

Basin Widths [3]. Findlay et al. Analyzed the use of 

front wheel steering input for controlling the bicycle 

roll angle [4]. Sanjurjo et al. accentuated the 

importance of roll angle in the stability of bicycles 

[5]. Using a wheel speed sensor and three angular 

rate sensors, they developed a roll angle estimator 

based on the Kalman filter. Cui et al. [6] took 

advantage of two control strategies to maintain an 

autonomous bicycle’s stability while moving. First, 

the steering angle was set to zero, and the bicycle 

stabilization was performed using a flywheel. 

Second, the flywheel was turned off, and the bicycle 

was balanced through the handlebar. Schwab et al. 

[7] have developed a model for describing bicycle 

control while steering and stabilizing a bicycle. The 

feedback gains of their control model were used to 

identify the specific optimal control linear-quadratic 

regulator (LQR) cost function.  M. Baquero-Suarez 

et al. [8] offered a two-stage observer-based 
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feedback control strategy to stabilize a riderless 

bicycle in its upright position. They assumed that the 

bicycle was moving forward at a constant speed. 

Intelligent, meta-heuristic optimization algorithms 

have been widely used to solve optimal control 

problems [9, 10]. MirMohammadSadeghi et al. have 

used four optimization algorithms to optimally tune 

PID gains of an automotive engine idle speed [11]. 

Bakhshinezhad et al. have recently developed a 

modified version of the particle swarm optimization 

algorithm (PSO) called adaptive particularly tunable 

fuzzy particle swarm optimization (APT-FPSO) 

algorithm [12]. In this algorithm, a fuzzy inference 

system updates the personal and global learning 

coefficients for each particle individually within 

each iteration. Statistical evidence has been provided 

to confirm enhanced exploitation ability of APT-

FPSO compared to the standard PSO. Many studies 

have used the APT-FPSO algorithm to surmount 

complicated engineering optimization problems   

[13, 14]. 

In this paper, an optimal control system is developed 

for bicycle stabilization. APT-FPSO algorithm 

minimizes the performance index of the optimal 

control problem in order to find the optimal state 

feedback gain. The performance index is expressed 

such that in addition to the control energy (steering 

torque) the system’s states (roll and steering angles) 

are minimized to zero (zero tracking control 

problem). The contribution of this paper is twofold. 

Firstly, the bicycle is stabilized by an optimal 

controller optimized using a metaheuristic algorithm, 

in which the states of the controlled system are 

estimated using a state observer. Second, this would 

be the first time the APT-FPSO algorithm is tailored 

to solve an optimal control problem. 

 
 

2. Modeling 
 

     Fig. 1 shows the free body diagram of the bicycle 

consisting of four rigid bodies. The front frame that 

consists the front fork and handlebar, the rear frame, 

the rear wheel, and the front wheel. The wheels in 

this model are assumed to be narrow with a zero-slip 

assumption between contact surfaces. The basic 

model of the bicycle has two degrees of freedom: the 

roll rate of rear frame ( ̇) and the steering rate ( ̇). 

Bicycle lateral motion is described by a second-order 

differential equation as follows [10].  
 

   ̈ +       ̇ +               

 



In this equation,   is forward speed and   described 

the degrees of freedom         , and   is the 

tilting torque (  ) and the handlebar torque (  ).  , 

  ,    and    are derived according to [15]. 

 

 
(a) 

 

 
(b) 

Fig. 1. The bicycle degrees of freedom. 

3. Control Systems Design 
 

     This section discusses the developed control 

system. Before proceeding to discuss the developed 

control system, the linear quadratic regulator (LQR) 

controller, the state observer, and the APT-FPSO are 

overviewed. 

 

3.1. Overview of LQR Controller 
 

     LQR is an optimal control system based on state-

space representation of a dynamical system. The 

LQR structure feeds back the full state vector, then 

multiplies it by a gain matrix K and subtracts it from 

the scaled reference. In this solution, the optimal K 

matrix is found by choosing closed-loop 

characteristics, especially how well the system 

performs, rather than finding the poles’ locations.  

As shown below, a cost function is set up that ads up 

the weighted sum of performance and the control 

effort over the entire time span. 

 

   ∫      
  

  

         
(2)  
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Where   and   are, respectively, the weight 

matrices for states and the input. The weight 

matrices   and   must be positive definite and 

positive semi-definite, respectively.  

The LQR method finds a deterministic solution for 

the above optimization problem in the form of a state 

feedback gain matrix (     ), subject to the 

system dynamics:   ̇       .   

 
 ̇          
                

 

 

(3) 

  

Where the subscripts    and    stand for open-loop 

and closed-loop, respectively. The gain matrix   is 

found to be: 

 

            (4) 

 

 

where      is the solution to the Riccati differential 

equation: 

 

                             ̇    (5) 

 

 

 In the special case of having an infinite horizon 

(    ), it can be proved that      is constant, and 

the problem then becomes an algebraic Ricatti 

equation as shown below: 

 

                              (6) 

 
 

3.2. State Observer Design 
 

Access to the internal states of a system is crucial for 

many control system applications [16]. In the state 

feedback controllers, for instance, the control effort 

is obtained by multiplying a gain matrix to the 

system’s internal states. However, in most practical 

applications, the system’s internal states are not 

accessible. By using the inputs and outputs of a 

system, a state observer estimates its internal states. 

Fig 2. depicts the block diagram of a real system and 

a state observer.  

 

 

Fig. 2. The state observer system. 

A state observer is a dynamic system with the 
following state and output equations:  
 

 ̇̂    ̂          ̂  
 ̂    ̂     

 

(7) 

 
 
where  ̂ and  ̂ are estimations of   and  , 
respectively. The gain matrix   is called Luenberger 
matrix, and      ̂  is a correction term added to 
the observer state equation. Substituting the output 
equation into the state equation of the observer and 
simplifying the resulting yield: 
 

 ̇̂    ̂            ̂      

         ̂         [
 
 ] 

 
(8) 

 
 

According to Eq. 8, the matrix [
 
 ] is the state 

observer input formed by augmenting the input and 
output of the real system. Based on Eq. 7, the error 
dynamics can be written as: 
 

 ̇   ̇   ̇̂ 
             

(9) 

 
 

Zero convergence of the estimation error entails the 
stable equilibrium point to be zero. To this end, the 
matrix L should be selected so that A-LC is stable, 
i.e., it has all the eigenvalues inside the unit circle. 
MATLAB place command can be used to find the 
matrix L that replaces the eigenvalues of A-LC with 
the observer desired poles. 
 

3.3. Overview of APT-FPSO Algorithm 
 

 

      The adaptive particularly tunable fuzzy particle 

swarm optimization (APT-FPSO) algorithm is an 

enhanced version of the Particle swarm optimization 

(PSO) with the improved exploitation ability [17]. 

Using fuzzy membership functions, this algorithm 

updates each particle's global and personal learning 

coefficients individually at each iteration.     The 

APT-FPSO algorithm steps can be described as 

follow: 

System

Observer
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1) Dedicate a random position in the search space to 
each particle: the Initialization step, 

2) Appraise the fitness of each of the particles. 

3) For each particle, compare the fitness value of the  
current position with the personal best position 
(𝑝𝑏𝑒𝑠 ). If the current value is better than 𝑝𝑏𝑒𝑠 , 
replace 𝑝𝑏𝑒𝑠  with the current position; then, for 
each of the particles, compare 𝑝𝑏𝑒𝑠  with global best 
position ( 𝑏𝑒𝑠 ). If the current 𝑝𝑏𝑒𝑠  is better than 
 𝑏𝑒𝑠 , replace  𝑏𝑒𝑠  with 𝑝𝑏𝑒𝑠 . 

4) Update the personal and global learning 
coefficients for each particle with respect to their 
normalized fitness value and iteration number. 

5) Update each particle’s position and velocity with 
respect to their 𝑝𝑏𝑒𝑠  and the  𝑏𝑒𝑠 . 

6) Repeat stages 3 to 5 until a termination criterion is 
met. 

In this algorithm, the position and velocity of the 

    particle at the     generation will be found by 

(10) and (11). 
 

 

    
    

      
 

  (01)  

 

 

    
        

      
        𝑝 

    
  

     
        𝑝 

    
    

(11) 

 

 

      Where 𝑝 
  is the personal best position of the     

particle in the     iteration, and 𝑝 
  indicates the 

global best in the     iteration. In addition,  1 and  2 

are two uniformly distributed random numbers 

within [0, 1].    ,   , 
 , and   , 

  denote, respectively, 

inertia weight, personal, and global learning 

coefficients for the     particle at the     generation 

[18]. At each iteration, the designed fuzzy inference 

system (FIS) is evaluated for each particle. The 

inputs to the FIS are              

normalized iteration (NIt) and normalized fitness 

index (NFI). These inputs are fuzzified using three 

linguistic variables and Gaussian membership 

functions (MFs). The outputs of the FIS are   , 
  and 

  , 
  that are defuzzified by five triangular MFs. For 

further elaborations on the APT-FPSO algorithm, 

please refer to [12, 19].  

 

 

 

3.4. APT-FPSO-Based Optimal State Feedback 

Control System 
 

     This section explains the development of the 

APT-FPSO-based optimal state feedback control 

system. The plant under control is a bicycle that is 

moving with a constant forward velocity. The 

problem is defined in the form of a state feedback 

control system. Thus, the control input (steering 

torque) is obtained by multiplying a gain to the 

internal states of the system and subtracting it from 

the reference input (      ̂). A state observer is 

designed to estimate the internal states of the system 

(bicycle roll and steering angles). Based on the 

plant’s and state observer’s dynamic systems, 

discussed previously, the state space representation 

of these two systems augmented together can be 

written as follows  

 

 

[
 ̇

 ̇̂
]  [

    
         

] [
 
 ̂
]  [

 
 
]   

         [
 
 ̂
]     

(12) 

 

 
  Fig. 3. APT-FPSO-based optimal state feedback control system. 
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      Fig. 3 shows the flowchart of the developed 

optimal state feedback control system. As can be 

seen, the observer estimates the internal states of the 

bicycle model. Then, the APT-FPSO algorithm finds 

the optimal feedback gain by minimizing the 

performance index. For the optimal control problem, 

a quadratic cost function is set to allow the system 

states to track zero and to minimize the control 

energy. In other words, APT-FPSO finds the optimal 

controller gains via the minimization of the 

performance index such that the estimated state of 

the system and the input control effort are 

minimized.  

 

4. Results and Discussions 
 

 

      In this section, the simulation details, in addition 

to the obtained results, are discussed. The forward 

velocity of the bicycle is set to 7 m/s. Control input 

reference is set equal to zero since the purpose of the 

control system is to maintain the internal states of 

the system at zero. Besides, the bicycle is initially 

released with five degrees of roll angle (     ). 
The observer desired poles are set equal to                      

[-4 -5 -6  -7]. Regarding the performance index of 

both the LQR controller and the developed control 

system,           and    . 

For the APT-FPSO algorithm, the size of the 

population and the maximum number of iterations 

were set to 25 and 100, respectively.  

Fig. 4. Minimization of the Cost Function Over the Number of  iterations 
 

 

      Additionally, for the decision variables                              

                 the lower and upper bounds 

were, respectively, set to be [-15-5-10-5] and [15 5 

105].                                                                                      

Fig 4. depicts the convergence of the cost value 

minimized by the APT-FPSO algorithm. As can be 

seen, the algorithm converges to the minimum value 

after 30 iterations.  

      Fig. 5 shows the response of the closed-loop 

control system. The solid green line is the ideal 

response obtained by solving the differential 

equations of motion for the system using the 

MATLAB lsim command. In practice, however, the 

states of a system cannot be obtained unless using an 

observer/estimator. The black dot-dash line is the 

observer's estimate of the state of the system. The 

observer dynamic response depends on the places of 

the observer’s desired poles. According to Figure 5, 

the controller stabilizes the bicycle by rotating the 

steering wheel in the same direction as the initial roll 

angle. The solid blue line illustrates the input control 

effort, i.e., the steering wheel torque. Besides, it can 

be seen that after 3 seconds, the controller settles the 

states to zero. The true roll angle starts from the 

initial condition      , yet the state estimator 

starts from zero and estimates the states in less than 

0.5 sec.  

 

 

Fig. 5. The Closed-Loop System Response 

       

       The developed control system is compared with 

the LQR controller in Fig 6. It can be seen that the 

designed control system settles to the equilibrium 

point more rapidly than the LQR controller. In other 

words, with regards to the states         , the 

presented method has improved the settling time 

compared to the LQR. However, this has resulted to 

more oscillations and more control energy. The 

developed control system used a meta-heuristic 
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optimization algorithm to determine the control 

input  , in contrast to the LQR controller that finds 

the optimum solution deterministically. In this sense, 

the solution offered by the developed controller may 

be deemed sub-optimal when compared to the LQR 

controller. Therefore, the developed control system 

may not outperform the LQR controller for linear 

dynamic systems when considering the control 

energy. The results of the two controllers are 

compared here to assess the performance of the 

developed control system. However, the 

performance of the LQR controller is limited to 

linear systems. Therefore, the advantage of the 

developed control system over the LQR controller 

lies in its ability to surmount control problems with 

nonlinear dynamic plants.  
 

 

 

 
 

Fig. 6. Comparison of the controller developed in this study 

 with the LQR controller. 
 

 

 

       Fig. 7 illustrates and compares the phase-plane 

diagram of the system’s states in the open-loop and 

closed-loop conditions. This diagram illustrates the 

rate of the states with respect to the states, and it is 

used to demonstrate the system’s stability. In this 

diagram, the states depart from the initial conditions, 

arrive at the zero point for stable systems, and 

diverge to infinity for unstable systems. 

Accordingly, the states of the closed-loop systems 

(solid blue and green lines) depart from the initial 

conditions and arrive at the stable equilibrium point. 

On the contrary, the states of the unstable open-loop 

system (black dot-dash line) depart from the initial 

condition but diverge towards infinity.  

 
(a) 

 

 
(b) 

Fig. 7. Phase plane diagram of the systems states. 

 

 

5. Conclusion 
 

     In this paper, we developed an optimal state 

feedback control system for bicycle stabilization. A 

state observer has been utilized to estimate the 

system’s internal states. The performance index of 

the optimal control problem was minimized using 

the newly developed APT-FPSO algorithm. The 

performance of the developed control system was 

compared with that of the LQR controller. It was 

observed that the developed control system 

successfully stabilized the unstable open-loop 

system of the bicycle. In addition, the state estimator 

could estimate the system’s state in less than 0.5 sec. 

Moreover, the controller could settle the states to 

zero (reference level) in 3 seconds.  
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The state estimator and the controller are amenable 

for real-time implementation due to their fast 

performance. Unlike the LQR controller, the 

developed control system could be extended to solve 

nonlinear optimal control problems. 
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