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Abstract 

Today, with the rise of cloud data centers, power consumption has increased and cloud infrastructure management has become 

more complex. On the other hand, meeting the needs of cloud users is an important goal in the cloud infrastructure. To solve such 

problems, an autonomous model with predictive capability is needed to do virtual machine consolidation at runtime effectively. In 

fact, using the feedback system of autonomous systems can make this process simpler and more optimized. The goal of this 

research is to propose a cloud resource management model that makes the virtual machine consolidation process autonomous, and 

by using a prediction method compromises between service level agreement violations and energy consumption reduction. In this 

research, an autonomous model is presented which detects overloaded servers in the analysis phase by a prediction algorithm. 

Also, at the planning phase, a multi heuristic algorithm based on learning automata is proposed to find proper servers for virtual 

machine placement. Cloudsim version 3.0.3 was used to evaluate the proposed model. The results show that the proposed model 

has reduced averagely the service level agreement violations, energy and migration counts by 67.08%, 11.61% and 70.64% 

respectively, compared to other methods. 

Keywords:  Autonomous, Cloud Environment, Virtual machine, Prediction, Learning automata, Service Level Agreement 

1.Introduction 

      Cloud computing is a popular computational 

pattern and an internet-based environment that data 

and applications can be shared on it. In this 

environment customers can use their required 

applications for a specified time by payment and 

thousands of networked systems can share their 

resources and access to the others [1]. Cloud 

computing proposes the resources as the services using 

virtualization technology and provides a software 

environment in the Virtual Machine (VM) format. 

Virtualization is one of the most important 

technologies that recently has affected computations 

and can execute several operating systems on a 

computer simultaneously [2, 3]. 

      When a server does not have sufficient resources 

to meet its requirements, it is named hot spot meaning 

that it is overloaded, and it needs to migrate some of 

its VMs to another server.  In addition to service level 

agreement (SLA) violation, hot spot results in an 

increment of the server temperature due to high 

processor consumption. The resulted high temperature 

leads to the increment of power consumption of 

cooling systems. Moreover, the busy processor makes 

the longer task execution time that leads to longer 

activation of the servers [4, 5]. 
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The movement process of a VM to another server is 

called migration. Live migration of VMs without 

disruption of their services or end users disruption is 

live migration that results in a minimum time of 

service not working and moves all the VM to the 

server [5]. Virtual machine migration is one of the 

prominent features of virtualization that allows to 

compensate for the lack of resources if the workload 

increases [6]. Three basic questions that should be 

answered for VM migration are as the following: 

1. Which VMs should be immigrated? 

2. Where the VMs should be immigrated? 

3. When the VMs should be migrated? [5] 

     This paper focuses on the questions 2 and 3. The 

second question is expressed in the form of virtual 

machine placement and the third question is explained 

in the form of overloaded server identification. 

In cloud data centers, overloaded servers result in load 

imbalance, and the imbalanced load reduces the 

quality of service. To remove such an overloaded 

situation, VMs should be moved from the overloaded 

servers to underloaded ones. Thus, VMs migration to 

eliminate the hot spots to guarantee the SLA of 

applications in cloud data centers is essential [7]. 

     The placement scheme of the VMs is classified to 

static and dynamic groups. In static VM placement, 

the mapping of virtual machine to physical machine is 

constant throughout the life of a virtual machine, but 

in dynamic mode it is possible to change the initial 

placement of virtual machine on physical machine for 

reasons such as system load change. Moreover, the 

dynamic VM placement algorithms are categorized 

into reactive and proactive groups. In the reactive type 

after the system reaches a specified undesired state, 

the change are applied but in the preventive mode, 

before the system reaches a specified undesired state, 

the VM’s server is changed [8]. 

     In virtual cloud environments, the main issue is that 

which server is selected for VMs placement firstly or 

where the VMs should migrate. These decisions 

should make autonomously by the management tool of 

cloud, based on the users' behavior, the users that no 

determine their VM location. Although VMs 

migration is essential for resource management of the 

cloud environment, usually, they have a high overload 

and reduce the performance of physical machines and 

network switches [9]. Such migrations, if done at too 

much and in inappropriate times, not only the 

performance of virtual machine services but also 

because of the cloud sharing environment, 

compromises the performance of other cloud virtual 

machine services [5, 10, 11]. Therefore reducing waste 

migration is an important research challenge. 

In the cloud computing environment, autonomous 

computing has attracted particular attention in recent 

years, which dynamically adapting cloud resources 

and services to changes. Indeed, the aim of 

autonomous management is to manage the cloud 

resources with minimum humans' intervention. It uses 

a MAPE-K loop commonly known as autonomous 

administrator. An autonomous administrator uses a 

knowledge base to collect monitored data from cloud 

resources, analyzes them, and generates a series of 

planned changes to run on managed cloud resources 

[12-15]. 

      To manage energy consumption and resources, the 

virtual machine consolidation problem must be solved. 

This problem itself consists of four sub-problems: (1) 

Identifying overloaded hosts; (2) identifying under-

loaded hosts; (3) migrant virtual machine selection 

from overloaded hosts; (4) virtual machine placement 

on suitable destination host [16]. This paper focuses 

on sub-problems (1) and (4). 

     This paper focuses on the problem of dynamic and 

predictive virtual machines placement in the cloud. To 

solve the problem, the autonomous administrator is 

used which apply the prediction algorithm in the 

analysis phase and learning automata algorithm in the 

planning phase to finally achieve the best possible 

trade-off between consumed energy and  SLA 

violations reduction with minimum human 

intervention while decreasing the virtual machine 

migration counts. The most important innovations of 

this paper are:  
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 Customizing an autonomic VM consolidation 

model based on the MAPE-K loop. 

 Designing a novel multi heuristics method for 

virtual machine placement  in cloud 

environment 

 Improving the performance of analysis phase 

by an ensemble prediction algorithm 

 Enhancing the flexibility of planning phase by 

learning automata algorithm 

      The paper is segmented as follows: Section 2 

briefly describes the related past works, section 3 

explains the background of the concepts used in the 

research, in section 4, the problem is formulated and 

the assumptions are stated, section 5 presents the 

proposed model along with algorithms described in 

each phase, in section 6 the proposed method is 

evaluated by CloudSim simulator and compared with 

other methods, and ultimately section 7 explains about 

conclusions and future work. 

2.Related Works 

      The on-time process of overloaded servers 

identification and virtual machine placement can 

reduce consumed energy and the number of SLA 

violations. Using IBM self-adaptive loop can make the 

process autonomous. This section reviews past works 

on the servers load prediction, virtual machine 

placement, and the use of MAPE-K loop in cloud 

resource management. Related works is divided into 

three categories: 

 

1. Physical machines load prediction methods 

2. Virtual machine placement methods 

3. MAPE-K loop models for cloud resource 

management 

 
 

2.1. Physical Machines Load Prediction Methods 

     A predictive virtual machine placement requires a 

prediction algorithm to detect overloaded servers. 

Using a proper prediction algorithm, overloaded 

servers can be identified before they cause SLA 

violations. This subsection addresses research about 

server load prediction. 

Beloglazov et al. [16] has used linear (LR) to predict 

the CPU utilization of servers in a time series method. 

The proposed method identified overloaded physical 

machines at each time interval. Xiao et al. [17] 

provided a load forecasting algorithm that predicted 

the amount of resource consumption by applications in 

the future without dealing with virtual machines. This 

paper has used exponentially weighted moving 

average method. Shaw et al. [4] presented a time 

series-based forecasting method that used simple 

exponential smoothing and double exponential 

smoothing to predict the load of physical machines. In 

this method, the current and future loads of the 

physical machine are required to identify overloaded 

physical machine.   

       Dinda et al. [18] designed a prediction software 

that predicts the future load of servers based on their 

CPU utilization history. They investigated the 

performance of some linear prediction models. 

Autoregressive (AR) has been selected as the best 

prediction model, because of low overload. Liang et al 

[19] presented a multi-source prediction model for 

server load prediction. This model predicts a server’s 

load by calculating its relationship to other sources. So 

a source behavior is almost like a source with which it 

is related. Arianyan et al. [20] has proposed a window 

moving average policy for identifying overloaded 

servers that takes into account all input criteria in the 

decision making process and decreases virtual 

machine migration event caused by sudden load 

increases.  

      The paper [21] proposed a hybrid prediction model 

for energy forecasting of virtual machines that has 

high accuracy due to the use of several forecasting 

models. Because the amount of cloud resources use 

varies dramatically, so determining a model for 

predicting cloud resource usage not only depends on 

time but also depends on trend of resource usage 

change. As a result, using hybrid prediction algorithms 

that combine multiple prediction models can be useful 

for achieving the desired goal [22]. Table 1 shows the 

comparison of server load prediction methods. Since 

the loading of physical machines fluctuates, a 

forecasting method should be used that can take into 



N.Najafizadegan et al. / A MAPE-K Loop Based Model for Virtual Machine Consolidation in Cloud Data Centers 

36 

 

account changes in the workload and predict workload 

fluctuations. Also, the accuracy of the forecasting 

method must be independent of the type of workload. 

By using only one predictive model, the probability of 

predictive error is high. The proposed forecasting 

method uses a combination of linear and nonlinear 

prediction models to predict the workload of physical 

machines and also considers the workload fluctuations 

in the forecast. 

   Table 1 

   Server load prediction methods comparison 

Method Advantages Disadvantages 

[17] Reduces the number of 

migrations and 

overloaded physical 

machines 

Using only one 

prediction model 

[16] Has little computational 

overhead 

Using only one 

prediction model 

[4] Before migrating, 

considered the current 

and future state of the 

physical machine’s load 

Due to the dynamic 

workload, it is 

difficult to 

determine the 

method parameter 

 [18] Has little computational 

overhead  

Does not take into 

account workload 

changes 

 [19] High prediction 

accuracy in both 

workstations and grid 

environment  

Inability to predict 

workload 

fluctuations 

 [20] Reduces virtual machine 

migration  

Using only one 

prediction model in 

each time interval 

 

2.2. Virtual Machine Placement Methods 

      In dynamic VM placement techniques, the server 

of the VMs can be changed during execution. In this 

section, some of the researches about VM placement 

has been reviewed. 

Basu et al. [1] used an improved genetic algorithm for 

reducing energy consumption and performing VMs 

scheduling. Hence, the servers do not become 

overloaded or underloaded. Each chromosome of the 

population considered as a server, and each VM 

assigned to a server. The VMs on the server is like the 

genes of the chromosome. Crossover and mutation 

operations were performed after the optimization 

operation to obtain task allocation results. This 

improves load balancing and resource utilization. In 

fact, this paper presents a modified genetic algorithm 

with local search optimization that reduces memory 

and power consumption, however in the evaluation of 

the algorithm, the number of VM migrations that 

results in SLA violation increment, is not investigated. 

Alharbi et al. [23] considered virtual machine 

placement in a data center as a finite hybrid 

optimization problem and used virtual and physical 

machine profile information to minimize energy 

consumption of the entire active physical machines. 

They also combined an ant colony system with new 

heuristics to present a solution for energy optimization 

problem. This paper didn’t consider SLA violation in        

       Shawa et al. [24]  focused on the improvement 

of the VM placement problem by considering the 

relation between the migrating VMs prior to 

placement. Based on the prediction results, this 

method combined the VMs which need each other to 

complete the execution, as well as improved energy 

consumption and efficiency. Furthermore, the 

processor resource and required network bandwidth of 

the migrated VMs were gained and used in VM 

placement strategy. However, this method does not 

take into account the number of virtual machines and 

amount of energy of the servers in selecting 

destination physical machine. Ghobaei et al. [22] 

presented an algorithm for VMs allocation that 

reduces energy consumption and SLA violations. The 

proposed method is based on the best fit decreasing 

algorithm which uses learning automata theory, 

correlation coefficient and group prediction algorithm 

in virtual machine allocation. This paper does not 

consider the number of VMs of servers in physical 

machine selection process. . 
 

     Farahnakian et al. [25] introduced a distributed 

system architecture that dynamically consolidate 

virtual machines to reduce data center energy 

consumption while maintaining optimum service 

quality. Also here an online heuristic ant colony 

optimization algorithm has been used. Hallawi et al. 

[26] proposed a new approach using genetic 

algorithms for virtual machine consolidation. It tries to 

find the best solutions for bin packing problem. In this 

paper SLA violation was not considered. Ferdaus et al. 

[27] provided a VM consolidation scheme that focused 

on balancing utilization of the servers' resources 



Journal of Computer & Robotics 12 (2), 2020 33-60 
 

37 
 

among different computation resources. This paper 

uses ant colony optimization and vector algebra. This 

paper did not consider the SLA violations in the 

proposed method.  
 

      Teng et al. [28] considered a batch-oriented 

consolidation and online placement for reserved VMs 

and on-demand VMs, respectively. They determined 

the most appropriate voltage frequencies that are only 

based on the type of processor to reduce energy and 

provided an upper bound of energy saving through 

DVFS techniques. Moreover for online states, an 

online time balancing heuristic method was designed 

for VM placement which is on-demand and can 

reduces transitions between modes by time balancing 

and server utilization. The proposed method saved 

energy and provided efficient SLAs but did not 

investigate the number of VMs migrations. In [16] 

Beloglazov et al. proposed a new adaptive heuristic to 

consolidate virtual machines dynamically based on 

past data analysis of VMs resource consumption. The 

proposed method reduced energy and met SLA 

requirements. This paper does not consider the number 

of VMs of servers in physical machine selection 

process. 
 

     Beloglazov et al. in [29] defined an architectural 

framework and a set of rules for energy-efficient cloud 

computing. They also provided algorithms to 

provision and allocate resources for cloud computing 

management in a way that saved energy. The 

presented method provided data center resources for 

customer applications in a way that reduced energy 

consumption while maintaining agreed service quality 

but the weights of their selection metrics are equal in 

different time intervals.  
 

      Horri et al. [30] presented a quality-aware virtual 

machine consolidation method that operated based on 

the history of VM resource utilization. This paper 

improved service quality and energy consumption, but 

does not consider the number of VMs of servers in 

physical machine selection process. Arianyan at al. 

[31]  presented a cloud resource management 

procedure as well as a multi-criteria decision-making 

method for both determination of underloaded 

physical machines and placement of migrating VMs. 

The proposed method reduced energy, SLA violations 

and migration counts but they considered equal 

weights for all considered criteria. Table 2 compares 

the related works about VM placement and Table 3 

shows advantages and disadvantage of compared 

methods. 

 
Table 2 

Objective metrics for previous VM placement methods 

Approach Objective Metrics Ref 

Migrations Energy ESV ESM SLAV 

Genetic 

Algorithm 

     [1] 

Ant Colony      [23] 

Anti-correlated 

VMP 

     [24] 

Learning 

Automata 

     [22] 

Ant Colony      [25] 

Genetic 

Algorithm 

     [26] 

ACO 

Metaheuristic 

     [27] 

TRP and OTP 

heuristics 

     [28] 

Adaptive 

heuristics 

     [16] 

Multi heuristic      [29] 

Correlation based      [30] 

Multi heuristic      [31] 

Multi heuristic 

and LA  

     Prop

osed 

 

 

Table 3 

Advantages and disadvantages of previous VM placement methods 

Ref. Advantages Disadvantages 

[1] Reduces memory and 

power consumption 

parameters 

Does not take into account 

the number of virtual 

machine migrations 

[23] Reduces energy 

consumption 

 

Does not consider SLA 

violation in evaluation 

metrics 

[24] 

 

Improves energy 

consumption 

 

does not take into account 

the amount of energy in 

server selection 

[22] Reduces energy 

consumption and SLA 

violations 

 

does not consider the 

number of VMs of servers 

in physical machine 

selection process 

[25] Reduces energy 

consumption 

 

Does not examine the 

properties of physical 

machines for selecting the 

appropriate physical 

machine. 

[26] Reduces energy 

consumption 

 

Does not consider service 

level agreement violations 

[27] Reduces power 

consumption and 

wastage of resources  

Does not consider service 

level agreement violations 
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[28] Reduces energy 

consumption and 

ensures efficient service 

level agreement 

 

Does not consider the 

number of virtual machine 

migrations 

[16] Reduces energy 

consumption and service 

level agreement 

violations 

 

Only considers one criterion 

for selecting the destination 

physical machine 

[29] Reduces energy 

consumption while 

maintaining agreed 

service quality.  

Considers equal weight for 

different selection metrics. 

[30] Improves service quality 

and energy consumption 

criteria.  

Considers equal weight for 

different selection metrics 

in different time intervals. 

[31] Reduces energy 

consumption, SLA 

violations and the 

number of virtual 

machines  

Does not detect overloaded 

physical machines 

 

 

2.3. MAPE-K Loop Models For Cloud Resource 

Management 

     Cloud resource management process can be 

autonomous by using MAPE-K loop. The following 

works each provides a model based on IBM self-

adaptive loop in the cloud computing environment. 

Singh et al. [32] proposed an autonomous energy-

aware cloud system for scheduling cloud resources in 

data centers. This paper focuses only on the energy 

and does not address the SLA violation criterion. 

Singh et al. [33] introduced an autonomous resource 

management approach that is aware of the SLA. The 

proposed method reduces SLA violations and 

optimizes quality of service parameters that are 

effective in delivering efficient cloud services but 

energy consumption reduction is not investigated. 

Singh et al. [34] presented an autonomous energy-

efficient resource scheduling framework for 

scheduling cloud computing resources in data centers. 

The proposed framework is based on fuzzy logic and 

schedules cloud computing resources to be energy 

efficient. This paper does not consider the SLA 

violations in resource scheduling. Singh et al. [35] 

introduced an autonomous resource management 

approach that is aware of quality of service, which 

configures applications and has self-optimizing feature 

to maximize resource utilization. The proposed 

method reduces cost, energy, runtime, SLA violations, 

and resource conflict. Ghobaei et al. [36] proposed a 

hybrid approach for cloud service provisioning based 

on the combination of autonomous computing and 

reinforcement learning. The paper also presents a 

framework for autonomous resource provisioning 

based on the cloud layered model. The proposed 

method has reduced costs and increased resource 

utilization but does not address energy savings and 

does not investigate VM placement. These challenges 

will be addressed in our research.  
 

       Outin et al. [37] proposed a system that uses 

genetic algorithm to optimize energy consumption. 

This paper also used machine learning technologies to 

improve the fitness function of a real distributed 

cluster of servers. The proposed method presents an 

energy model but does not address the virtual 

machines migration issue. Hadded et al. [12] proposed 

a new method to optimize autonomous management of 

service-based applications, which minimized the cost 

of autonomous administrators to prevent bottlenecks in 

management, as well as the placement cost (virtual 

machine-to-machine communication cost). This paper 

presents two algorithms. One algorithm determines the 

number of optimal autonomous managers to manage 

service-based applications, and the other, 

approximates the optimal placement of autonomous 

managers in the cloud. But this paper does not 

consider virtual machine placement in the cloud. 

Maurer et al. [38] discussed first steps towards 

revealing the current MAPE-K loops for the 

application of cloud infrastructures. It also proposes 

techniques for cloud monitoring and discusses the 

knowledge management approach, and finally 

provides solutions for managing SLA. This paper does 

not do anything about VM placement. 

All the works presented in this section were about 

using MAPE-K loop for energy management or 

resource provisioning in the cloud, and none of them 

has addressed the problem of VM consolidation. Table 

4 shows the comparison of the previous MAPE-K loop 

models for cloud resource management. 

      The three criteria of SLA violation, consumed 

energy and virtual machine migration counts are very 

important in the issue of VM consolidation. To reduce 

SLA violations, overloaded physical machines should 

be identified by predictive methods. Some of past 
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work on VM placement didn't consider both SLA 

violations and virtual machine migration counts 

metrics, or not to provide a way to determine 

overloaded physical machines. In this paper, we 

propose an autonomous VM consolidation model 

based on MAPE-K loop which in the analysis phase 

applies a weighted ensemble prediction algorithm 

consists of moving average, weighted moving average 

and polynomial regression model for overloaded 

physical machines detection. For VM placement, in 

the planning phase, physical machines will be 

investigated in the terms of energy, load, SLA 

violations and number of VMs by self-adaptive 

weights. The proposed model will be able to 

simultaneously reduce energy, SLA violations and 

number of migration counts. 

Table 4 

 MAPE-K loop-based models for cloud resource management 

Methods Advantages Disadvantages 

Singh [32] Automatically 

optimizes the 

efficiency of cloud 

resources by reducing 

energy consumption.  

Does not address 

SLA violations 

Singh [33] Reduce SLA violation 

and optimize QoS 

parameters 

Has done nothing to 

reduce energy 

consumption. 

Singh [34] Works efficiently in 

energy consumption. 

. 

Does not consider 

SLA violation 

Singh [35] Reduces cost, energy, 

runtime, SLA 

violations, and 

resource conflict  

It has not explored 

VM placement in 

reducing energy 

consumption 

Ghobaei 

[36] 

It has reduced costs 

and increased resource 

utilization 

Does not do 

anything to reduce 

energy  

Outin [37] It has presented an 

energy model. 

Does not address the 

VM migration issue 

Hadded 

[12] 

Minimized the cost of 

autonomous 

administrators and 

communication 

between virtual 

machines 

Does not do 

anything in VM 

placement  

Maurer 

[38] 

Provides a self-

adaptive loop for cloud 

applications and offers 

solutions for managing 

service level agreement  

Has not done 

anything about 

virtual machine 

placement 

 

 

3.Background 

    This section provides a brief explanation about 

autonomous computing and learning automata method. 

3.1. Autonomous Computing 

     The term autonomous computing was first used by 

IBM in 2001 to describe self-managed computing 

systems [39, 40]. An autonomous model is based on 

MAPE-K loop which includes four phases of 

monitoring, analysis, planning and execution and a 

knowledge base. Data is collected in the environment 

by sensors and provided to the monitoring phase. In 

the monitoring phase it is aggregated and given to the 

next phase for analysis. If an undesirable situation is 

identified in the analysis phase, the planning phase 

begins. In this phase, appropriate decisions are made 

autonomously to solve the problem. Finally, the 

decisions are executed in the last phase. Also all of the 

necessary data are shared in knowledge base. 

     For effective management of cloud resources, an 

autonomous model is needed to timely identify and 

respond to adverse conditions. One of the undesirable 

conditions in the cloud resource management system 

is overloading of physical machines. An autonomous 

model for virtual machine consolidation can 

anticipate, analyze, and resolve this situation by 

selecting the appropriate plans. In the monitoring 

phase, data such as CPU utilization, energy, physical 

machine features, etc. can be collected and provided to 

the analysis phase. Execution phase operations can 

also be the migration of virtual machines or shutting 

down servers. 

      In the proposed model of this paper, the data 

collected by sensors are CPU utilization, energy 

consumption and number of VMs of servers. Also, 

changes made by effectors is to migrate virtual 

machines and shut down servers. 
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3.2. Theory of Learning Automata 

      The learning automata algorithm [41] performs an 

action on the environment and receives the feedback. 

It then updates its experiences based on the received 

feedback. Finally, it chooses the best action in the next 

time period.  When learning automata selects ai in step 

i and receives a proper response from the environment, 

  ( ) will increase, and other probabilities will 

decrease. But if it takes an inappropriate response 

from the environment,   ( ) will decrease and other 

probabilities will increase. After each change, the sum 

of all probabilities is constant and equal to one. An 

appropriate answer is created by Eq. (1) and Eq. (2) 

where a is the reward parameter. 

 
         (   )    ( )   ,    ( )-                  (1)  

                                                                                        

           

         (   )  (   )  ( )                         (2)  

                

An inappropriate answer is created by Eq. (3) and Eq. 

(4) where b is the penalty parameter and r is number 

of probability. 

         (   )  (   )  ( )                                (3) 

         (   )  
 

   
 (   )  ( )                 (4)  

                                                                                       

3.3.Problem Statement and Assumptions 

        In this problem there is N server that is shown as 

S={S1, S2,,…,  Sn}. Each server has K number of 

virtual machines that are represented as V = {v1, v2,…, 

vk}. User requests are assigned to virtual machines by 

the service provider. Service level agreement is set 

between users and service providers, which determines 

the level of service quality required by users. By 

changing the user request, the workload of virtual and 

physical machines changes. Because the virtual 

machine consolidation process takes place at the IaaS 

layer, the investigated system is independent of user 

applications, and we do not consider the penalty in the 

current study. Instead, we calculate the degree of 

service level agreement violations which is the 

reflection of it. 

        When the amount of resources requested from a 

physical machine exceeds the amount of resources 

available, that physical machine will become 

overloaded. If a physical machine becomes 

overloaded, the virtual machine’s SLA is violated. 

Using the virtual machine consolidation process, a 

number of VMs of overloaded server can be migrated 

to other servers. Each physical machine has features 

such as CPU utilization, power consumption and 

number of VMs. Predicting and timely identification 

of overloaded servers and selecting suitable physical 

machines for VM placement is the problem 

investigated in this research. In other words because of 

workload changes, a dynamic VM placement is 

needed to apply suitable selection scenarios in 

different time intervals. So an autonomous VM 

consolidation model with feedback capability can 

achieve these goal. 

      The system model is based on the MAPE-K loop 

to identify overloaded servers and choose appropriate 

servers for VM placement with the aim of reducing 

SLA violations and energy consumption. In the 

autonomous model of VM consolidation, the sensors 

first collect the workload amount from each server. 

Monitor phase monitors physical and virtual machines 

status and gives the results into analysis phase. In the 

analysis phase, the load rate of each server is analyzed 

and the future rate will be predicted by using a hybrid 

prediction algorithm which uses several prediction 

models. This prediction method combines the results 

of several prediction models together and returns the 

final prediction result. If the server load exceeds a 

threshold limit, that server is designated as an 

overloaded server and the planning phase will be 

triggered. At the planning phase, using several 

heuristics and learning automata algorithm, the proper 

servers are selected for VM placement and 

underloaded servers are determined. Finally, in the 

execution phase, the immigrant VMs are migrated to 

the target destination and underloaded servers go off. 

This reduces the total energy consumption, SLA 
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violations and migration counts. The system model is 

shown in Fig. 1 As the figure shows, the self-adaptive 

feedback loop is located at the PaaS layer which 

manages physical and virtual machines at IaaS layer.  

 

 

 

 

Fig. 1.  The system model 

 

      In general, there are four situations for every 

server: normal, overloaded, underloaded and switched 

off. If the load of a server exceeds its allocated 

resources, this machine is in overloaded state. If the 

amount of resources of a server exceeds that required, 

this machine is in underloaded state. By migrating 

VMs from an overloaded server it goes to normal and 

from an underloaded goes switched off status. Fig. 2 

shows transitions between server’s states. 

 

 

Fig. 2. Server’s status 

The metrics used for proposed model formulation are 

number of SLA violations, virtual machine migrations, 

energy consumption, ESV and ESM. A violation of 

service level agreement occurs when the requests 

volume for a server exceeds the amount of its 

available resources and it is overloaded. These metric 

also are used for proposed model evaluation.  

Evaluation criteria are presented in Eq. (5), (6), (7), (8) 

and (9) based on the paper [20, 25]. SLAV describes 

the performance decline that has occurred due to 

overloaded state of servers or migration counts. 

 

                                                     (5)                                                                                                  

       SLAVO shows the percentage of times during 

which active servers had CPU utilization rates above 

100%, or the number of requests they received 

exceeded their capacity. 

 

            
 

 
 ∑

   
   

 
                                             (6)                                                                                                                          

M describes the server counts; Tsi presents the total 

time the server i had CPU utilization rates above 100% 

or were overloaded. Tai shows the total time that the 

physical machine i was active. SLAVM shows the total 

decrease in performance due to the migration of virtual 

machines. 

 

            
 

 
 ∑

   

   

 
                                           (7)                                                                                                                         

     N is the number of VMs;     shows an estimate of 

performance loss for the virtual machine j that 

occurred due to its migrations.     is the total amount 

of CPU requested by virtual machine j during its 

lifetime. 

     The combined ESV criterion is used to indicate a 

trade-off between energy consumption and service 

level agreement violation. Also ESM criterion in 

relation is used to indicate a trade-off between energy, 

SLA violations and migration counts. 
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                                              (8)                                                                                            

                                         (9)                                                                                                   

       According to the virtual machine consolidation 

process, in this study, we have divided the ESM rate 

into four parts. ESM due to the detection of 

overloaded physical machines,          ESM due to 

the immigrant virtual machine selection,        ESM 

due to the virtual machine placement,       and 

ESM due to the detection of underloaded physical 

machines,        .Our goal in this study is to 

minimize the ESM resulting from the overloaded 

servers detection and virtual machine placement. For 

      and        we have considered minimum 

migration time (MMT) method and simple method 

(SM) [16] respectively. In future research, our goal is 

to provide solutions to minimize the ESM due to 

virtual machine selection and the ESM due to the 

detection of underloaded physical machines. Eq. (10) 

shows the goal function where      is the total 

amount of ESM.  

 

                                (10)                                                                                                    

      In the analysis phase of the proposed autonomous 

model, the ESM due to the detection of the overloaded 

server and in the planning phase, the ESM due to the 

choosing appropriate physical machines for VM 

placement is minimized. 
 

4.Proposed Model 

       In this section, the proposed model will be first 

described in general and then in details by the 

algorithms used in each steps. 

     The proposed model is based on the MAPE-K loop 

that has automated the process of overloaded servers 

identification and virtual machine placement in order 

to reduce power consumption and SLA violations 

using the self-adaptive feedback loop. The proposed 

model comprises a self-adaptive feedback control 

loop, which is located in PaaS layer, and manages 

physical and virtual machines that are in bottom layer 

of the platform as a service layer. This model consists 

of four main phases and a knowledge base, each 

includes operations that are described in the following. 

      Fig.3 shows the proposed model with the 

components of feedback loop phases and the 

relationship between them. As shown in the figure, in 

the monitor phase; the amount of load, number of 

VMs, and the amount of power consumption of each 

server is monitored at specified intervals and the 

monitored information is stored in the knowledge 

base. In the analysis phase, the server load prediction 

component predicts the server load in the next time 

interval using the past workload information of the 

servers stored in the knowledge base. It then 

investigates whether the server will become 

overloaded or not in the next time period. If the 

answer is yes, then the overloaded state number of this 

server will be updated and stored in the knowledge 

base and the planning phase will be initiated. 

       At the planning phase, each server takes a score 

by using information in the knowledge base, including 

the number of times the server has become overloaded 

until current time intervals, the number of virtual 

machines available on each server, the CPU utilization 

of server and the amount of energy consumed by the 

server. To score each server, heuristics have weights 

which are updated by learning automata algorithm. 

Ultimately the best server with minimum score will be 

selected for VM placement and underloaded servers 

will be identified. During the execution phase, some of 

VMs on the overloaded server are transferred to the 

one selected at the planning phase using live migration 

operations and underloaded servers go switched off 

mode.  
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Fig. 3. Level one schema of proposed model 

 

      In the following, algorithms of each phase is 

presented. Table 5 also shows the abbreviations along 

with their definitions used in algorithms. 

 

Table 5 

 Abbreviations and definitions used in algorithms 

Definitions Abbreviations 

Total number of servers sl 

Total number of VMs vl 

Current time interval     
immigrant virtual machine list mvl 

List of overload servers os 
Server i Si 

Virtual Machine j vj 

Server load threshold                 

The amount of load of server i in the 

next time interval 
                 (  ) 

Mapping virtual machine j to server i Map (Si,vj) 

List of all virtual machine mappings 

to servers 

Map_List 

Number of  heuristic methods nh 
Chosen heuristic method ch 

Probability of choosing heuristic k P(hk) 

Weight of heuristic k W(hk) 

 

Algorithm 1 shows whole of the proposed model. At 

first, in every time interval, all physical and virtual 

machines are monitored. Using the monitored data, the 

migrant virtual machines list is returned as output of 

the analysis phase. In fact in time interval Δt the 

migrant virtual machines list is extracted from the 

overloaded servers list. Then at planning phase, based 

on the state of servers, migrant virtual machines are 

placed on the servers which are not overloaded. In line 

8, the mapping of virtual machines on servers is 

executed at execution phase. In fact, at the execution 

phase, control signals are sent to migrate virtual 

machines to appropriate servers. Also any decision 

made at the planning phase is executed at the 

execution phase like switching off underloaded hosts. 

In the following, proposed model is described into two 

parts:  

1. Monitor and analysis phase 

2. Planning and execution phase 

  

Algorithm 1: MAPE-based VM consolidation 

1: Input: Server_List sl 

2: Output: Mapping list of VMs to servers. 

3: Begin 

4:   for each time slot    do 

5:        status  Monitor the whole servers and VMs 

status at time interval    

6:       mvl  Analysis (status, sl,   )       /*Algorithm 

2*/  

7:       mappings  Plan (mvl, sl, ch, status,   )  
/*Algorithm 4*/ 

8:       status  Execute (mappings, sl,   )                 
/*Algorithm 6*/ 

9:   end for 

10: results  getFinalResults( sl,   ) 

11: return results 

12:end 

 

4.1. Monitor And Analysis Phase 

     In the monitor phase, the amount of the servers’ 

load, power and number of VMs is monitored at 

different time intervals and sent to the analysis phase. 

Our goal in the analysis phase is to minimize ESMohd 

by providing a suitable solution for timely detection of 

overloaded physical machines. ESMohd is shown in Eq. 

(11). 
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               (∑ |     
 (  )       

 (  )|
 
   )           (11)                                                                                  

      In relation 11      
 (  ) shows the amount of 

predicted CPU utilization for Si in the next time 

interval. Also      
 (  ) is the actual CPU utilization 

in the next time interval for Si. The value of      
 (  ) 

is calculated using Eq. (12). 

       
 (  )  (     

 (  )       
  (  ))                (12)                                                                                                           

 

      In this regard,      
 (  ) shows the median CPU 

utilization of the physical machine Si for previous time 

periods. Also      
  (  ) shows predicted CPU 

utilization of Si for the next time period using the 

combined forecasting method. By Eq. (13) and Eq. 

(14), the value of is      
 (  ) calculated. 

 

      
 (  )  *(   )  +

                             (13)                                                                             

       

    *   
 (  )      

 (  )      
 (  )          

 (  )+                                                                 

(14) 

      In Eq. (14), tsi shows the set of CPU utilization 

samples for Si in previous time periods and w is 

number of samples or window size. Eq. (15) shows 

     
  (  ) calculation. 

 

            
  (  )  (   

       , -
  )   (    

  

     , -
   )   (   

       , -
  )                                (15)             

                      

      A hybrid predictor is used to predict the load of Si 

in the next time period. This predictor uses moving 

average (MA), weighted moving average (WMA) and 

polynomial regression (PR) prediction models to 

predict the physical machines load in the next time 

period. Eq. (16) shows the set of predictors used. In 

the above relations,      , -
   ,      , -

    ,      , -
   

show moving average (MA), weighted moving 

average (WMA) and polynomial regression (PR) 

prediction models respectively for w CPU utilization 

samples of server i  and    
  ,   

    and   
   show 

the weight of the MA, WMA and PR forecasting 

models, respectively. 
 

   *         +                                                (16)                                                                                                               

 

        Since the forecasting models have different 

accuracy in forecasting, the Sum of Absolute Errors 

(SAE) criterion has been used to evaluate these 

predicting models. So the predictive model that has 

less SAE has more weight.  Eq. (17) shows the SAE 

calculation equation and Eq. (18) shows the SAE 

value of the prediction model l for CPU utilization 

history of server i by assuming that window size is w. 

     ∑ |   , -
 

    , -
 | 

                                        (17)                                                                                                             

    
  ∑ |     , -

      , -
 | 

                                   (18)                                                                                                                                                                             

       In the Eq. (17),    , -
 

 shows the jth prediction 

value of CPU utilization and in relation 18     
  

shows SAE of prediction model l for server i. In Eq. 

(19), Eq. (20) and Eq. (21), the weight of each 

prediction model was calculated using their SAE. 

   
   

   {    
 }     

  

    

∑ (
   {    

 }     
 

    
)  

   

                                    (19)                                                                                                                                                         
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 }     
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                                  (20)                                                                                                                                        

  
   

   {    
 }     

  

    

∑ (
   {    

 }     
 

    
)  

   

                                       (21)                                                                                                                                                     

      In the above relations     
  ,     

    and 

    
   show the SAE values of the MA, WMA and 

PR prediction models respectively for a single server 

Si. Also as shown in Eq. (22), the sum of   
  , 

  
    and   

   is equal to one. 

 

  
     

      
                                       (22)                                                                                                              
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        Analysis phase with the past data about the 

amount of servers load in the previous time intervals, 

stored in the knowledge base, and by using the 

prediction method, predict the future servers load. 

Monitor and analysis process is shown in Algorithm 2 

and Algorithm 3 shows prediction algorithm. 

      Algorithm 2 shows the analysis phase that part of it 

is associated with the prediction algorithm. In 

Algorithm 2, at the beginning, Si from sl is 

investigated. If the prediction algorithm identifies it 

overloaded, then it is added to the overloaded servers 

list. Indeed, os shows the list of all overloaded servers 

in the next time interval. In the line 9 and 10, for each 

server in the os list, the migrant virtual machines are 

selected to prevent them from being overloaded. 

Because based on the prediction models, it has been 

speculated that these servers will be overloaded in the 

next time interval. Then the selected virtual machines 

are added to the list of migrant virtual machines. 

Minimum migration time (MMT) method [16] is used 

for VM selection. Finally, this algorithm returns the 

list of migrant virtual machines as output. 

 

Algorithm 2: Host and VM analysis (Analysis phase) 

1: Input: Server List sl 

2: Output: mvl /*Migration VM List*/ 

3:   Begin 

/* Host over load detection*/ 

4:   for each server Si in sl do 

5:       if(server Si is overloaded ==true) then  

/*According to Algorithm 3*/ 

6:            os.Add(Si) 

7:       end if 

8:   end for 

/* Select immigrant VMs from overloaded hosts*/ 

9:   for each server Si in os do 

10:    mvl  mvl +Select migrating VMs from 

overloaded host Si  /*VM selection by MMT algorithm 

[16]  */  

11: end for each 

12: return mvl 

13: end 

 

      In Algorithm 3, we investigate all of the servers to 

determine whether they will become overloaded in 

future or not. This section uses a time series to predict 

the future. There is also a defined window size that 

takes into account recent times (the assumption for 

window size is 10 and each interval is 5 minutes). In 

line 11 and 12, the weight of each prediction model is 

calculated, the smaller the SAE of the prediction 

model, the greater the weight is. In line 13, the value 

of each prediction model for the next time period is 

multiplied by its weight and the sum of the results is 

calculated. Finally, the prediction result of the hybrid 

forecasting model are averaged with the median of 

load data in w past time intervals. If the result shows 

that the CPU utilization of Si exceeds a threshold, the 

state of that server is identified overloaded.  

Algorithm 3: Host overload detection with ensemble 

prediction algorithm 

1: Input: Server Si 

2: Output: Is_Overloaded 

3: Begin 

4:     ts=new timeseries() 

5:     for w = 0 to Window_Size do 

6:          ts.add(Resource_Usage_History(Si,     ) 

7:     end for 

8:     for each constituent prediction model pm
l
 do 

9:             
  ∑ |     , -

      , -
 | 

    

10: end for each 

11:    for each constituent prediction model pm
l
 do 

12:                  
  

   {    
 }     

 

    

∑ (
   {    

 }     
 

    
)  

   

 

 

            

13:                     (  )     (∑ (  
 
   

   

      , -
 )       

 (  )) 

14: end for each 

  then 15:  if (                  (  )                 ) 

16: Increase             (     )  

17:end if 

  18:return                  (  )                 

19:end 
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4.2. Planning And Execution Phase 

       If at the analysis phase, the server is detected 

overloaded for the next time interval, then the 

planning phase is triggered. This phase finds 

appropriate servers for virtual machine placement. The 

decision to choose the proper server is made at the 

planning phase. This phase uses some heuristics by 

dynamic weights to select the appropriate servers. 

Finally, with different servers, diverse decisions are 

made to choose the suitable destination server. 

Selecting the appropriate server process is shown in 

Algorithms 4 and 5. Algorithm 4 is a multi-heuristic 

virtual machine allocation method. It is a virtual 

machine placement algorithm that uses several 

heuristic methods to find the appropriate server as a 

destination for migrant virtual machines.  

        In Algorithm 4, the weight of heuristic methods is 

updated by Algorithm 5. Heuristics are algorithms that 

try to solve a problem in a semi-optimal way with a 

very simple and specific idea of their own, and their 

main advantage is their high speed because they don’t 

examine a too large state space. In this algorithm it is 

assumed that there is nh heuristics and here nh is 

considered 4. It is also assumed that each heuristic has 

a weight between zero and one (based on Algorithm 

5). At the beginning of the algorithm, the weight of all 

these heuristics is equal. So, the first step is to update 

the weight of the heuristics using the algorithm 5. In 

this phase all of the virtual machines in mvl assign to 

appropriate servers. mvl is the list of migrant virtual 

machines that have been selected in the previous phase 

using the minimum migration time method. Four 

heuristic methods are used to find a proper server, 

which are outlined in lines 8 to 12. In fact, here are 

some ideas that are applicable to assign virtual 

machines to servers to minimize energy consumption. 

The first heuristic uses classification method as it 

divides servers into several classes based on their 

number of VMs. It gives a score to every server based 

on what class it is located and finally decides whether 

this server is a suitable server for virtual machine 

placement or not. If a server is in the first or last class, 

compared to other servers, it means that it has a lot of 

or a few virtual machines, but if it is located in the 

middle classes, this server is a good destination for 

migrant virtual machines. Because a server with a 

large number of virtual machines is likely to suffer 

from overloading, on the other hand, a server with a 

very small number of virtual machines can be 

considered as an underloaded server and be shut down 

which saves energy. Therefore, a server that has an 

average number of virtual machines is suitable for VM 

placement. In fact    
   (  ) shows the VM level and 

   
   (  ) the VM class of server i in current time 

interval. A server in first or last class, gets a high 

score, which means it is not a good server to choose, 

and in fact a server is better suited for virtual machine 

placement, that has zero score. Eq. (23) and Eq. (24) 

show the first heuristic. In this relation   
   (  ) 

shows the number of VMs of server i in     time and   

shows the number of classes which is assumed 10 

here. 

              

    
   (  )    

  
   (  )    {  

   (  )}

   {  
   (  )}    {  

   (  )}

       

      (23)                                                                     

 

    
   (  )  
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   (  )    
 

 
 

                       

    (24)                                                                         

  

       The second heuristic method has been used in 

[29]. This heuristic chooses a physical machine that 

consumes less energy than other physical machines 

after virtual machine placement. The lower the energy 

consumption, the more suitable this physical machine 

is. Eq. (25) shows the second heuristic. In this relation 

  
 (    ) shows the power of server i after allocation 

of VM v in     time. 

        

      
 (  )  

  
 (    )

   {  
 (    )}

     

                                     (25)                                                                                                       
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      The third heuristic investigates physical machine’s 

CPU utilization in the current and previous time 

interval. If a physical machine has a low average CPU 

utilization, it is a better choice for placing immigrant 

virtual machines. Eq. (26) shows the third heuristic. In 

this relation   
   (  ) is the CPU utilization of server 

i in    time. 

   

   
   (  )  

  
   (  )   

   (    )

   {  
   (  )   

   (    )}

     

                    (26)                                                                                   

       Last heuristic method investigates the number of 

times that the server has become overloaded until Δt 

time, by using information stored in knowledge base. 

The overloaded state for a server indicates that the 

requests volume for this server exceeded the resources 

that it had, and ultimately the server failed to deliver 

the application QOS of its virtual machines which 

caused SLA violations. So the higher the number of 

times a server goes overloaded, the greater the 

likelihood of a violation of service level agreement is, 

and thus the server is not proper for deploying migrant 

virtual machines. Eq. (27) shows the last heuristic. In 

this relation   
  (    ) shows the number of times 

that server i has experienced overloaded state until 

   time. The heuristics set is brought in Eq. (28).    

         

      
  (  )  

  
  (  )

   {  
  (  )}

     

                                       (27)                                                                                                       

  *            +                                     (28)                                                                                                       

       In line 13 costscoreS shows the sum of 

multiplication of each heuristic method weight to its 

value. This parameter determines how well server i is 

suitable for VM v. The server with the lowest rank 

among all the servers is selected as a destination for 

migrant virtual machine. Ultimately each migrant 

virtual machine owns a server and is added to map-list. 

This map-list is returned as the output of the fourth 

algorithm.  

      After identifying the appropriate destination 

servers, it is time to determine the underloaded 

servers. To do this, all servers are sorted by their CPU 

utilization. Then servers that are not overloaded or 

destination, will be identified as underloaded servers 

based on their CPU utilization. The underloaded 

servers identification is based on Simple Method (SM) 

[16]. Finally the goal of this phase is to reduce ESMvp. 

The ESMvp relationship is given in Eq. (29). 
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Eq. (30) shows that the total weight of the heuristics is 

equal to one. 

       

 .   
   (  )/   .   

 (  )/   .   
   (  )/  

 .   
  (  )/                                                           (30) 

        

       The weights used in Eq. (28) are generated 

autonomously using the feedback capability of the 

self-adaptive model and the learning automata 

algorithm. To calculate the weights autonomously, 

first the probabilities of selecting the heuristics and 

then their weights are updating. Eq. (31) shows the 

heuristic probability updates. 

       
 (  )  

{
 
 

 
 {
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(   )   (  )                                   
             

{
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       In Eq. (31),  (  )shows the probability of 

choosing heuristic k, where nh is the number of 

heuristics and α and   are the reward and penalty 

parameters, respectively, which are obtained through 

parameter tuning. After updating the probabilities 

using the roulette wheel algorithm and generating a 

random number x, one of the heuristics is selected. 

The roulette wheel algorithm is given in Eq. (32). 

    
   

{
  
 

  
          .   

   (  )/

        .   
   (  )/   .   

 (  )/

         .   
   (  )/   .  

 (  )/   .   
   (  )/

          .   
   (  )/   .  

 (  )/   .   
   (  )/   .   

  (  )/

            

(32) 

In the above relation   .   
   (  )/ for example 

shows the probability of chosen heuristic VMC for 

server i in time     Finally, the heuristic weights is 

updated using Eq. (33). 

        

 (  )  

{
 (  )    .   (  )/                  

(   )   (  )                                       
      (33)                                               

In Eq. (33)  (  )is the weight of heuristic k and α is 

learning parameter of the algorithm. 

Algorithm 4: Proposed multi-heuristics VM allocation 

algorithm (Plan phase) 

1: Input: ch /*chosenHeuristic*/ , sl /*Server List*/, 

mvl /*Migrating VM list*/ 

2: Output: Map_List 

3: Begin 

4:Update heuristics weights by Algorithm 5 

/** Allocate migrating VMs from overutilized hosts**/ 

5:  for each VM vj in mvl do 

6:       for each Server Si in sl do 

7:                  

8:                 

   
   (  )    

  
   (  )    {  

   (  )}

   {  
   (  )}    {  

   (  )}

       

                           

9:              
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     /* 

VM level*/ 

 

10:                
 (  )  

  
 (    )

   {  
 (    )}

     

       /*Power level*/ 

11:                
   (  )  
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   {  
   (  )   
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/*Load level 

12:                  
  (  )  

  
  (  )
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  (  )}

     

                    

/*SLAV risk level*/ 

13:               
          (  )  ( .   
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) 

14:     end for each 

15:                                       

16:    Map_List  Map_List + Map (  ,vj)  

17:  end for each 

/**Turn off as much underutilized host as possible and 

add migrate their VMs**/ 

18: for each host Si in sl order by CPU utilization do 

19:    if Si was not overloaded and Si is not in 

Map_List then 

20:           update Map_List by migrating VMs in Si  

21:           sign Si as underloaded host 

22:        end if 

23:  end for each 

24:  return Map_List 

25:  end 
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      Fifth algorithm shows how the learning automata 

is applied to weight each heuristic method used in the 

fourth algorithm. The learning automata implements a 

series of operations on the environment and receiving 

feedback from it. Then rewarding and penalizing its 

operations based on the feedback it receives, also 

updating the likelihood of any operations. Based on 

the probabilities, it selects new operations and applies 

them to the environment. In the fifth algorithm, every 

heuristic method is an action and takes a weight, based 

on its probability. Different weights can be assigned to 

different heuristics based on what happens to each 

server. It makes the algorithm more flexible because it 

is not completely dependent on one heuristic and can 

autonomously behave.  

      At the beginning of the algorithm 5, if the time 

interval is initial and no heuristic has been selected 

yet, it means that there is no past and no experience, so 

the probability of selecting every heuristic, while there 

are four heuristic methods, is 0.25. Also the initial 

weights of all heuristic methods are equal. Otherwise 

at first, the feedback from the learning automata is 

assumed to be pleasing. In this algorithm, every 

physical machine that has been selected for VM 

placement in the last time interval, is examined and 

dhList shows the list of these physical machines. If a 

server has been selected for VM placement in the last 

time interval, and then in the current time interval it 

has been identified overloaded, then the feedback is 

unpleasing. Because it indicates that the algorithm's 

decision to choose this server was not right that caused 

the server to experience overloaded state.  

      If the feedback is desirable, the heuristic method 

chosen in the previous step takes reward. Therefore, 

the algorithm based on the standard learning automata 

formula adds   percentage of the probability of other 

heuristic methods to the probability of chosen heuristic 

method. Also reduces   percentage of other heuristic’s 

probabilities. But if the feedback is not desirable, it 

means that the chosen heuristic was not appropriate, so 

  percentage of the chosen heuristic probability is 

subtracted from it and   percentage of probability is 

added to the other’s probabilities. 

     After updating the probability of heuristic methods, 

based on the Roulette-Wheel-Selection algorithm, 

every heuristic method takes an area of the circle 

proportional to its probability. So a heuristic method is 

selected based on its probability. After selection,   

percent of its weight is added to its weight and for 

other heuristic methods   percent of their weight is 

subtracted from their weight. Finally at first 

probability and then the weights of the heuristic 

methods are updated based on the feedback received 

from the environment. 

Algorithm 5: LA-based Weight assignment for 

heuristics 

1: Input: ch /*Chosen Heuristic*/, nh /* number of 

Heuristics */ ,   /*reward rate*/,   /*penalty rate/ 

dhList /*Destination hosts of migrating VMs in the last 

time interval 

2: Output: Null 

3: Begin 

4:if ∆t=1 and ch==null then                 /* If there is no 

past experience*/ 

5:        (  )     ⁄            

6:        (  )     ⁄            

7:else 

8:        feedback= “pleasing” 

9:        for each host h in dhList do 

10:            if Si(∆t-1) is overloaded then          /*If host 

load exceeds host capacity*/ 

11:                   feedback= “unpleasing” 

12:           end if 

13:      if feedback is “pleasing” then            /*If host 

load doesn’t exceed host capacity*/ 

14:            (  )=  (  )    .   (  )/ 

15:           for each  (  ) in heuristics do 

16:                  if k <> ch then 

17:                        (  )   (   )   (  ) 

18:                  end if 

19:           end for each 

20:      else  

21:            (  )= (   )   (  ) 

22:           for each  (  ) in heuristics do 

23:                  if k <> ch then 

24:                            (  )= 
 

    
 (   )   (  ) 

25:                  end if 
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26:           end for each 

27:      end if 

28:  end for each 

29:      Choose Si with Roulette-Wheel-Selection 

based on its probability  

30:      (  )=  (  )    .   (  )/ 

31:      for each w(k) in heuristics do 

32:           if k <> i then 

33:                     (  )= (   )   (  ) 

34:           end if 

35:      end for each 

36:end if 

37:end 

 

     In the execution phase, migration operation will be 

done for all of the virtual machines that have been 

mapped to the appropriate server during the planning 

phase. Also, the servers that were previously found 

underloaded, go switched off. The execution phase is 

shown in Algorithm 6. 

Algorithm 6: Execution phase 

1: Input:  Map_List /*Allocation map*/ , sl /*Server 

list*/ 

2: Output: server status, VM status 

3: Begin 

4:   for each vj in Map_List do 

5:      Live migrate vj to Si in Map_List 

6:   end for each 

7:   for each server Si in sl order by CPU utilization 

do 

8:       if (sign(Si) = underloaded) then 

9:          Switch  Si to off 

10:     end if  

11: end for each 

12:end 

 

      In our proposed model, we use self-adaptive 

MAPE K loop to identify overloaded physical 

machines and place their virtual machines in 

appropriate hosts. In this model, in the analysis phase, 

the overloaded servers are identified using ensemble 

prediction algorithm and in the planning phase, the 

appropriate hosts are determined based on various 

heuristics and flexible weights. Using the ensemble 

prediction algorithm, the prediction accuracy for 

overloaded server identification will be improved. 

Also, considering different criteria with self-adaptive 

weights to select the proper hosts will reduce the SLA 

violations, energy consumption and number of VM 

migrations, compared to previous methods. In the 

following, the proposed solution is evaluated. 

 

5. Evaluation 

      In this section cloudsim [42] is employed to 

simulate the proposed approach and ten days of real 

workload from CoMon [43] project is used for 

simulation. In this workload, the CPU utilization of 

more than thousands of virtual machines has been 

collected every 5 minutes. These virtual machines are 

located on more than 500 servers scattered around the 

world. Each algorithm used in this paper has been run 

ten times by the simulator and the average of the 

results has been used for evaluation. The evaluations 

of this paper are divided into 4 categories: 

1. The analysis phase evaluation 

2. The plan phase evaluation 

3. Overall evaluation of the proposed 

autonomous model 

4. Comparison of the proposed autonomous 

model with other scenarios  

Table 6 shows the configuration of the servers used in 

this simulation. This table is based on the standard 

papers. The standard is used in AmazonEC2. 

Table 6  

Configuration of the servers used in the simulation 

Server CPU 

Model 

Cores Frequency 

(MHz) 

RAM 

(GB) 
HP ProLiant 

G4 

Intel Xeon 

3040 

2 1860 4 

HP ProLiant 
G5 

Intel Xeon 
3075 

2 2660 4 

 

     Table 7 shows the amount of energy consumed by 

all servers defined in Table 6. As can be seen, the 

power consumption of servers increases with 

increasing processor utilization. Also, different servers 

with different CPU frequencies show different power 

consumption at the same CPU utilization efficiency. 
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Table 7 

 Power consumption of servers in watts 

Server HP ProLiant G4 HP ProLiant G5 

Idle 86 93.7 

10% 89.4 97 

20% 92.6 101 

30% 96 105 

40% 99.5 110 

50% 102 116 

60% 106 121 

70% 108 125 

80% 112 129 

90% 114 133 

Full 117 135 

 

 

      Tables 8 and Table 9 show the types of virtual 

machines and the workload for different working days, 

respectively. Workloads are for 10 different days. For 

each working day the dataset shows, the number of 

VMs, the average and standard deviation of the load 

variations. 

Table 8  

Types of Virtual Machines Used in Evaluation 

VM 

Type 

High-CPU 

Medium 

Instance 

Extra 

Large 

Instance 

Small 

Instance 

Micro 

Instance 

CPU 

(MIPS) 
2500 2000 1000 500 

RAM 

(MB) 
870 1740 1740 613 

 

Table 9 

 Workload information 

Date 
Number of 

VMs 
Means (%) SD (%) 

03/03/2011 1052 12.31 17.09 

06/03/2011 898 11.44 12.83 

09/03/2011 1061 10.70 15.57 

22/03/2011 1516 9.26 12.78 

25/03/2011 1078 10.56 14.14 

03/04/2011 1463 12.39 16.55 

09/04/2011 1358 11.12 15.09 

11/04/2011 1233 11.56 15.07 

12/04/2011 1054 11.54 15.15 

20/04/2011 1033 10.43 15.21 

 

5.1. The Analysis Phase Evaluation 

      In this section, we compare the efficiency of the 

proposed prediction method with two other forecasting 

methods. One of these methods is the simple 

prediction method LR [16], and the other is a 

combined prediction method of Polynomial 

Regression (PR) and Double Exponential Smoothing 

(DES). This predictive method considers the 

maximum value of two prediction models to have SLA 

assurance. All three predictive models are examined in 

the baseline scenario MMT / PABFD / SM of [16]. 

The simulation results in Fig. 4, Fig. 5 and Fig. 6 show 

that the proposed forecasting method reduced the SLA 

violations, consumed energy and virtual machine 

migration counts respectively compared to the other 

two methods. 

 

Fig. 4. SLAV comparison of different prediction methods 

     As Fig. 4 shows, the number of SLA violations of 

the proposed method has decreased by 14.96% due to 

the correct prediction of overloaded physical machines 

compared to the LR method and by 43.54% compared 

to the PR & DES.  

     Fig. 5 and Fig. 6 show consumed energy and VM 

migration counts of proposed method and other 

methods respectively. With the timely identification of 

overloaded physical machines, the consumed energy 

of physical machines in the proposed method has 

decreased by 12.16% compared to the LR method and 

45.4% compared to the PR & DES method. Also, 

since the proposed forecasting method has largely 

prevented the  physical machines to become 

overloaded, the number of migrations of its virtual 

machines has decreased by 20.18% compared to the 
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LR method and 44.33% compared to the PR & DES 

method. 

 

Fig. 5. Consumed energy comparison of different prediction methods 

 

Fig. 6. Migration counts comparison of different prediction methods 

 

      Fig. 7 compares energy and SLAV trade-off of the 

proposed prediction method with the other two 

methods, which shows that the ESV of the proposed 

method is 25.59% lower than the LR method and 

69.44% lower than the PR & DES combination 

method. Fig. 8 also compares the trade-off of energy, 

SLAV, and number of VM migrations of the proposed 

prediction method with the other two methods. In this 

comparison, the proposed method ESM has decreased 

by 40.43% compared to the LR method and 82.95% 

compared to the PR & DES. 

 

Fig. 7. ESV comparison of different prediction methods 

 

 

Fig. 8. ESM comparison of different prediction methods 

     Table 10 shows the average results of comparing 

the proposed prediction method with other methods in 

10 working days in terms of SLA violations, energy, 

migration counts, and ESV and ESM metrics. 

Table 10 

 Average results on the prediction proposed method and 

other methods for all workload days 
Method/

Metrics 

Energy SLA 

Violation 

×10-5 

Migration 

Counts 

ESV 

×10-3 

ESM 

LR 161.87 

 

4.974 

 

28174.7 

 

7.95399

7 

 

228.0

389 

 

Max(DES 

and PR) 

260.415 

 

7.492 

 

40401.8 

 

19.3656

4 

 

796.6

999 

 

Proposed 142.184 

 

4.23 

 

22490.1 

 

5. 

 

135.8

405 
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5.2. The Plan Phase Evaluation 

     In this section, the efficiency of the proposed 

virtual machine placement method is compared with 

PABFD [16] and TOPSIS [31] methods. PABFD uses 

power metric for VM placement and TOPSIS is multi 

heuristics method for VM placemen without flexible 

weights. Fig. 9, Fig 10, and Fig. 11 show the results of 

the proposed method comparison with the other two 

methods in terms of SLA violations, energy and 

number of migrations respectively. 

 

Fig. 9. SLAV comparison of different VM placement methods 

 

Fig. 10. Energy comparison of different VM placement methods 

 

Fig. 11. Migration counts comparison of different VM placement methods 

     The simulation results show that the proposed 

virtual machine placement method using flexible 

weights was able to reduce SLA violations, energy 

consumption and the number of migrations compared 

to PABFD by 33.96%, 14.57% and 39.67% 

respectively. Compared to the second method, the 

proposed method has significantly reduced the number 

of violations of the service level agreement by 52.28% 

and number of migrations by 52.6%, but the energy 

consumption rate compared to this method has 

increased by 1.17%. 

      Fig. 12 shows the amount of compromise between 

energy and SLA violations in all three methods. Also, 

the amount of compromise between the three criteria 

of energy, SLA violations and number of migrations is 

shown in Fig. 13. 

 

Fig. 12. ESV comparison of different VM placement methods 

0

2

4

6

8

10

12

S
L

A
V

(×
1

0
-5

) 

PABFD TOPSIS Proposed

0

50

100

150

200

250

E
n

er
g
y
(k

W
h

) 

PABFD TOPSIS Proposed

0

10000

20000

30000

40000

50000

N
u

m
b

er
 o

f 
m

ig
ra

ti
o

n
s 

PABFD TOPSIS Proposed

0

2

4

6

8

10

12

E
S

V
(×

1
0

-3
) 

PABFD TOPSIS Proposed



N.Najafizadegan et al. / A MAPE-K Loop Based Model for Virtual Machine Consolidation in Cloud Data Centers 

54 

 

 

Fig. 13. ESM comparison of different VM placement methods 

      The results of the comparison show that the 

proposed virtual machine placement method was able 

to establish a better trade-off between the criteria of 

SLA violations and energy, as well as SLA violations, 

energy and number of migrations. So that the ESV of 

the proposed method has decreased by 44.05% 

compared to the PABFD and 51.85% compared to the 

TOPSIS. Also, the ESM of the proposed method was 

65.94% lower than the PABFD and 76.93% lower than 

the TOPSIS method. 

      Table 11 shows the average results of comparing 

the proposed VM placement method with other 

methods in 10 working days in terms of SLA 

violations, energy, migration counts, and ESV and 

ESM metrics. 

Table 11 

 Average results on the proposed VM placement method 

and other methods for all workload days 

Method/Metrics SLA 

Violation 

×10-5 

Energy Migration 

Counts 

ESV 

×10-

3 

ESM 

PABFD 4.974 

 

161.87 

 

28174.7 

 

7.95 

 

228.0

4 

 

TOPSIS 6.88 136.69 35859.51 9.24 

 

336.7

5 

Proposed 3.28 138.29 16998.43 4.45 77.67 

 

5.3. Overall Evaluation Of The Autonomous Model 

      In this section, the values of parameters a and b are 

set for the learning automata algorithm used in 

Algorithm 5 and a three-dimensional diagram is used 

to illustrate it. In this chart the ESM value is inverted 

to find the maximum value as the best value. As 

shown in Fig. 14, the highest point in this graph, is the 

lowest ESM value. The value of both parameters at 

this point is 0.03. These values are used to evaluate the 

proposed method. 

 

Fig. 14. 1/ESM results for tuning parameters a and b in the applied LA 

algorithm 

 

      Fig. 15 shows the use of different heuristic 

methods for different working days. The horizontal 

axis shows the working days and the vertical axis 

indicate the rate of heuristic methods use, and for each 

working day the total rate for using different heuristic 

methods is 100%. As the graph shows, for example, in 

the working day 9.Apr, the heuristic based on power 

level allocated itself about 30% of the total use of 

heuristic methods, while on this working day 

importance of the heuristic based on load level was 

less than 20%, but the same heuristic in the 6.Mar 

working day allocated itself over 30% of the total 

heuristic methods. This difference in the rate of use of 

different heuristics justifies the idea of using several 

different heuristics and weighing them. Because if all 

of the heuristics had been used equally throughout the 

working days, the use of the autonomous weight 

adjustment algorithm would not have been logical. So 
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different heuristics can have different functions and 

the proposed model using learning automata algorithm 

can apply heuristics with proper proportions at 

different time intervals. 

 

Fig. 15. Different rates of heuristic methods used for different workload 

days 

      Fig. 16 shows the violations of the service level 

agreement (×10
-5

) for all virtual machines and for the 

3.Mar workload day with the dotted graph. This chart 

shows the distribution of overall service level 

agreement violations for one working day. The reason 

for showing SLA violations is to show whether the 

violations in the proposed method has improved 

uniformly or a lot of virtual machines may have a very 

high level of service level agreement violations. As 

shown in Fig. 16 and Table 9, there are 1052 virtual 

machines for that day of workload. Each dot in this 

chart represents a virtual machine in data-set. The 

horizontal axis is the number of virtual machines and 

the vertical axis is overall SLAV value for every VM. 

Fig. 16 shows that SLA violations are below 2% for 

most of virtual machines, indicating that the proposed 

method was successful to place most virtual machines 

in the appropriate destination servers to avoid high-

level SLA violation, and there are only a few virtual 

machines whose level of SLA violations are up.  

 

Fig. 16. Distribution of Virtual Machines on Service Level Agreement Violation 

for Workload day 20110303 in Proposed Method 

5.4. Comparison Of The Proposed Autonomous Model 

With Other Scenarios  

     In this section, the proposed method, which 

includes all the steps of monitoring, analysis, planning 

and execution in the MAPE-K control loop, is 

compared with four basic methods. We consider 4 

scenarios to do an efficient evaluation of the proposed 

method. The descriptions of scenarios are brought 

in Table 12.   

Table 12 

 Details of basic algorithms for virtual machine consolidation 

Algorithm names Description 

LR/MMT/PABFD/SM 

LR policy for detecting overloaded hosts; 

MMT policy for VM selection; PABFD for 

VM placement; SM policy for detecting 

underloaded hosts [16] 

LR/MMT/TOPSIS/SM LR policy for detecting overloaded hosts 

[16]; MMT policy for VM selection [16]; 

TOPSIS for VM placement [31]; SM policy 

for detecting underloaded hosts [16] 

MAD/MMT/PABFD/SM 

MAD policy for detecting overloaded hosts 

[16]; MMT policy for VM selection; 

PABFD for VM placement; SM to detect 

underloaded hosts [16] 

LR/MU/TOPSIS/MDL 

LR policy for detecting overloaded hosts 

[16]; MU policy for VM selection [16]; 

TOPSIS for VM placement [31]; MDL 

policy for detecting underloaded hosts [31] 

Fig. 17 compares the number of SLA violations of the 

proposed method with the other four scenarios. The 

results show that due to the timely forecasting of 

overloaded physical machines and taking into account 

criteria such as the number of virtual machines, CPU 

utilization and the number of overload status times of 

hosts in the proposed method, the number of SLA 

0%

20%

40%

60%

80%

100%

H
eu

ri
st

ic
s 

p
ro

p
o

rt
io

n
 

VM Level Power Level Load Level SLA Level



N.Najafizadegan et al. / A MAPE-K Loop Based Model for Virtual Machine Consolidation in Cloud Data Centers 

56 

 

violations compared to LR / MMT / PABFD /SM, LR 

/ MMT / TOPSIS / SM, MAD / MMT / PABFD / SM 

and LR / MU / TOPSIS / MDL decreased by 64.14%, 

74.11%, 46.76% and 83.31%, respectively. 

 

Fig. 17. SLA violation comparison of different VM consolidation methods 

 

       Fig. 18 compares the amount of energy consumed 

in the proposed method with the other four scenarios. 

Since the proposed method has been able to identify 

overloaded physical machines well and also place 

virtual machines on hosts with lower power 

consumption, the power consumption in the proposed 

method compared to LR / MMT / PABFD / SM, LR / 

MMT / TOPSIS / SM, MAD / MMT / PABFD / SM 

and LR / MU / TOPSIS / MDL scenarios decreased by 

15.86%, 0.37%, 25.78% and 4.42%, respectively. 

 

Fig. 18. Energy Consumption comparison of different VM consolidation 

methods 
 

      Fig. 19 compares the number of VM migrations of 

the proposed method with the other four scenarios. 

Because the proposed method largely prevents 

physical machines to become overloaded and correctly 

identifies overloaded physical machines, it has been 

able to reduce the futile migration of virtual machines. 

The results show that the number of virtual machine 

migrations in the proposed method compared to LR / 

MMT / PABFD / SM, LR / MMT / TOPSIS / SM, 

MAD / MMT / PABFD / SM and LR / MU / TOPSIS / 

MDL scenarios decreased by 67.05%, 74.11%, 64.7% 

and 76.7%,  respectively. 

 

Fig. 19. Number of VM Migrations comparison of different VM 

consolidation methods 

 

      Fig. 20 and Fig. 21 compare the ESV and ESM 

rates of the proposed method with other four 

scenarios. The comparison results show that the 

proposed method was able to make a very good trade-

off between energy consumption, the number of SLA 

violations and the number of virtual machine 

migrations. 
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Fig. 20. ESV comparison of different VM consolidation methods 

 

Fig. 21. ESM comparison of different VM consolidation methods 

 

       As shown in Fig. 17, Fig. 18 and Fig. 19, due to 

the reduction of all three criteria, number of SLA 

violations, energy and the number of VM migrations, 

the ESV rate of the proposed method compared to LR 

/ MMT / PABFD / SM, LR / MMT / TOPSIS / SM, 

MAD / MMT / PABFD / SM and LR / MU / TOPSIS / 

MDL decreased by 70.35%, 74.49%, 61.11% and 

84.26%, respectively. Also, the ESM rate in the 

proposed method compared to LR / MMT / PABFD / 

SM, LR / MMT / TOPSIS / MDL, MAD / MMT / 

PABFD / SM and LR / MU / TOPSIS / MDL 

decreased by 90.11%, 93.3%, 86.03% and 96.28%, 

respectively. 

       Table 13 shows the average results of comparing 

the proposed total method with other methods in 10 

working days in terms of SLA violations, energy, 

migration counts, and ESV and ESM metrics. The 

results show that the proposed method has shown 

better results than the compared scenarios in all 

metrics. 

Table 13 

 Average results on the proposed method and other methods for all 

workload days 

Method/

Metrics 

SLA 

Violation 

×10-5 

Energy Migration 

Counts 

ESV 

×10-3 

ESM 

LR/MMT/

PABFD/S

M 

4.97 

 

161.87 

 

28174.7 

 

7.95 

 

228.0

4 

LR/MMT/

TOPSIS/S

M 

 

6.88 136.69 35859.51 9.24 336.7

5 

MAD/M

MT/PABF

D/SM 

 

3.35 183.49 26305.1 6.06 161.4

6 

LR/MU/T

OPSIS/M

DL 

 

10.68 142.49 39855.27 14.98 607.2

7 

Proposed 1.78 136.19 9284.23 2.36 22.55 
    

   Table 14 and Table 15 present the results of paired t‐
test for ESV and ESM. The Mean, standard deviation 

and p-value differences between the proposed and 

compared methods are calculated. Because the results 

of test shows that p is less than 0.05 in all cases, so the 

difference between proposed method and other 

methods is meaningful. It means that more than 95% 

the proposed method behaves better than others. 
 

Table 14  

Statistical analysis for ESV 

Baseline Algorithm Mean Std. 

Deviation 

p-value 

LR/MMT/PABFD/SM 5.595925 0.790410 3.3502E-

9 

LR/MMT/TOPSIS/MDL 6.884898 0.891624 1.5517E-

9 

MAD/MMT/PABFD/SM 3.705292 0.702254 4.4604E-

8 

LR/MU/TOPSIS/SM 12.623966 1.748975 2.8231E-

9 
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Table 15 

 Statistical analysis for ESM 

Baseline Algorithm Mean Std. 

Deviation 

p-value 

LR/MMT/PABFD/SM 205.48340

6 

62.040292 0.00000

2 

LR/MMT/TOPSIS/MDL 314.20017

2 

87.454274 0.00000

1 

MAD/MMT/PABFD/S

M 

138.90345

6 

38.691180 0.00000

1 

LR/MU/TOPSIS/SM 584.71344

2 

170.47114

0 

0.00000

2 

 

6.Conclusions and Future Works 

      With the increasing growth of cloud data centers, 

the energy consumption of these data centers is also 

increasing. Analyzing the load status of servers and 

examining different scenarios for selecting the 

appropriate server to be deployed by the virtual 

machine is a difficult process for the human factor. To 

solve such problems, an autonomous model with 

predictive capability is needed to effectively deploy 

virtual machines to the suitable servers at runtime. In 

fact, using the feedback system of autonomous 

systems can make this process simpler and more 

optimized. This paper presents a model based on the 

MAPE-K control loop for autonomous virtual machine 

consolidation. The proposed model uses an ensemble 

prediction algorithm for identifying overloaded 

servers. Also learning automata algorithm and a 

combination of several heuristic methods are used to 

select the appropriate destination servers for deploying 

virtual machines. The simulation results show that the 

proposed method has reduced averagely the service 

level agreement violations, energy and VM migration 

counts by 51.54%, 16.64 and 50.24 respectively, 

compared to other methods. In the future, 

reinforcement learning will be used for VM placement 

and autonomous selection of immigrant virtual 

machines will also be presented. 
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