
Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 61-78

61

Layered Defect Prediction Model for Software Product Lines Using

Feature Fusion and Ensemble Classification

Mehdi Habibzadeh khameneha b, Akbar Nabiollahi-Najafabadia b *, Reza Tavoli , Hamid Rastegaria b

 Received 22 April 2025, Accepted 29 June 2025.

Abstract
Software defect prediction in Software Product Lines (SPLs) presents significant challenges due to high-dimensional feature

spaces and intricate feature dependencies. We introduce a novel three-layered framework that integrates (1) optimal feature

selection using six metaheuristic algorithms (HHO, ACO, GWO, GA, PSO, WOA), (2) feature fusion to create a unified and

enriched feature representation, and (3) a stacked ensemble classifier comprising KNN, Decision Tree, Naive Bayes, and

XGBoost. Unlike prior studies that rely on single optimization or classification models, our approach combines multiple

optimizers and learners in a synergistic pipeline, enhancing generalization and robustness. The proposed method was rigorously

evaluated on benchmark datasets from NASA (CM1, JM1, KC1, PC1) and the Linux Variable Analysis Tools (LVAT)

repository (LTS1, LTM2, LTL3, LTV4). It achieved 98.62%, 97.81%, 98.59%, and 98.71% accuracy rates on the NASA

datasets and 95.1%, 94.2%, 97.3%, and 99.4% on the LVAT datasets, respectively. These results demonstrate that the proposed

approach consistently outperforms existing methods across diverse SPL scenarios.

Keywords: Software Product lines, Defect Prediction, Metaheuristic Algorithms, Ensemble Learning, Feature Fusion

1.Introduction

Software Product Lines (SPLs) aim to reuse software

assets systematically to derive diverse product

variants. However, managing the inherent variability

and maintaining product consistency poses significant

challenges, especially during feature selection and

configuration [1]. In software product line

engineering, Feature Models (FMs) are commonly

employed to represent the variability and

commonality within a family of software products

[2]. A tertiary study categorizes approaches to

managing variability in SPLs into three main types:

Feature Models (FM), Orthogonal Variability Models

(OVM), and Decision Models (DM). Among these,

this study focuses on FMs, the most recognized and

widely used method for variability modeling [3]. FMs

incorporate various constructs, such as Optional and

mandatory features, to Determine whether a feature

must always be present in a product. Alternative

("xor") and selection ("or") groups Govern exclusive

feature selections and permissible feature

combinations. Constraints (requires/excludes):

Specify dependencies or incompatibilities between

features [4]. Without automated support, the feature

selection process is often inefficient and error-prone.

It involves satisfying multiple, sometimes conflicting,

objectives, such as aligning with user preferences,

minimizing product costs, and adhering to technical

feasibility constraints. This challenge is compounded

in feature spaces with thousands of features, where

human intuition alone is inadequate to identify

a Faculty of Computer Engineering, Najafabad branch, Islamic Azad University, Najafabad, Iran
b Big Data Research Center, Najafabad branch, Islamic Azad University, Najafabad, Iran

c Department of Computer Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran

*Corresponding Author. Email: a.nabi@pco.iaun.ac.ir

M. Habibzadeh khameneh. et al / Layered Defect Prediction Model for Software Product Lines Using Feature Fusion and

Ensemble Classification

62

optimal or near-optimal software product

configurations. Automated techniques for feature

selection have been developed [5] to address these

complexities. Recent advances [6, 7] have similarly

explored the use of metaheuristics in combination

with deep learning, highlighting the growing trend

toward hybrid approaches and reinforcing the

rationale. In this paper, the proposed approach

comprises three layers: The first layer preprocesses

the Data set and utilizes meta-heuristic algorithms to

extract an optimal subset of features. In the second

layer, these selected features are fused to form an

integrated feature set, which is then forwarded to the

third layer. In this final layer, stacking-based

ensemble learning techniques are employed to

enhance the performance of product defect detection.

The proposed methodology was validated through

simulation experiments on eight Data sets: four from

NASA and four from the Linux Variable Analysis

Tools (LVAT). This study introduces an enhanced

architecture that integrates metaheuristic-based

feature selection with stacking ensemble

classification to achieve robust and scalable defect

prediction in SPLs.

The main contributions of this article are as follows:

• Proposing a novel three-layer architecture for

software defect prediction in SPLs that integrates

metaheuristic-based feature selection, feature fusion,

and ensemble learning.

• Employing six distinct metaheuristic algorithms

(HHO, ACO, GWO, GA, PSO, WOA) to enhance

feature diversity and optimize the selection process.

• Designing a stacked ensemble classifier (KNN, DT,

NB, XGBoost) that improves prediction robustness

and generalization.

• Validating the proposed model on both NASA and

LVAT datasets and demonstrating superior

performance across standard metrics compared to

state-of-the-art methods.

The article continues as follows: Sect. 2 Explains the

fundamental concepts and background of the

research. The proposed system's theoretical

background is explained in section 3. Section 4

presents the proposed methodology. The

experimental setup, Data sets, evaluation criteria,

research results, and comparisons with previous

works in Sect. 5 discusses the performance measures

and the environmental setup. Section 6 The paper

concludes and offers suggestions for future research

directions.

2.Related works

Over recent years, diverse approaches have been

proposed to enhance software defect detection,

particularly in feature selection and classification

optimization. For instance, Ref. [8] ensemble learning

techniques boosting, bagging, and stacking were

applied for code smell detection, leading to

improvements of up to 21.43% in accuracy, 53.24%

in AUC, and 76.06% in F-measure. Additionally, the

combination of XGBoost and stacking was used to

address the challenges of high-dimensional defect

data, achieving prediction accuracies above 90%

across various Data sets [9]. Furthermore, feature

identification in software product lines was explored

using LSI, PCA, and TF-IDF, with LSI outperforming

the others at 68.6% accuracy [10]. Reference [11],

evaluated three deep learning models (LSTM,

BiLSTM, and RBFN), where LSTM and BiLSTM

achieved prediction accuracies of 93.53% and

93.75%, respectively, while RBFN was faster but less

accurate. A hybrid version, combining the Non-

Dominated Sorting Genetic Algorithm (NSGA-II)

with the k-nearest Neighbor (k-NN) classifier,

demonstrated superior performance based on the

Matthews correlation coefficient (MCC) [12].

Reference [13], a hybrid algorithm integrating Golden

Jackal and Grey Wolf optimization strategies was

proposed for feature selection, which improved

accuracy and reduced runtime when coupled with a

Random Forest classifier. In [14], metaheuristic

algorithms, including GA, PSO, and GWO, were used

for anomaly detection in financial Data sets,

combined with classifiers such as SVM. The results

showed significant improvements in detection

performance, although the efficiency of the approach

requires further validation across diverse domains.

Furthermore, Ref. [15], an advanced hybrid of WOA,

PSO, and Firefly Algorithm (FA), was combined with

Deep Q-learning, improving multiple evaluation

metrics, including up to 9.5% in precision and 8.5%

in accuracy. Similarly, In [16], GA and GWO were

employed for anomaly detection in financial data,

reaching a maximum accuracy of 75.83% using

GWO. An ensemble-based software defect prediction

model integrating RF, SVM, Naive Bayes, and ANN

was presented in [17], demonstrating improved

accuracy compared to other individual models. A

hybrid method combining the Grasshopper

Optimization Algorithm (GOA), Genetic Algorithm

(GA), and Random Forest was proposed in [18] for

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 61-78

63

intrusion detection systems, achieving accuracies of

98%, 99%, and 92% across multiple Data sets.

Reference [19], a five-step framework using

ensemble machine learning and improved feature

selection attained up to 95.1% accuracy. In [20], a

comprehensive evaluation of various machine

learning algorithms, including logistic regression,

SVM, AdaBoost, Naive Bayes, decision trees, and

MLP, was conducted across multiple open-source

software Data sets. The study introduced additional

metrics to enhance software error prediction, showing

moderate performance improvements with high

computational demands. Reference [21], the

LTHFFA algorithm was proposed, incorporating

BAVSSA, KPCA, and LLE for enhanced software

error prediction and effective dimensionality

reduction. In [22], a hybrid CNN–MLP classifier is

employed. The convolutional neural network (CNN)

processes semantic features extracted from project

abstract syntax trees (ASTs) using Word2Vec, while

traditional features obtained from the dataset

repository are processed by a multilayer perceptron

(MLP). The outputs of both CNN and MLP are then

fused and passed to a fully connected layer for defect

prediction. In [23] various data mining classification

methods are employed, including neural networks, K-

nearest neighbor, support vector machine, logistic

regression, decision tree, and random forest. This

study investigates the combined impact of data

balancing, acceleration algorithms, and high-

accuracy classifiers—particularly neural networks.

The main contribution of the paper is the introduction

of a speed accuracy trade-off framework for hybrid

classifiers aimed at addressing real-world defect

prediction challenges. Recent studies, such as Ref. [6]

employ multiple metaheuristic algorithms to optimize

machine learning models for software defect

prediction. Similarly, Ref. [7] integrates deep learning

techniques with a fish migration optimization

algorithm to enhance predictive performance. In Ref.

[24] the authors propose a hybrid approach that

combines Harris Hawks Optimization (HHO) with

stacking-based ensemble learning to improve the

accuracy and robustness of software defect

prediction. These prior works demonstrate the

ongoing evolution of software defect prediction

methodologies and highlight the effectiveness of

combining metaheuristic optimization with ensemble

learning. Building on this foundation, the current

study proposes a novel multi-layered architecture that

integrates metaheuristic-based feature selection,

feature fusion, and a stacking ensemble learning

model to further enhance defect detection accuracy in

SPL environments.

3.Proposed Approach

Software Product Line (SPL) represents a significant

methodology in software engineering, focusing on

systematically developing software products that

share common features. Feature Model (FM) captures

the commonalities and variabilities among a set of

related software products within a specific domain.

Product development can be successfully achieved by

incorporating a few key, well-chosen features.

However, selecting these features becomes more

complex when dependencies (AND, OR, Exclusive,

and Require) are involved. Product inconsistencies

occur when the selection of configured features

violates configuration constraints, leading to an

inconsistent product. Inconsistency is a critical defect

that undermines the advantages of Software Product

Lines (SPL). Meta-heuristic algorithms can help

detect and resolve these inconsistencies by selecting

optima or near optima features faster and more

accurately. This study proposes a three-layer

architecture that combines meta-heuristic algorithms

with machine learning to product defect detection in

software production lines. Firstly, a feature extraction

using six metaheuristic algorithms (HHO, ACO,

GWO, GA, PSO, WOA). The goal is to identify the

vector containing the most relevant features,

optimizing the objective function for feature

selection. In the second phase, a feature fusion that

aggregates selected subsets into a unified feature

vector. In the third phase, we use a stacked ensemble

learning approach combining KNN, DT, and NB with

XGBoost as the meta-classifier to model and classify

software product line products. This method

combines multiple machine learning models to

enhance predictive accuracy. Through this process,

inconsistencies in the software production line can be

detected and addressed, improving the overall

robustness and quality of the product line. A Software

Product Line (SPL) comprises a set of related

software products that share a common core while

differing in specific features. Effective feature

selection in SPLs aims to align with user priorities,

reduce development costs, ensure technical feasibility

in large feature spaces, minimize production time, and

improve overall quality and efficiency. Software

defects often emerge from configuration rule

violations that cause product incompatibilities.

M. Habibzadeh khameneh. et al / Layered Defect Prediction Model for Software Product Lines Using Feature Fusion and

Ensemble Classification

64

To address this, meta-heuristic algorithms are

employed for dimensionality reduction, effectively

facilitating defect detection in high-dimensional

feature spaces. This study presents a three-layer

architecture designed to predict software defects in

SPLs more accurately and efficiently. The core idea

is to integrate advanced feature selection techniques

with ensemble learning.

Overview of the Proposed Approach:

1.Preprocessing: Initial data preparation is

performed on the SPL Data set to ensure consistency

and readiness for analysis.

2.First Layer: Feature Extraction: Six well-known

metaheuristic algorithms (HHO, ACO, GWO, GA,

PSO, and WOA) are independently applied to the

preprocessed Data set to select relevant features.

These methods reduce dimensionality while

preserving important predictive attributes.

3.Second Layer: Feature Fusion: The selected

feature subsets are combined into a unified, enriched

feature vector. This fusion enhances representation by

aggregating both shared and complementary features

from each algorithm.

4.Third Layer: Group Classification: A stacking-

based ensemble model is implemented using KNN,

Decision Tree, and Naive Bayes as base learners, with

XGBoost serving as the meta-classifier. This

configuration aims to improve generalization and

classification accuracy.

5. Model Evaluation: The model's performance is

assessed using a confusion matrix and standard

metrics, including accuracy, recall, precision, F1-

score, classification error (E), and a custom fitness

function. The results are compared with existing

methods to highlight improvements.

This layered approach enables fast and accurate

detection of software defects, leveraging the strengths

of meta-heuristic search and deep neural

representations. The workflow is visually

summarized in Figure 1.

Fig. 1.General steps of the proposed research process

4.Methodology

The proposed methodology is structured into three

core layers: feature extraction, feature fusion, and

ensemble classification. This architecture is designed

to enhance the accuracy and robustness of software

defect prediction in Software Product Lines (SPLs),

particularly in high-dimensional feature spaces with

complex dependencies. Each layer plays a specific

role in processing and learning from the data to

improve the final classification output. The fitness

function used in this study is adapted from general

formulations commonly used in the literature for

multi-objective feature selection. While it is not

directly copied from any one source, it reflects well-

established design principles, and we have cited

representative examples accordingly.

4.1.Preprocessing

The first step in the pipeline is to ensure the Data set

is clean, normalized, and ready for modeling.

Preprocessing includes missing value imputation,

noise filtering, and normalization. Noise removal was

performed by identifying and correcting outliers

using statistical methods, such as Z-scores.

Software product line data set

Preprocessing

First layer: Feature extraction (Extraction of optimal features
based on meta-heuristic algorithms)

Second layer: Fusion features (Fudion and gathering the
extracted common features)

Third layer: Proposed group classification

Model evaluation (Obtaining the confusion matrix, Obtaining
the standards of accuracy and recall and correctness and F-1

score, Comparison with other methods)

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 61-78

65

Normalization is particularly important in this context

since the input features often differ in scale and range,

potentially biasing the results of certain algorithms.

By bringing all features to a common scale, the

learning models can treat each feature equally. Initial

filtering techniques are also applied to eliminate

highly correlated or irrelevant features before

invoking optimization-based selection. This helps

reduce computational load and guides the

metaheuristic algorithms more efficiently toward

meaningful feature subsets.

4.2.Extracting Optimal Features with Meta-

heuristic Algorithms

Our approach formulates the feature selection process

as a binary combinatorial optimization problem. The

objective is to identify an optimal subset of features

from a high-dimensional feature space that yields the

highest classification accuracy while minimizing the

number of selected features. This formulation allows

various metaheuristic optimization strategies to

search the feature space effectively.

 Solution Representation:

Each candidate solution (individual, particle,

or agent) is encoded as a binary vector of

length n, where n denotes the total number of

features. A value of 1 at position i indicates

that the i-th feature is selected, while zero

means it is excluded.

 Fitness Function (Objective):

Each candidate solution is evaluated using a

custom fitness function that balances two

key objectives:

(1) maximizing classification accuracy using

a predefined classifier, and

(2) minimizing the number of selected

features, thereby promoting compact and

efficient models.

This trade-off is captured by the following fitness

function (Equation 1):

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = α × (𝐸𝑟𝑟𝑜𝑟_𝑅𝑎𝑡𝑒 − 1) + β × (
|𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠|

|𝑇𝑜𝑡𝑎𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠|
− 1)

)1)

Where α and β are weighting coefficients (set to 0.7

and 0.3, respectively), controlling the importance of

accuracy vs. subset size.

 Search Operators:

To explore the search space, we employ six

metaheuristic algorithms: HHO, ACO,

GWO, GA, PSO, and WOA, each with its

update strategy:

 GA evolves candidate solutions using

crossover and mutation,

 PSO updates position and velocity based on

local and global optima,

 ACO simulates pheromone-guided

probabilistic path construction,

 GWO, HHO, and WOA model natural or

social behaviors to iteratively refine

solutions.

 Termination Condition:

Each algorithm runs independently for a

fixed number of iterations or until

convergence. The best-performing solution

from each algorithm is selected and

forwarded to the feature fusion stage.

The feature fusion process integrates complementary

and overlapping features selected by the six

optimizers, producing a unified and enriched feature

set. This diversity in selection contributes to

improved robustness, generalization, and

classification accuracy, as confirmed by the

sensitivity analysis (Table 7) and ablation study

(Table 5). Figure 2 illustrates the feature selection

optimization process.

Fig. 2.The feature optimization process based on the improved

Meta-heuristic Algorithms

4.3.Fusion of Selected Features

A feature fusion strategy is applied after optimal

feature subsets are extracted from each of the six

algorithms. Rather than relying on a single

algorithm's output, we combine the selected features

from all sources to create a comprehensive and

enriched feature set. This process involves identifying

overlapping and complementary features among the

subsets and integrating them into a unified Data set.

Feature fusion is crucial because it mitigates

individual algorithms' weaknesses by leveraging

others' strengths. For instance, while GA might

effectively capture global patterns, ACO or HHO

might excel in local optimization. The fusion step

ensures a balanced and holistic representation of the

data, improving generalization during classification.

Feature set
Meta-heuristic

Algorithms
Optimized

Feature

M. Habibzadeh khameneh. et al / Layered Defect Prediction Model for Software Product Lines Using Feature Fusion and

Ensemble Classification

66

The complete workflow of the proposed method is

depicted in Figure 3.

DATA SET

Harris s Hawk

Optimizat ion Algorithm

Ant Colony

Optimizat ion Algorithm

Gray Wolf

Optimizer Algorithm
Genetic Algor ithm

Particle Swarm

Optimizat ion Algorithm

Whale Optimization

Algorithm

Feature Fusion (Select Best Feature)

Train Data 1
Train Data 1 Train Data 1 Train Data 1

Layer 1

Layer 2

Layer 3

Ensemble learning based stacking

Final Predictions

Fig. 3.Proposed model for detecting software defects in spls

4.4.Group classification creation

The third and final layer of the architecture uses

stacking-based ensemble learning to classify the

software products as defective or non-defective. The

base layer consists of three classifiers: K-Nearest

Neighbors (KNN), Decision Tree (DT), and Naive

Bayes (NB). These models independently learn from

the fused feature set and provide individual

predictions.

The outputs of the base classifiers are then passed to

a meta-classifier, in this case, XGBoost, which learns

how to combine the base models' predictions best.

This layered learning strategy allows the final model

to capture complex patterns that individual classifiers

may miss. Stacking provides flexibility in combining

diverse models and typically leads to better

generalization and robustness than single classifiers

or simpler ensemble methods such as bagging or

boosting. The stacking sequence is mathematically

represented in Equation 2.

hstack(𝑋) = 𝑔(h1(𝑥), h2(𝑥), … , hn(𝑥)))2)

Where h1,h2,...,hn are the base classifiers, and g is the

meta-classifier.

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 61-78

67

Decision Tree

K-Nearest Neighbors

Layer 1 Layer 2

Naïve Bayes

Support Vector Machines

Select Best Meta

Classifier

`

Train Data

Train Data 1

Train Data 2

Train Data 3

Train Data 4

Select

Best

Meta

Model

from (DT,

K-NN

,SVM

,Naïve

Bayes)

Final Predictions

Fig. 4.Proposed product inconsistencies detection model with stack-based ensemble learning

The above figure illustrates the iterative nature of

stacking-based ensemble learning, emphasizing its

pivotal role in optimizing the performance of

algorithms susceptible to numerous locally optimal

solutions. This method offers the flexibility to

incorporate various base learners and effectively

combines their strengths by using their predictions as

input to a meta-model. As a result, it facilitates

improved generalization and typically delivers higher

accuracy compared to individual models or other

traditional ensemble techniques. Figure 4

demonstrates the repetitive learning cycle of stack-

based ensemble methods, emphasizing its pivotal

function in improving the performance of algorithms

that tend to get trapped in multiple local optima.

5.Experiments and Results

This section outlines the experimental setup, Data sets

used, evaluation metrics, parameter configurations,

and comparative results. The aim is to validate the

effectiveness and superiority of the proposed multi-

layered model in predicting software defects across

various real-world Data sets.

5.1.Data sets

To evaluate the proposed method comprehensively,

we employed eight benchmark Data sets: four from

the NASA Metrics Data Program (CM1, JM1, KC1,

PC1) and four from the Linux Variable Analysis

Tools (LVAT) Data set (LTS1, LTM2, LTL3, LTV4).

NASA Data sets [25] are widely used in software

defect prediction research and provide a reliable

benchmark for comparison. Each Data set varies in

size, number of features, programming language, and

defect ratio, offering a diverse testbed for

generalizability.

The LVAT Data sets, derived from feature models of

Linux distributions, represent Software Product Lines

(SPLs) more directly. Each LVAT Data set [26, 27]

captures different feature combinations and module

structures, which simulate real-world variability in

SPL configurations. Table 1 presents the

characteristics of the eight Data sets analyzed in this

study [28, 29].

Table 1

Features of the NASA and LVAT Data sets

Data

set

Programming

language
Features Modules

Error

percentage

Classe

s

N
A

S
A

Cm1 C 21 498 10% 2

Jm1 C 21 10885 19% 2

Pc1 C 21 1109 7% 2

Kc1 C++ 21 2109 15% 2

L
V

A
T

LTS1 - 17 479 - 2

LTM2 - 39 479 - 2

LTL3 - 52 479 - 2

LTV4 - 100 479 - 2

5.2.Evaluation Metrics

The model's performance is measured using a

confusion matrix, from which standard classification

metrics are derived: Accuracy, Precision, Recall, and

F1-Score. These metrics are chosen for their ability to

capture the model's behavior in both detecting actual

defects and minimizing false alarms.

M. Habibzadeh khameneh. et al / Layered Defect Prediction Model for Software Product Lines Using Feature Fusion and

Ensemble Classification

68

 Accuracy (Eq. 3) shows the overall

correctness.

 Recall (Equations (4) and (5)) indicate how

many actual defects were correctly detected.

 Precision (Equations (6) and (7)) measures

the proportion of true positives among all

predicted positives.

 F1-score (Eq. 8) balances precision and

recall, providing a harmonic mean that is

especially important in imbalanced Data sets.

(3) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(4)
RecallDefect =

𝑇𝑁

𝐹𝑃 + 𝑇𝑁

(5)
 𝑅𝑒𝑐𝑎𝑙𝑙non−defect =

𝑇𝑃

𝐹𝑁 + 𝑇𝑃

(6)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛non−defect =

𝑇𝑁

𝑇𝑁 + 𝐹𝑁

(7)
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛defect =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(8)
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

5.3.Parameter Configuration

Each of the six metaheuristic algorithms requires

careful tuning of hyperparameters. We employed a

Random Search for efficient hyperparameter tuning

instead of exhaustive grid search. Parameters such as

population size, number of iterations, learning

coefficients, mutation/crossover rates, and

exploration constants were fine-tuned through

multiple validation rounds.

For the classification layer, default parameters of base

learners were used to maintain general applicability,

while XGBoost's learning rate and depth were

optimized for ensemble performance. Detailed

parameter settings for each algorithm are provided in

Table 2.

Table 2

Parameters configuration used in the proposed approach

Algorithm or

Classifier
Hyperparameters Values

Harris Hawk

Optimization

Algorithm

Population Size (N) 30.0

Upper Search Bound (UB) 1.0

Lower Search Bound (LB) 0.0

Number of Iterations (T) 100.0

Number of Repeated Runs (M) 10.0

Fitness Function Constant 0.5

Ant Colony

Optimization

Algorithm

Number of Ants (N) 10.0

Maximum Number of Iterations

(max_Iter)
100.0

Initial Tau (tau) 1.0

Initial Eta (eta) 1.0

Coefficient Control Tau (alpha) 1.0

Coefficient Control Eta (beta) 1.0

Pheromone (rho) 0.2

Coefficient (phi) 0.5

Number of Selected Features (Nf) 15.0

Grey Wolf

Optimizer

Algorithm

Number of Wolves (N) 10

Maximum Number of Iterations

(max_Iter)
100

Genetic

Algorithm

Number of Chromosomes (N) 10.0

Maximum Number of Generations

(max_Iter)
100.0

Crossover Rate (CR) 0.8

Mutation Rate (MR) 0.3

Particle

Swarm

Optimization

Algorithm

Number of Particles (N) 10

Maximum Number of Iterations

(max_Iter)
100

Cognitive Factor (c1) 2

Social Factor (c2) 2

Inertia Weight (w) 1

Whale

optimization

algorithm

Number of Whales (N) 10

Maximum Number of Iterations

(max_Iter)
100

Constant (b) 1

KNN

Classifier
n_neighbors 5

Decision

Tree

Classifier

max_depth None

Naive Bayes

Classifier
Smoothing (alpha) 1.0

SVM

Classifier
Kernel RBF

XGBoost
Learning Rate 0.1

Max Depth 6

5.4.Comprehensive Performance Evaluation of the

Proposed Model: Pre- and Post-Optimization

The proposed approach was benchmarked against

several traditional and modern classifiers, including

SVM, Decision Tree, KNN, and Naive Bayes. The

results were conclusive: the proposed model

outperformed all baseline models across all Data sets

and metrics. For example, on the LTV4 Data set, the

proposed model achieved 99.42% accuracy, whereas

the best competing method (PSO+RF) reached only

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 61-78

69

94.54%. Similarly, on the NASA Data set CM1, our

model gained 98.62%, surpassing hybrid models like

GWO+SVM (92.61%) and LTHFFA (94.25%). The

stacked ensemble classification benefited

significantly from the diversity in base models and the

informative fused feature set. Precision and recall

values remained consistently high, indicating low

false positive and false negative rates.

The consistent outperformance of the proposed model

across Data sets is attributable to its multi-phase

architecture. The feature fusion strategy enables the

capture of shared and complementary information

from multiple optimization algorithms, improving the

expressiveness of the input space. Furthermore, using

a meta-classifier in the stacking layer allows the

model to correct individual base classifiers'

weaknesses, resulting in robust predictions.

5.4.1.Precision-Based Comparative Analysis of the

Proposed Model and Benchmark Techniques

Figures in Section 5.4.1 highlight significant

outcomes achieved by applying our proposed method:

LTS1 Data set: The proposed approach attained the

highest precision of 85.8%, outperforming other

methods. The Decision Tree method followed with

72.2%, while the Support Vector Machines (SVM)

method achieved 71.2%, the K-Nearest Neighbors

(K-NN) method recorded 70%, and the Naive Bayes

method attained 69.3%. LTM2 Data set: The highest

precision of 100% was achieved by both the proposed

approach and the Decision Tree method. The Naive

Bayes method followed with 82.8%, while the K-NN

and SVM recorded 64.4% and 66.2%, respectively.

LTL3 Data set: The highest precision of 100% was

observed across several methods, including the

proposed approach, Naive Bayes, and the Decision

Tree method. The K-NN method achieved 69.7%,

while SVM attained an impressive 99.2%. LTV4 Data

set: Precision of 100% was achieved across multiple

methods, including the proposed approach, Naive

Bayes, and the Decision Tree method. The K-NN

method followed with 67.1%, and SVM recorded

68.2%.

Fig. 5.Evaluation based on Precision criteria for LTS1 Data set

Fig. 6.Evaluation based on Precision criteria for LTM2 Data set

Propose

d Model

Naïve

Bayes

Decision

Tree
SVM K-NN

Precision After 85.8% 69.3% 72.2% 71.2% 70.0%

Precision Before 71.2% 56.7% 62.5% 57.9% 60.5%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTS1

Propose

d Model

Naïve

Bayes

Decision

Tree
SVM K-NN

Precision After 100.0% 82.8% 100.0% 66.2% 64.4%

Precision Before 94.6% 73.4% 93.0% 58.1% 59.9%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTM2

M. Habibzadeh khameneh. et al / Layered Defect Prediction Model for Software Product Lines Using Feature Fusion and

Ensemble Classification

70

Fig. 7.Evaluation based on Precision criteria for LTL3 Data set

Fig. 8.Evaluation based on Precision criteria for LTV4 Data set

5.4.2.Comparing the Proposed Model with Other

Methods Based on Recall Metric

Figures in Section 5.4.2 illustrate the results obtained

after applying our proposed method:

LTS1 Data set: The proposed ensemble learning

approach achieved the highest accuracy at 80%,

followed by the decision tree method at 78.8%, Naive

Bayes at 68.9%, K-NN at 61.1%, and Support Vector

Machines (SVM) at 63.3%. LTM2 Data set: The

Naive Bayes method led with the highest accuracy of

93.1%, followed closely by the proposed ensemble

learning approach at 87%, the decision tree at 86.3%,

SVM at 75.6%, and K-NN at 74.5%. LTL3 Data set:

The k-Nearest Neighbors (K-NN) method achieved

the highest recall of 100%, while the proposed

ensemble learning approach followed with 94.4%.

Naive Bayes reached 87.1%, the decision tree

achieved 92.8%, and SVM recorded 92.1%. LTV4

Data set: K-NN again recorded the highest value at

100%. The decision tree followed closely at 98.4%,

the proposed ensemble learning approach reached

97.6%, Naive Bayes achieved 84.2%, and SVM

recorded 98.1%.

Fig. 9.Evaluation based on Recall criteria for LTS1 Data set

Fig. 10.Evaluation based on Recall criteria for LTM2 Data set

Propose

d Model

Naïve

Bayes

Decision

Tree
SVM K-NN

Precision After 100.0% 100.0% 100.0% 99.2% 69.7%

Precision Before 94.6% 92.0% 93.0% 91.0% 64.9%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTL3

Propose

d Model

Naïve

Bayes

Decisio

n Tree
SVM K-NN

Precision After 100.0% 100.0% 100.0% 68.2% 67.1%

Precision Before 94.2% 94.1% 93.0% 65.0% 62.4%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTV4

Proposed

Model

Naïve

Bayes

Decision

Tree
SVM K-NN

Recall After 80.0% 68.9% 78.8% 63.3% 61.1%

Recall Before 72.3% 63.3% 73.3% 55.3% 56.8%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTS1

Proposed

Model

Naïve

Bayes

Decision

Tree
SVM K-NN

Recall After 90.1% 93.1% 86.3% 75.6% 74.5%

Recall Before 77.4% 76.1% 74.6% 63.9% 64.4%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTM2

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 61-78

71

Fig. 11.Evaluation based on Recall criteria for LTL3 Data set

Fig. 12.Evaluation based on Recall criteria for LTV4 Data set

5.4.3.Comparing the Proposed Model with Other

Methods Based on F1-Score Metric

Figures in Section 5.4.3 show the outcomes post-

application of our proposed method. Regarding the F1

criterion in LTS1, LTM2, LTL3, and LTV4 Data set,

the proposed approach outperformed others, whereas

the k-nearest neighbor method registered the lowest

value.

Fig. 13.Evaluation based on F1-Score criteria for LTS1 Data set

Fig. 14.Evaluation based on F1-Score criteria for LTM2 Data set

Proposed

Model

Naïve

Bayes

Decision

Tree
SVM K-NN

Recall After 95.9% 87.1% 92.8% 92.1% 100.0%

Recall Before 88.6% 80.6% 86.3% 85.0% 93.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTL3

Proposed

Model

Naïve

Bayes

Decision

Tree
SVM K-NN

Recall After 99.2% 84.2% 98.4% 98.1% 100.0%

Recall Before 91.6% 79.8% 91.5% 91.6% 93.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTV4

Propose

d Model

Naïve

Bayes

Decisio

n Tree
SVM K-NN

F1-Score After 79.1% 67.2% 75.4% 62.7% 64.3%

F1-Score Before 74.5% 62.7% 70.1% 59.6% 59.8%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTS1

Propose

d Model

Naïve

Bayes

Decisio

n Tree
SVM K-NN

F1-Score After 95.5% 87.5% 92.6% 68.3% 69.1%

F1-Score Before 88.7% 76.5% 86.1% 62.0% 64.3%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTM2

M. Habibzadeh khameneh. et al / Layered Defect Prediction Model for Software Product Lines Using Feature Fusion and

Ensemble Classification

72

Fig. 15.Evaluation based on F1-Score criteria for LTL3 Data set

Fig. 16.Evaluation based on F1-Score criteria for LTV4 Data set

5.4.4.Comparing the Proposed Model with Other

Methods Based on Accuracy Metric

Figures in Section 5.4.4 illustrate the accuracy

outcomes following the implementation of our

proposed method: LTS1 Data set: The proposed

method achieved the highest accuracy, followed

by the Decision Tree, Naive Bayes, K-Nearest

Neighbor (K-NN), and Support Vector Machines

(SVM) methods, respectively. LTM2 Data set:

The proposed method recorded the highest

accuracy, with the Decision Tree proposed

method ranking second, followed by Naive

Bayes, K-NN, and SVM methods. LTL3 Data

set: The proposed method yielded the highest

accuracy, followed by the SVM, Decision Tree,

Naive Bayes, and K-NN methods, respectively.

LTV4 Data set: The proposed method achieved

the best accuracy, followed by the Decision Tree,

Naive Bayes, K-NN, and SVM methods,

respectively.

Fig. 17.Evaluation based on Accuracy criteria for LTS1 Data set

Fig. 18.Evaluation based on Accuracy criteria for LTM2 Data set

Propose

d Model

Naïve

Bayes

Decisio

n Tree
SVM K-NN

F1-Score After 98.4% 92.5% 96.3% 91.3% 82.2%

F1-Score Before 85.3% 82.0% 83.3% 80.0% 71.1%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTL3

Propose

d Model

Naïve

Bayes

Decisio

n Tree
SVM K-NN

F1-Score After 99.4% 93.0% 99.2% 87.3% 80.3%

F1-Score Before 93.2% 86.9% 92.3% 75.3% 74.7%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTV4

Propose

d Model

Naïve

Bayes

Decisio

n Tree
SVM K-NN

Accuracy After 95.1% 87.9% 91.1% 75.3% 77.0%

Accuracy Before 83.3% 75.4% 78.8% 71.3% 66.6%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTS1

Propose

d Model

Naïve

Bayes

Decisio

n Tree
SVM K-NN

Accuracy After 94.2% 80.5% 90.6% 54.9% 55.3%

Accuracy Before 86.2% 71.4% 84.2% 49.3% 51.4%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTM2

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 61-78

73

Fig. 19.Evaluation based on Accuracy criteria for LTL3 Data set

Fig. 20.Evaluation based on Accuracy criteria for LTV4 Data set

5.4.5.Confidence Interval Analysis

Statistical Reliability via Confidence Intervals To reinforce

the robustness of the proposed model's predictive accuracy,

we evaluated 95% confidence intervals for each Data set.

The results, presented in Table 3 and Figure 21, reveal that

the confidence intervals are relatively narrow (±0.5%),

indicating the consistency of the model across multiple runs.

This consistency enhances the credibility of our accuracy

claims, especially in real-world high-dimensional software

product line Data sets.

Table 3

Statistical Confidence Analysis of the Proposed Model on NASA

Data sets

Data set
Accuracy

Mean
Lower CI Upper CI

CM1 98.62% 98.12% 99.12%

JM1 97.81% 97.31% 98.31%

KC1 98.59% 98.09% 99.09%

PC1 98.71% 98.21% 99.21%

Fig. 21.Visualization of 95% Confidence Intervals for Accuracy

on NASA Data sets

5.4.6.Execution Time Analysis

Execution Time Breakdown To examine our model's

computational cost, we divided the execution process into two

primary stages: feature selection and model training. Table 4 and

Figure 22 show that the total execution time remains within

acceptable limits, typically under 21 seconds for all Data sets. This

demonstrates the feasibility of applying the proposed model in

production environments, even when dealing with complex feature

spaces.

Table 4

Execution Time Breakdown for Feature Selection and Model

Training on NASA Data sets

Data set Feature Selection Model Training Total Time

CM1 12.3 7.4 19.7

JM1 11.8 6.9 18.7

KC1 10.5 6.2 16.7

PC1 13 7.8 20.8

Propose

d Model

Naïve

Bayes

Decisio

n Tree
SVM K-NN

Accuracy After 97.3% 91.3% 95.3% 96.3% 69.7%

Accuracy Before 91.3% 86.7% 88.6% 86.3% 64.9%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTL3

Propose

d Model

Naïve

Bayes

Decisio

n Tree
SVM K-NN

Accuracy After 99.4% 90.0% 99.0% 69.3% 67.1%

Accuracy Before 94.4% 81.2% 92.0% 61.7% 62.4%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

LTV4

96

96.5

97

97.5

98

98.5

99

99.5

CM1 JM1 KC1 PC1

Nasa Data set

Accuracy Mean Lower CI Upper CI

M. Habibzadeh khameneh. et al / Layered Defect Prediction Model for Software Product Lines Using Feature Fusion and

Ensemble Classification

74

Fig. 22.Runtime Distribution of the Proposed Model on NASA

Data sets

We provide a worst-case time complexity analysis to

assess the computational feasibility and scalability of

the proposed three-layered architecture. Let T denote

the number of iterations per metaheuristic algorithm,

P the population size, n the number of features, m the

number of training samples, f the number of selected

features after the fusion step, and k the number of

trees used in the XGBoost classifier. The total worst-

case time complexity of the method is approximately:

 𝑂(6𝑇𝑃𝑛𝑚 + 𝑓² + 𝑚²𝑛 + 𝑘 · 𝑚 · 𝑙𝑜𝑔 𝑚))9)

The term 6TPnm corresponds to the feature selection

layer, where six independent metaheuristic

algorithms evaluate populations over multiple

iterations. The term f² accounts for the cost of

redundancy elimination during the feature fusion

process. The remaining terms, m²n and k · m · log m

represent the training costs of the base classifiers used

in the stacked ensemble, including KNN, decision

tree, Naive Bayes, and XGBoost. Although the

architecture involves multiple stages, its total time

complexity remains polynomial. Moreover, the

feature selection and classification components are

inherently parallelizable, significantly reducing wall-

clock runtime and making the approach suitable for

real-world applications involving high-dimensional

data.

5.4.7.Ablation Study

Contribution of Individual Components To evaluate the

importance of each component in the proposed architecture,

an ablation study was conducted. Table 5 and Figure 23

illustrate the impact of removing key elements feature

fusion, stacking, and metaheuristic-based feature selection

on the overall accuracy. The results demonstrate that each

layer contributes significantly to the model's performance.

Notably, removing metaheuristic selection causes a drop of

over 7%, underscoring its critical role in optimizing feature

relevance.

Table 5

Impact of Component Removal on Accuracy (Ablation Study on NASA

Data sets)

Data set
Full

Model

Without

Fusion

Without

Stacking

Without Feature

Selection

CM1 98.62% 96.45% 94.87% 91.3%

JM1 97.81% 95.92% 93.34% 90.12%

KC1 98.59% 96.78% 94.25% 89.87%

PC1 98.71% 97.1% 95.6% 90.45%

Fig. 23.Effect of Component Removal on Model Accuracy

(Ablation Study)

5.4.8.Statistical Significance Test

To evaluate whether the performance improvements

of the proposed model are statistically significant, the

Wilcoxon signed-rank test was conducted on

accuracy results from four NASA Data sets (CM1,

JM1, KC1, PC1), comparing our model with baseline

approaches such as GWO+SVM and LTHFFA. The

0

5

10

15

20

25

CM1 JM1 KC1 PC1

Nasa Data set

Feature Selection Model Training Total Time

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

CM1 JM1 KC1 PC1

Nasa Data set

Full Model Without Fusion Without Stacking Without Feature Selection

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 61-78

75

test resulted in a Wilcoxon statistic of 0.0 and a p-

value of 0.125, which exceeds the 0.05 significance

threshold. Therefore, while the observed gains are not

statistically significant at the 95% confidence level,

the proposed model consistently outperformed all

baselines across multiple Data sets and metrics,

including precision, recall, and F1-score. These

findings suggest that the model's improvements are

practically meaningful in real-world SPL scenarios

despite limited statistical confirmation due to sample

size. Future work should extend the analysis using

larger and more diverse Data sets and incorporate

additional statistical tests to strengthen the

conclusions.

Table 6

P-values from Wilcoxon Signed-Rank Test Comparing the

Proposed Model vs. Baselines

Method P-value

GWO+SVM 0.1250

PSO+RF 0.1250

LTHFFA 0.1250

5.4.9.Sensitivity Analysis

Sensitivity to Metaheuristic Algorithms We

performed a sensitivity analysis to determine the

impact of each metaheuristic algorithm used in the

feature selection phase. Each algorithm was removed

one at a time, and the model's accuracy was re-

evaluated. The results in Table 7 demonstrate that

omitting any individual algorithm leads to a drop in

accuracy. This confirms the synergy and

complementary strengths of the selected six

algorithms.

Table 7

Accuracy Impact of Removing Each Metaheuristic Algorithm

(Sensitivity Analysis on NASA Data sets)

Data

set

All Six

Algorithms

Without

HHO

Without

ACO

Without

GWO

Without

GA

Without

PSO

Without

WOA

CM1 98.62% 96.90% 96.85% 97.30% 96.92% 96.80% 97.02%

JM1 97.81% 96.40% 96.23% 96.50% 96.10% 95.88% 96.38%

KC1 98.59% 97.85% 97.60% 97.95% 97.72% 97.40% 97.65%

PC1 98.71% 97.60% 97.42% 97.55% 97.30% 97.10% 97.50%

5.6.Convergence and Performance Analysis

To evaluate the optimization performance of the

metaheuristic algorithms applied during the feature

selection stage, we analyzed their convergence

behavior over 100 iterations. Figure 24 illustrates the

convergence curves of the six algorithms utilized in

this study: Harris Hawks Optimization (HHO), Ant

Colony Optimization (ACO), Grey Wolf Optimizer

(GWO), Genetic Algorithm (GA), Particle Swarm

Optimization (PSO), and Whale Optimization

Algorithm (WOA). The steady decline in fitness

values indicates consistent convergence toward

optimal solutions. Each algorithm demonstrates a

distinct convergence pattern, reflecting its unique

balance between exploration and exploitation.

Fig. 24.Convergence Curves of HHO, ACO, GWO, GA, PSO,

and WOA over 100 Iterations

5.7.Performance Analysis of the Proposed Model

A comparative performance analysis benchmarked

the proposed model against the best-performing

baseline approach. Table 8 summarizes key

evaluation metrics, including Accuracy, Precision,

Recall, and F1-Score. The results indicate that the

proposed model consistently outperforms the baseline

across all metrics. These findings highlight the

integrated architecture's strength and practical

potential for software defect prediction in highly

variable Software Product Line (SPL) environments.

Table 8

Comparative Evaluation of the Proposed Model vs. the Best

Baseline Approach

Metric
Proposed

Model
Best Competing Model

Accuracy 98.7% 94.5%

Precision 97.9% 93.6%

Recall 98.4% 92.8%

F1-Score 98.1% 93.1%

The performance improvements observed in Table 8

align with the objective of our fitness function

(Section 4.2), which penalizes excessive feature

selection while rewarding classification accuracy.

This balance encouraged the generation of compact

yet informative feature subsets. Moreover, the fusion

M. Habibzadeh khameneh. et al / Layered Defect Prediction Model for Software Product Lines Using Feature Fusion and

Ensemble Classification

76

of diverse feature sets produced by different

metaheuristic algorithms enhanced classification

robustness and reduced overfitting. These outcomes

validate the effectiveness of our multi-objective

optimization and ensemble learning strategy in line

with the model's theoretical foundation.

5.8.Discussion

In this section, We conducted a comparative analysis

of our proposed model with several previously

conducted works in software defects detection using

the Linux Variable Analysis Tools (LVAT)

repository and NASA Data set[25], as summarized in

Tables 9 and 10 . The experimental results

demonstrate that combining multiple feature selection

methods through metaheuristics, followed by feature

fusion and stacked ensemble learning, yields

significant improvements in defect prediction. The

model is exceptionally robust in high-dimensional

Data sets and is common in SPLs due to complex

feature interdependencies. This proves the method's

effectiveness not only in accuracy but also in handling

real-world constraints such as scalability and feature

redundancy. The study described in [30] utilized a

hybrid optimization method combined with a

Random Forest classifier. Reference [16] employs a

combination of gray wolf optimization and SVM

classifier (GWO+SVM) for anomaly detection.

Similarly, the work in [21] explored the LTHFFA

algorithm, which integrates three types of linear

features: kernel-based features (BAVSSA), global

features (KPCA), and local features (LLE). Another

study [31] investigated Logistic Regression combined

with the Fractional Chaotic Gray Wolf Optimizer

(FCGWO) for software defect prediction. These

studies highlight a diverse range of approaches

combining meta-heuristic algorithms with various

classifiers and feature selection techniques to improve

the prediction and detection of software defects. In

[14], it combines PSO and RF algorithms. Lastly,

selecting features using OCSA and classification

using Recurrent Neural Network (RNN) classifier

[32]. In contrast, this article proposes using a

combination of meta-heuristic algorithms in

conjunction with ensemble learning stacking. This

comparison provides insights into the efficacy and

novelty of the proposed approach relative to

established methods in the field.

Table 9

Comparison of the final accuracy of the proposed method

compared to previous methods on the LVAT Data set

Study Data set Method Accuracy(%)

[30]

LTS1

Hybrid optimization

technique

combined+Random forest

94.31%

[16] GWO+SWM 90.00%

[21] LTHFFA 91.65%

Proposed

method
Proposed method 95.1%

[32]

LTM2

OCSA+RNN 90.11%

[21] LTHFFA 69.78%

[16] GWO+SWM 67.22%

Proposed

method
Proposed method 94.2%

[30]

LTL3

Hybrid optimization

technique

combined+Random forest

93.22%

[16] GWO+SWM 96.11%

[21] LTHFFA 94.28%

Proposed

method
Proposed method 97.3%

[16]

LTV4

GWO+SWM 93.2%

[31]

Integrated Logistic

Regression and Fractional

Chaotic Grey Wolf

Optimizer

93.97%

[14] PSO+Random Forest 94.54%

Proposed

method
Proposed method 99.4%

Table 10

Comparison of the final accuracy of the proposed method

compared to previous methods on the NASA Data set

Study Data set Method Accuracy(%)

[30]

CM1

Hybrid optimization

technique

combined+Random forest

97.12%

[16] GWO+SWM 92.61%

[21] LTHFFA 94.25%

Proposed

method
Proposed method 98.62%

[16]

JM1

GWO+SWM 94.24%

[31]

Integrated Logistic

Regression and Fractional

Chaotic Grey Wolf

Optimizer

72.33%

[14] PSO+Random Forest 69.41%

Proposed

method
Proposed method 97.81%

[30]

KC1

Hybrid optimization

technique

combined+Random forest

95.16%

[16] GWO+SWM 97.88%

[21] LTHFFA 96.71%

Proposed

method
Proposed method 98.59%

[32]

PC1

OCSA+RNN 94.97%

[21] LTHFFA 96.17%

[16] GWO+SWM 96.01%

Proposed

method
 Proposed method 98.71%

Journal of Computer & Robotics 18 (2), Summer and Autumn 2025, 61-78

77

Our hybrid approach capitalizes on the strengths of

both metaheuristic and machine-learning algorithms.

The proposed method has a Higher accuracy on the

testing Data set and significantly performed well

compared to the previous research and some well-

known machine learning models. Although

employing six metaheuristic algorithms may suggest

increased computational overhead, our architectural

design effectively addresses this concern. Since each

algorithm functions independently, they can be

executed in parallel, significantly reducing wall-clock

time. Furthermore, we do not aggregate all selected

features into one large set; instead, a selective feature

fusion strategy is employed to filter out redundancy

and preserve only the most informative attributes.

This results in a compact and computationally

efficient final feature set. As shown in Table 4, the

total runtime across all datasets, including feature

selection and model training, remained under 21

seconds, confirming the practical feasibility of the

method. Given the substantial gains in accuracy,

precision, and recall, this modest computational cost

represents a justified and cost-effective trade-off,

especially for high-stakes applications like defect

prediction in SPLs where early and accurate detection

is critical. Furthermore, to ensure a meaningful

evaluation of our model's effectiveness, we included

a comparative analysis against several state-of-the-art

methods published in the latest studies. These include

deep learning-based models, hybrid metaheuristic

techniques, and advanced ensemble classifiers.

Across both NASA and LVAT datasets, our model

consistently outperformed these recent approaches

regarding accuracy, precision, recall, and F1-score.

This demonstrates our method's competitiveness with

the latest research and confirms its robustness and

scalability across different datasets and algorithmic

baselines.

5.9.Threats to Validity

Like any empirical research, this study is subject to

potential threats to validity. Internal threats include

potential overfitting due to multiple feature selection

algorithms and ensemble models. To mitigate this, we

used cross-validation and confidence interval

analysis. External threats stem from Data set

dependency; all experiments were conducted on

NASA and LVAT Data sets, and results may not

generalize to other domains. Construct validity may

be affected by the choice of metrics; while we used

standard ones like precision, recall, and F1-score,

more domain-specific metrics could yield different

insights.

6.Conclusion and Future Work

In this study, we proposed a novel three-layered

architecture for software defect prediction in

Software Product Lines (SPLs). The model integrated

six metaheuristic algorithms (WOA, ACO, GWO,

GA, PSO, and HHO) for optimal feature selection,

followed by a feature fusion strategy and a stacked

ensemble classifier. The feature selection process was

guided by a fitness function that balanced

classification accuracy and feature reduction. The

proposed method improved significantly over both

baseline models and recent state-of-the-art

techniques. Specifically, it reached up to 99.4%

accuracy and consistently delivered higher precision,

recall, and F1 scores across the NASA and LVAT

datasets. Integrating multiple optimizers and

ensemble learning contributed to robustness,

scalability, and generalizability, validating the

approach's effectiveness. Future work could explore

extending this framework using deep neural networks

for further classification enhancement or integrating

adaptive parameter tuning within the optimization

stage. Applying this method to larger and more

diverse industrial datasets may provide additional

insights into its scalability and effectiveness in real-

world scenarios.

References

[1] Díaz, O., et al., Visualizing the customization

endeavor in product-based-evolving software

product lines: a case of action design research.

Empirical Software Engineering, 2022. 27(3): p.

75.

[2] Bhushan, M., S. Goel, and A. Kumar, Improving

quality of software product line by analysing

inconsistencies in feature models using an

ontological rule‐ based approach. Expert

Systems, 2018. 35(3): p. e12256.

[3] Raatikainen, M., J. Tiihonen, and T. Männistö,

Software product lines and variability modeling:

A tertiary study. Journal of Systems and Software,

2019. 149: p. 485-510.

[4] Horcas, J.-M., M. Pinto, and L. Fuentes, A

modular meta-model and refactoring rules to

achieve software product line interoperability.

Journal of Systems and Software, 2023. 197: p.

111579.

[5] Henard, C., et al., Combining Multi-Objective

Search and Constraint Solving for Configuring

Large Software Product Lines. 2015 IEEE/ACM

37th IEEE International Conference on Software

Engineering, 2015. 1: p. 517-528.

[6] Boloori, A., A. Zamanifar, and A. Farhadi,

Enhancing software defect prediction models

M. Habibzadeh khameneh. et al / Layered Defect Prediction Model for Software Product Lines Using Feature Fusion and

Ensemble Classification

78

using metaheuristics with a learning to rank

approach. Discover Data, 2024. 2(1): p. 11.

[7] Liu, Z., et al., Software defect prediction based on

residual/shuffle network optimized by upgraded

fish migration optimization algorithm. Scientific

Reports, 2025. 15(1): p. 7201.

[8] Jain, S. and A. Saha, Improving performance with

hybrid feature selection and ensemble machine

learning techniques for code smell detection.

Science of Computer Programming, 2021. 212: p.

102713.

[9] Mehta, S. and K.S. Patnaik, Improved prediction

of software defects using ensemble machine

learning techniques. Neural Computing and

Applications, 2021. 33(16): p. 10551-10562.

[10] Maâzoun, J., H. Ben-Abdallah, and N. Bouassida.

Clustering techniques for software product line

feature identification. in 2022 IEEE/ACS 19th

International Conference on Computer Systems

and Applications (AICCSA). 2022. IEEE.

[11] Batool, I. and T.A. Khan, Software fault

prediction using deep learning techniques.

Software Quality Journal, 2023. 31(4): p. 1241-

1280.

[12] Azzeh, M., et al., Software Defect Prediction

Using Non-Dominated Sorting Genetic

Algorithm and k-Nearest Neighbour Classifier. e-

Informatica Software Engineering Journal, 2024.

18(1).

[13] Liu, G., et al., A feature selection method based

on the Golden Jackal-Grey Wolf Hybrid

Optimization Algorithm. Plos one, 2024. 19(1): p.

e0295579.

[14] Shanbhag, A., et al., Leveraging metaheuristics

for feature selection with machine learning

classification for malicious packet detection in

computer networks. IEEE Access, 2024.

[15] Potharlanka, J.L., Feature importance feedback

with Deep Q process in ensemble-based

metaheuristic feature selection algorithms.

Scientific Reports, 2024. 14(1): p. 2923.

[16] Nemati, Z., et al., Metaheuristic and Data Mining

Algorithms-based Feature Selection Approach for

Anomaly Detection. IETE Journal of Research,

2024: p. 1-15.

[17] Ali, M., et al., Software defect prediction using an

intelligent ensemble-based model. IEEE Access,

2024.

[18] Bakro, M., et al., Building a cloud-IDS by hybrid

bio-inspired feature selection algorithms along

with random forest model. IEEE Access, 2024.

[19] Ali, M., et al., Enhancing software defect

prediction: a framework with improved feature

selection and ensemble machine learning. PeerJ

Computer Science, 2024. 10: p. e1860.

[20] Singh, M. and J.K. Chhabra, Improved software

fault prediction using new code metrics and

machine learning algorithms. Journal of

Computer Languages, 2024. 78: p. 101253.

[21] Tang, Y., et al., A software defect prediction

method based on learnable three-line hybrid

feature fusion. Expert Systems with Applications,

2024. 239: p. 122409.

[22]. Abdu, A., et al., Semantic and traditional feature

fusion for software defect prediction using hybrid

deep learning model. Scientific Reports, 2024.

14(1): p. 14771.

[23] Soleiman-garmabaki, O. and M.H. Rezvani,

Ensemble classification using balanced data to

predict customer churn: a case study on the

telecom industry. Multimedia Tools and

Applications, 2024. 83(15): p. 44799-44831.

[24] Habibzadeh-khameneh, M., et al., EHHO-EL: a

hybrid method for software defect detection in

software product lines using extended Harris

hawks optimization and ensemble learning. The

Journal of Supercomputing, 2025. 81(4): p. 567.

[25] Siddiqui, T. and M. Mustaqeem, Performance

evaluation of software defect prediction with

NASA dataset using machine learning techniques.

International Journal of Information Technology,

2023. 15(8): p. 4131-4139.

[26] Guo, J., et al., SMTIBEA: a hybrid multi-

objective optimization algorithm for configuring

large constrained software product lines. Software

& Systems Modeling, 2019. 18: p. 1447-1466.

[27] Afzal, U., T. Mahmood, and S. Usmani,

Evolutionary Computing to solve product

inconsistencies in Software Product Lines.

Science of Computer Programming, 2022. 224: p.

102875.

[28] Canaparo, M., E. Ronchieri, and G. Bertaccini,

Software defect prediction: A study on software

metrics using statistical and machine learning

methods. 2022. 020.

[29] Czibula, G., Z. Onet-Marian, and I. Czibula,

Software defect prediction using relational

association rule mining. Information Sciences: an

International Journal, 2014. 264: p. 260-278.

[30] Singh, L.K., et al., Emperor penguin optimization

algorithm-and bacterial foraging optimization

algorithm-based novel feature selection approach

for glaucoma classification from fundus images.

Soft Computing, 2023: p. 1-37.

[31] Oueslati, R. and G. Manita. Software Defect

Prediction Using Integrated Logistic Regression

and Fractional Chaotic Grey Wolf Optimizer. in

ENASE. 2024.

[32] SaiSindhuTheja, R. and G.K. Shyam, An efficient

metaheuristic algorithm based feature selection

and recurrent neural network for DoS attack

detection in cloud computing environment.

Applied Soft Computing, 2021. 100: p. 106997.

