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Abstract 
Software defect prediction in Software Product Lines (SPLs) presents significant challenges due to high-dimensional feature 

spaces and intricate feature dependencies. We introduce a novel three-layered framework that integrates (1) optimal feature 

selection using six metaheuristic algorithms (HHO, ACO, GWO, GA, PSO, WOA), (2) feature fusion to create a unified and 

enriched feature representation, and (3) a stacked ensemble classifier comprising KNN, Decision Tree, Naive Bayes, and 

XGBoost. Unlike prior studies that rely on single optimization or classification models, our approach combines multiple 

optimizers and learners in a synergistic pipeline, enhancing generalization and robustness. The proposed method was rigorously 

evaluated on benchmark datasets from NASA (CM1, JM1, KC1, PC1) and the Linux Variable Analysis Tools (LVAT) 

repository (LTS1, LTM2, LTL3, LTV4). It achieved 98.62%, 97.81%, 98.59%, and 98.71% accuracy rates on the NASA 

datasets and 95.1%, 94.2%, 97.3%, and 99.4% on the LVAT datasets, respectively. These results demonstrate that the proposed 

approach consistently outperforms existing methods across diverse SPL scenarios. 
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1.Introduction 

Software Product Lines (SPLs) aim to reuse software 

assets systematically to derive diverse product 

variants. However, managing the inherent variability 

and maintaining product consistency poses significant 

challenges, especially during feature selection and 

configuration [1]. In software product line 

engineering, Feature Models (FMs) are commonly 

employed to represent the variability and 

commonality within a family of software products 

[2]. A tertiary study categorizes approaches to 

managing variability in SPLs into three main types: 

Feature Models (FM), Orthogonal Variability Models 

(OVM), and Decision Models (DM). Among these, 

this study focuses on FMs, the most recognized and 

widely used method for variability modeling [3]. FMs 

incorporate various constructs, such as Optional and 

mandatory features, to Determine whether a feature 

must always be present in a product. Alternative 

("xor") and selection ("or") groups Govern exclusive 

feature selections and permissible feature 

combinations. Constraints (requires/excludes): 

Specify dependencies or incompatibilities between 

features [4]. Without automated support, the feature 

selection process is often inefficient and error-prone. 

It involves satisfying multiple, sometimes conflicting, 

objectives, such as aligning with user preferences, 

minimizing product costs, and adhering to technical 

feasibility constraints. This challenge is compounded 

in feature spaces with thousands of features, where 

human intuition alone is inadequate to identify 
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optimal or near-optimal software product 

configurations. Automated techniques for feature  

selection have been developed [5] to address these 

complexities. Recent advances [6, 7] have similarly 

explored the use of metaheuristics in combination 

with deep learning, highlighting the growing trend 

toward hybrid approaches and reinforcing the 

rationale. In this paper, the proposed approach 

comprises three layers: The first layer preprocesses 

the Data set and utilizes meta-heuristic algorithms to 

extract an optimal subset of features. In the second 

layer, these selected features are fused to form an 

integrated feature set, which is then forwarded to the 

third layer. In this final layer, stacking-based 

ensemble learning techniques are employed to 

enhance the performance of product defect detection. 

The proposed methodology was validated through 

simulation experiments on eight Data sets: four from 

NASA and four from the Linux Variable Analysis 

Tools (LVAT). This study introduces an enhanced 

architecture that integrates metaheuristic-based 

feature selection with stacking ensemble 

classification to achieve robust and scalable defect 

prediction in SPLs. 

 

The main contributions of this article are as follows: 

• Proposing a novel three-layer architecture for 

software defect prediction in SPLs that integrates 

metaheuristic-based feature selection, feature fusion, 

and ensemble learning. 

• Employing six distinct metaheuristic algorithms 

(HHO, ACO, GWO, GA, PSO, WOA) to enhance 

feature diversity and optimize the selection process. 

• Designing a stacked ensemble classifier (KNN, DT, 

NB, XGBoost) that improves prediction robustness 

and generalization. 

• Validating the proposed model on both NASA and 

LVAT datasets and demonstrating superior 

performance across standard metrics compared to 

state-of-the-art methods. 

The article continues as follows: Sect. 2 Explains the 

fundamental concepts and background of the 

research. The proposed system's theoretical 

background is explained in section 3. Section 4 

presents the proposed methodology. The 

experimental setup, Data sets, evaluation criteria, 

research results, and comparisons with previous 

works in Sect. 5 discusses the performance measures 

and the environmental setup. Section 6 The paper 

concludes and offers suggestions for future research 

directions.  

 

2.Related works 

Over recent years, diverse approaches have been 

proposed to enhance software defect detection, 

particularly in feature selection and classification 

optimization. For instance, Ref. [8] ensemble learning 

techniques boosting, bagging, and stacking were 

applied for code smell detection, leading to 

improvements of up to 21.43% in accuracy, 53.24% 

in AUC, and 76.06% in F-measure. Additionally, the 

combination of XGBoost and stacking was used to 

address the challenges of high-dimensional defect 

data, achieving prediction accuracies above 90% 

across various Data sets [9]. Furthermore, feature 

identification in software product lines was explored 

using LSI, PCA, and TF-IDF, with LSI outperforming 

the others at 68.6% accuracy [10]. Reference [11], 

evaluated three deep learning models (LSTM, 

BiLSTM, and RBFN), where LSTM and BiLSTM 

achieved prediction accuracies of 93.53% and 

93.75%, respectively, while RBFN was faster but less 

accurate. A hybrid version, combining the Non-

Dominated Sorting Genetic Algorithm (NSGA-II) 

with the k-nearest Neighbor (k-NN) classifier, 

demonstrated superior performance based on the 

Matthews correlation coefficient (MCC) [12]. 

Reference [13], a hybrid algorithm integrating Golden 

Jackal and Grey Wolf optimization strategies was 

proposed for feature selection, which improved 

accuracy and reduced runtime when coupled with a 

Random Forest classifier. In [14], metaheuristic 

algorithms, including GA, PSO, and GWO, were used 

for anomaly detection in financial Data sets, 

combined with classifiers such as SVM. The results 

showed significant improvements in detection 

performance, although the efficiency of the approach 

requires further validation across diverse domains. 

Furthermore, Ref. [15], an advanced hybrid of WOA, 

PSO, and Firefly Algorithm (FA), was combined with 

Deep Q-learning, improving multiple evaluation 

metrics, including up to 9.5% in precision and 8.5% 

in accuracy. Similarly, In [16], GA and GWO were 

employed for anomaly detection in financial data, 

reaching a maximum accuracy of 75.83% using 

GWO. An ensemble-based software defect prediction 

model integrating RF, SVM, Naive Bayes, and ANN 

was presented in [17], demonstrating improved 

accuracy compared to other individual models. A 

hybrid method combining the Grasshopper 

Optimization Algorithm (GOA), Genetic Algorithm 

(GA), and Random Forest was proposed in [18] for 
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intrusion detection systems, achieving accuracies of 

98%, 99%, and 92% across multiple Data sets. 

Reference [19], a five-step framework using 

ensemble machine learning and improved feature 

selection attained up to 95.1% accuracy. In [20], a 

comprehensive evaluation of various machine 

learning algorithms, including logistic regression, 

SVM, AdaBoost, Naive Bayes, decision trees, and 

MLP, was conducted across multiple open-source 

software Data sets. The study introduced additional 

metrics to enhance software error prediction, showing 

moderate performance improvements with high 

computational demands. Reference [21], the 

LTHFFA algorithm was proposed, incorporating 

BAVSSA, KPCA, and LLE for enhanced software 

error prediction and effective dimensionality 

reduction. In [22], a hybrid CNN–MLP classifier is 

employed. The convolutional neural network (CNN) 

processes semantic features extracted from project 

abstract syntax trees (ASTs) using Word2Vec, while 

traditional features obtained from the dataset 

repository are processed by a multilayer perceptron 

(MLP). The outputs of both CNN and MLP are then 

fused and passed to a fully connected layer for defect 

prediction. In [23] various data mining classification 

methods are employed, including neural networks, K-

nearest neighbor, support vector machine, logistic 

regression, decision tree, and random forest. This 

study investigates the combined impact of data 

balancing, acceleration algorithms, and high-

accuracy classifiers—particularly neural networks. 

The main contribution of the paper is the introduction 

of a speed accuracy trade-off framework for hybrid 

classifiers aimed at addressing real-world defect 

prediction challenges. Recent studies, such as Ref. [6] 

employ multiple metaheuristic algorithms to optimize 

machine learning models for software defect 

prediction. Similarly, Ref. [7] integrates deep learning 

techniques with a fish migration optimization 

algorithm to enhance predictive performance. In Ref. 

[24] the authors propose a hybrid approach that 

combines Harris Hawks Optimization (HHO) with 

stacking-based ensemble learning to improve the 

accuracy and robustness of software defect 

prediction. These prior works demonstrate the 

ongoing evolution of software defect prediction 

methodologies and highlight the effectiveness of 

combining metaheuristic optimization with ensemble 

learning. Building on this foundation, the current 

study proposes a novel multi-layered architecture that 

integrates metaheuristic-based feature selection, 

feature fusion, and a stacking ensemble learning 

model to further enhance defect detection accuracy in 

SPL environments. 

3.Proposed Approach 

Software Product Line (SPL) represents a significant 

methodology in software engineering, focusing on 

systematically developing software products that 

share common features. Feature Model (FM) captures 

the commonalities and variabilities among a set of 

related software products within a specific domain. 

Product development can be successfully achieved by 

incorporating a few key, well-chosen features. 

However, selecting these features becomes more 

complex when dependencies (AND, OR, Exclusive, 

and Require) are involved. Product inconsistencies 

occur when the selection of configured features 

violates configuration constraints, leading to an 

inconsistent product. Inconsistency is a critical defect 

that undermines the advantages of Software Product 

Lines (SPL). Meta-heuristic algorithms can help 

detect and resolve these inconsistencies by selecting 

optima or near optima features faster and more 

accurately. This study proposes a three-layer 

architecture that combines meta-heuristic algorithms 

with machine learning to product defect detection in 

software production lines. Firstly, a feature extraction 

using six metaheuristic algorithms (HHO, ACO, 

GWO, GA, PSO, WOA). The goal is to identify the 

vector containing the most relevant features, 

optimizing the objective function for feature 

selection. In the second phase, a feature fusion that 

aggregates selected subsets into a unified feature 

vector. In the third phase, we use a stacked ensemble 

learning approach combining KNN, DT, and NB with 

XGBoost as the meta-classifier to model and classify 

software product line products. This method 

combines multiple machine learning models to 

enhance predictive accuracy. Through this process, 

inconsistencies in the software production line can be 

detected and addressed, improving the overall 

robustness and quality of the product line. A Software 

Product Line (SPL) comprises a set of related 

software products that share a common core while 

differing in specific features. Effective feature 

selection in SPLs aims to align with user priorities, 

reduce development costs, ensure technical feasibility 

in large feature spaces, minimize production time, and 

improve overall quality and efficiency. Software 

defects often emerge from configuration rule 

violations that cause product incompatibilities. 
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To address this, meta-heuristic algorithms are 

employed for dimensionality reduction, effectively 

facilitating defect detection in high-dimensional 

feature spaces. This study presents a three-layer 

architecture designed to predict software defects in 

SPLs more accurately and efficiently. The core idea 

is to integrate advanced feature selection techniques 

with ensemble learning. 

 

Overview of the Proposed Approach: 

1.Preprocessing: Initial data preparation is 

performed on the SPL Data set to ensure consistency 

and readiness for analysis. 

2.First Layer: Feature Extraction: Six well-known 

metaheuristic algorithms (HHO, ACO, GWO, GA, 

PSO, and WOA) are independently applied to the 

preprocessed Data set to select relevant features. 

These methods reduce dimensionality while 

preserving important predictive attributes. 

3.Second Layer: Feature Fusion: The selected 

feature subsets are combined into a unified, enriched 

feature vector. This fusion enhances representation by 

aggregating both shared and complementary features 

from each algorithm. 

4.Third Layer: Group Classification: A stacking-

based ensemble model is implemented using KNN, 

Decision Tree, and Naive Bayes as base learners, with 

XGBoost serving as the meta-classifier. This 

configuration aims to improve generalization and 

classification accuracy. 

5. Model Evaluation: The model's performance is 

assessed using a confusion matrix and standard 

metrics, including accuracy, recall, precision, F1-

score, classification error (E), and a custom fitness 

function. The results are compared with existing 

methods to highlight improvements. 

This layered approach enables fast and accurate 

detection of software defects, leveraging the strengths 

of meta-heuristic search and deep neural 

representations. The workflow is visually 

summarized in Figure 1. 

 

 

 

 

 

 

 

 

 
Fig. 1.General steps of the proposed research process 

 

4.Methodology 

The proposed methodology is structured into three 

core layers: feature extraction, feature fusion, and 

ensemble classification. This architecture is designed 

to enhance the accuracy and robustness of software 

defect prediction in Software Product Lines (SPLs), 

particularly in high-dimensional feature spaces with 

complex dependencies. Each layer plays a specific 

role in processing and learning from the data to 

improve the final classification output. The fitness 

function used in this study is adapted from general 

formulations commonly used in the literature for 

multi-objective feature selection. While it is not 

directly copied from any one source, it reflects well-

established design principles, and we have cited 

representative examples accordingly. 

 

4.1.Preprocessing 

The first step in the pipeline is to ensure the Data set 

is clean, normalized, and ready for modeling. 

Preprocessing includes missing value imputation, 

noise filtering, and normalization. Noise removal was 

performed by identifying and correcting outliers 

using statistical methods, such as Z-scores. 

Software product line data set

Preprocessing

First layer: Feature extraction (Extraction of optimal features 
based on meta-heuristic algorithms)

Second layer: Fusion features (Fudion and gathering the 
extracted common features)

Third layer: Proposed group classification

Model evaluation (Obtaining the confusion matrix, Obtaining 
the standards of accuracy and recall and correctness and F-1 

score, Comparison with other methods )
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Normalization is particularly important in this context 

since the input features often differ in scale and range, 

potentially biasing the results of certain algorithms. 

By bringing all features to a common scale, the 

learning models can treat each feature equally. Initial 

filtering techniques are also applied to eliminate 

highly correlated or irrelevant features before 

invoking optimization-based selection. This helps 

reduce computational load and guides the 

metaheuristic algorithms more efficiently toward 

meaningful feature subsets. 

 

4.2.Extracting Optimal Features with Meta-

heuristic Algorithms 

Our approach formulates the feature selection process 

as a binary combinatorial optimization problem. The 

objective is to identify an optimal subset of features 

from a high-dimensional feature space that yields the 

highest classification accuracy while minimizing the 

number of selected features. This formulation allows 

various metaheuristic optimization strategies to 

search the feature space effectively. 

 Solution Representation: 

Each candidate solution (individual, particle, 

or agent) is encoded as a binary vector of 

length n, where n denotes the total number of 

features. A value of 1 at position i indicates 

that the i-th feature is selected, while zero 

means it is excluded. 

 Fitness Function (Objective): 

Each candidate solution is evaluated using a 

custom fitness function that balances two 

key objectives: 

(1) maximizing classification accuracy using 

a predefined classifier, and 

(2) minimizing the number of selected 

features, thereby promoting compact and 

efficient models. 

This trade-off is captured by the following fitness 

function (Equation 1): 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = α ×  (𝐸𝑟𝑟𝑜𝑟_𝑅𝑎𝑡𝑒 − 1) +  β ×  (
|𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠|

|𝑇𝑜𝑡𝑎𝑙_𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠|
− 1) 

)1) 

Where α and β are weighting coefficients (set to 0.7 

and 0.3, respectively), controlling the importance of 

accuracy vs. subset size. 

 Search Operators: 

To explore the search space, we employ six 

metaheuristic algorithms: HHO, ACO, 

GWO, GA, PSO, and WOA, each with its 

update strategy: 

 GA evolves candidate solutions using 

crossover and mutation, 

 PSO updates position and velocity based on 

local and global optima, 

 ACO simulates pheromone-guided 

probabilistic path construction, 

 GWO, HHO, and WOA model natural or 

social behaviors to iteratively refine 

solutions. 

 Termination Condition: 

Each algorithm runs independently for a 

fixed number of iterations or until 

convergence. The best-performing solution 

from each algorithm is selected and 

forwarded to the feature fusion stage. 

 

The feature fusion process integrates complementary 

and overlapping features selected by the six 

optimizers, producing a unified and enriched feature 

set. This diversity in selection contributes to 

improved robustness, generalization, and 

classification accuracy, as confirmed by the 

sensitivity analysis (Table 7) and ablation study 

(Table 5). Figure 2 illustrates the feature selection 

optimization process. 
 

Fig. 2.The feature optimization process based on the improved 

Meta-heuristic Algorithms 

 

4.3.Fusion of Selected Features 

A feature fusion strategy is applied after optimal 

feature subsets are extracted from each of the six 

algorithms. Rather than relying on a single 

algorithm's output, we combine the selected features 

from all sources to create a comprehensive and 

enriched feature set. This process involves identifying 

overlapping and complementary features among the 

subsets and integrating them into a unified Data set. 

Feature fusion is crucial because it mitigates 

individual algorithms' weaknesses by leveraging 

others' strengths. For instance, while GA might 

effectively capture global patterns, ACO or HHO 

might excel in local optimization. The fusion step 

ensures a balanced and holistic representation of the 

data, improving generalization during classification. 

Feature set
Meta-heuristic 

Algorithms
Optimized 

Feature
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The complete workflow of the proposed method is 

depicted in Figure 3. 

 

 

 

DATA SET

Harris s Hawk 

Optimizat ion Algorithm

Ant Colony 

Optimizat ion Algorithm

Gray Wolf 

Optimizer Algorithm
Genetic Algor ithm

Particle Swarm 

Optimizat ion Algorithm

Whale Optimization 

Algorithm

Feature Fusion (Select Best Feature )

Train Data 1
Train Data 1 Train Data 1 Train Data 1

Layer 1

Layer 2

Layer 3

Ensemble learning based stacking

Final Predictions

 
Fig. 3.Proposed model for detecting software defects in spls 

 

4.4.Group classification creation 

The third and final layer of the architecture uses 

stacking-based ensemble learning to classify the 

software products as defective or non-defective. The 

base layer consists of three classifiers: K-Nearest 

Neighbors (KNN), Decision Tree (DT), and Naive 

Bayes (NB). These models independently learn from 

the fused feature set and provide individual 

predictions. 

 

The outputs of the base classifiers are then passed to 

a meta-classifier, in this case, XGBoost, which learns 

how to combine the base models' predictions best. 

This layered learning strategy allows the final model 

to capture complex patterns that individual classifiers 

may miss. Stacking provides flexibility in combining 

diverse models and typically leads to better 

generalization and robustness than single classifiers 

or simpler ensemble methods such as bagging or 

boosting. The stacking sequence is mathematically 

represented in Equation 2. 
 

hstack(𝑋) =  𝑔(h1(𝑥), h2(𝑥), … , hn(𝑥)) )2) 

Where h1,h2,...,hn are the base classifiers, and g is the 

meta-classifier. 
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Decision Tree

K-Nearest Neighbors

Layer 1 Layer 2

Naïve Bayes

Support Vector Machines

Select Best Meta 

Classifier

`

Train Data

Train Data 1

Train Data 2

Train Data 3

Train Data 4

Select 

Best 

Meta 

Model 

from (DT, 

K-NN 

,SVM 

,Naïve 

Bayes)

Final Predictions

 
Fig. 4.Proposed product inconsistencies detection model with stack-based ensemble learning 

 

The above figure illustrates the iterative nature of 

stacking-based ensemble learning, emphasizing its 

pivotal role in optimizing the performance of 

algorithms susceptible to numerous locally optimal 

solutions. This method offers the flexibility to 

incorporate various base learners and effectively 

combines their strengths by using their predictions as 

input to a meta-model. As a result, it facilitates 

improved generalization and typically delivers higher 

accuracy compared to individual models or other 

traditional ensemble techniques. Figure 4 

demonstrates the repetitive learning cycle of stack-

based ensemble methods, emphasizing its pivotal 

function in improving the performance of algorithms 

that tend to get trapped in multiple local optima. 
 

5.Experiments and Results 

This section outlines the experimental setup, Data sets 

used, evaluation metrics, parameter configurations, 

and comparative results. The aim is to validate the 

effectiveness and superiority of the proposed multi-

layered model in predicting software defects across 

various real-world Data sets. 
 

5.1.Data sets  

To evaluate the proposed method comprehensively, 

we employed eight benchmark Data sets: four from 

the NASA Metrics Data Program (CM1, JM1, KC1, 

PC1) and four from the Linux Variable Analysis 

Tools (LVAT) Data set (LTS1, LTM2, LTL3, LTV4). 

NASA Data sets [25] are widely used in software 

defect prediction research and provide a reliable 

benchmark for comparison. Each Data set varies in 

size, number of features, programming language, and 

defect ratio, offering a diverse testbed for 

generalizability. 

The LVAT Data sets, derived from feature models of 

Linux distributions, represent Software Product Lines 

(SPLs) more directly. Each LVAT Data set [26, 27] 

captures different feature combinations and module 

structures, which simulate real-world variability in 

SPL configurations. Table 1 presents the 

characteristics of the eight Data sets analyzed in this 

study [28, 29]. 

Table 1 

Features of the NASA and LVAT Data sets 

 
Data 

set 

Programming 

language 
Features Modules 

Error 

percentage 

Classe

s 

N
A

S
A

 

   

Cm1 C 21 498 10% 2 

Jm1 C 21 10885 19% 2 

Pc1 C 21 1109 7% 2 

Kc1 C++ 21 2109 15% 2 

L
V

A
T

 

LTS1 - 17 479 - 2 

LTM2 - 39 479 - 2 

LTL3 - 52 479 - 2 

LTV4 - 100 479 - 2 

 

 

5.2.Evaluation Metrics 

The model's performance is measured using a 

confusion matrix, from which standard classification 

metrics are derived: Accuracy, Precision, Recall, and 

F1-Score. These metrics are chosen for their ability to 

capture the model's behavior in both detecting actual 

defects and minimizing false alarms. 
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 Accuracy (Eq. 3) shows the overall 

correctness. 

 Recall (Equations (4) and (5)) indicate how 

many actual defects were correctly detected. 

 Precision (Equations (6) and (7)) measures 

the proportion of true positives among all 

predicted positives. 

 F1-score (Eq. 8) balances precision and 

recall, providing a harmonic mean that is 

especially important in imbalanced Data sets. 

 

(3) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(4) 
RecallDefect =

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

(5) 
 𝑅𝑒𝑐𝑎𝑙𝑙non−defect =

𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

(6) 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛non−defect =

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

(7) 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛defect =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(8) 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

5.3.Parameter Configuration 

Each of the six metaheuristic algorithms requires 

careful tuning of hyperparameters. We employed a 

Random Search for efficient hyperparameter tuning 

instead of exhaustive grid search. Parameters such as 

population size, number of iterations, learning 

coefficients, mutation/crossover rates, and 

exploration constants were fine-tuned through 

multiple validation rounds. 

For the classification layer, default parameters of base 

learners were used to maintain general applicability, 

while XGBoost's learning rate and depth were 

optimized for ensemble performance. Detailed 

parameter settings for each algorithm are provided in 

Table 2. 

 

Table 2 

Parameters configuration used in the proposed approach 

Algorithm or 

Classifier 
Hyperparameters Values 

Harris Hawk 

Optimization 

Algorithm 

Population Size (N) 30.0 

Upper Search Bound (UB) 1.0 

Lower Search Bound (LB) 0.0 

Number of Iterations (T) 100.0 

Number of Repeated Runs (M) 10.0 

Fitness Function Constant 0.5 

Ant Colony 

Optimization 

Algorithm 

Number of Ants (N) 10.0 

Maximum Number of Iterations 

(max_Iter) 
100.0 

Initial Tau (tau) 1.0 

Initial Eta (eta) 1.0 

Coefficient Control Tau (alpha) 1.0 

Coefficient Control Eta (beta) 1.0 

Pheromone (rho) 0.2 

Coefficient (phi) 0.5 

Number of Selected Features (Nf) 15.0 

Grey Wolf 

Optimizer 

Algorithm 

Number of Wolves (N) 10 

Maximum Number of Iterations 

(max_Iter) 
100 

Genetic 

Algorithm 

Number of Chromosomes (N) 10.0 

Maximum Number of Generations 

(max_Iter) 
100.0 

Crossover Rate (CR) 0.8 

Mutation Rate (MR) 0.3 

Particle 

Swarm 

Optimization 

Algorithm 

Number of Particles (N) 10 

Maximum Number of Iterations 

(max_Iter) 
100 

Cognitive Factor (c1) 2 

Social Factor (c2) 2 

Inertia Weight (w) 1 

Whale 

optimization 

algorithm 

Number of Whales (N) 10 

Maximum Number of Iterations 

(max_Iter) 
100 

Constant (b) 1 

KNN 

Classifier 
n_neighbors 5 

Decision 

Tree 

Classifier 

max_depth        None 

Naive Bayes 

Classifier 
Smoothing (alpha) 1.0 

SVM 

Classifier 
Kernel RBF 

XGBoost 
Learning Rate 0.1 

Max Depth 6 

 

5.4.Comprehensive Performance Evaluation of the 

Proposed Model: Pre- and Post-Optimization 

The proposed approach was benchmarked against 

several traditional and modern classifiers, including 

SVM, Decision Tree, KNN, and Naive Bayes. The 

results were conclusive: the proposed model 

outperformed all baseline models across all Data sets 

and metrics. For example, on the LTV4 Data set, the 

proposed model achieved 99.42% accuracy, whereas 

the best competing method (PSO+RF) reached only 
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94.54%. Similarly, on the NASA Data set CM1, our 

model gained 98.62%, surpassing hybrid models like 

GWO+SVM (92.61%) and LTHFFA (94.25%). The 

stacked ensemble classification benefited 

significantly from the diversity in base models and the 

informative fused feature set. Precision and recall 

values remained consistently high, indicating low 

false positive and false negative rates. 

The consistent outperformance of the proposed model 

across Data sets is attributable to its multi-phase 

architecture. The feature fusion strategy enables the 

capture of shared and complementary information 

from multiple optimization algorithms, improving the 

expressiveness of the input space. Furthermore, using 

a meta-classifier in the stacking layer allows the 

model to correct individual base classifiers' 

weaknesses, resulting in robust predictions. 

 

5.4.1.Precision-Based Comparative Analysis of the 

Proposed Model and Benchmark Techniques 

Figures in Section 5.4.1 highlight significant 

outcomes achieved by applying our proposed method: 

LTS1 Data set: The proposed approach attained the 

highest precision of 85.8%, outperforming other 

methods. The Decision Tree method followed with 

72.2%, while the Support Vector Machines (SVM) 

method achieved 71.2%, the K-Nearest Neighbors 

(K-NN) method recorded 70%, and the Naive Bayes 

method attained 69.3%. LTM2 Data set: The highest 

precision of 100% was achieved by both the proposed 

approach and the Decision Tree method. The Naive 

Bayes method followed with 82.8%, while the K-NN 

and SVM recorded 64.4% and 66.2%, respectively. 

LTL3 Data set: The highest precision of 100% was 

observed across several methods, including the 

proposed approach, Naive Bayes, and the Decision 

Tree method. The K-NN method achieved 69.7%, 

while SVM attained an impressive 99.2%. LTV4 Data 

set: Precision of 100% was achieved across multiple 

methods, including the proposed approach, Naive 

Bayes, and the Decision Tree method. The K-NN 

method followed with 67.1%, and SVM recorded 

68.2%. 
 

 
Fig. 5.Evaluation based on Precision criteria for LTS1 Data set 

 

 
Fig. 6.Evaluation based on Precision criteria for LTM2 Data set 
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Fig. 7.Evaluation based on Precision criteria for LTL3 Data set 

 

 
Fig. 8.Evaluation based on Precision criteria for LTV4 Data set 

 

5.4.2.Comparing the Proposed Model with Other 

Methods Based on Recall Metric 

Figures in Section 5.4.2 illustrate the results obtained 

after applying our proposed method: 

LTS1 Data set: The proposed ensemble learning 

approach achieved the highest accuracy at 80%, 

followed by the decision tree method at 78.8%, Naive 

Bayes at 68.9%, K-NN at 61.1%, and Support Vector 

Machines (SVM) at 63.3%. LTM2 Data set: The 

Naive Bayes method led with the highest accuracy of 

93.1%, followed closely by the proposed ensemble 

learning approach at 87%, the decision tree at 86.3%, 

SVM at 75.6%, and K-NN at 74.5%. LTL3 Data set: 

The k-Nearest Neighbors (K-NN) method achieved 

the highest recall of 100%, while the proposed 

ensemble learning approach followed with 94.4%. 

Naive Bayes reached 87.1%, the decision tree 

achieved 92.8%, and SVM recorded 92.1%. LTV4 

Data set: K-NN again recorded the highest value at 

100%. The decision tree followed closely at 98.4%, 

the proposed ensemble learning approach reached 

97.6%, Naive Bayes achieved 84.2%, and SVM 

recorded 98.1%. 
 

 
Fig. 9.Evaluation based on Recall criteria for LTS1 Data set 

 

 
Fig. 10.Evaluation based on Recall criteria for LTM2 Data set 
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Fig. 11.Evaluation based on Recall criteria for LTL3 Data set 

 

 
Fig. 12.Evaluation based on Recall criteria for LTV4 Data set 

 
5.4.3.Comparing the Proposed Model with Other 

Methods Based on F1-Score Metric  

Figures in Section 5.4.3 show the outcomes post-

application of our proposed method. Regarding the F1 

criterion in LTS1, LTM2, LTL3, and LTV4 Data set, 

the proposed approach outperformed others, whereas 

the k-nearest neighbor method registered the lowest 

value. 

 
 

 
Fig. 13.Evaluation based on F1-Score criteria for LTS1 Data set 

 

 
Fig. 14.Evaluation based on F1-Score criteria for LTM2 Data set 
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Fig. 15.Evaluation based on F1-Score criteria for LTL3 Data set 

 

 
Fig. 16.Evaluation based on F1-Score criteria for LTV4 Data set 

 

 

5.4.4.Comparing the Proposed Model with Other 

Methods Based on Accuracy Metric  

Figures in Section 5.4.4 illustrate the accuracy 

outcomes following the implementation of our 

proposed method: LTS1 Data set: The proposed 

method achieved the highest accuracy, followed 

by the Decision Tree, Naive Bayes, K-Nearest 

Neighbor (K-NN), and Support Vector Machines 

(SVM) methods, respectively. LTM2 Data set: 

The proposed method recorded the highest 

accuracy, with the Decision Tree proposed 

method ranking second, followed by Naive 

Bayes, K-NN, and SVM methods. LTL3 Data 

set: The proposed method yielded the highest 

accuracy, followed by the SVM, Decision Tree, 

Naive Bayes, and K-NN methods, respectively. 

LTV4 Data set: The proposed method achieved 

the best accuracy, followed by the Decision Tree, 

Naive Bayes, K-NN, and SVM methods, 

respectively. 
 

 
Fig. 17.Evaluation based on Accuracy criteria for LTS1 Data set 

 
Fig. 18.Evaluation based on Accuracy criteria for LTM2 Data set 
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Fig. 19.Evaluation based on Accuracy criteria for LTL3 Data set 

 

 
Fig. 20.Evaluation based on Accuracy criteria for LTV4 Data set 

 
5.4.5.Confidence Interval Analysis 

Statistical Reliability via Confidence Intervals To reinforce 

the robustness of the proposed model's predictive accuracy, 

we evaluated 95% confidence intervals for each Data set. 

The results, presented in Table 3 and Figure 21, reveal that 

the confidence intervals are relatively narrow (±0.5%), 

indicating the consistency of the model across multiple runs. 

This consistency enhances the credibility of our accuracy 

claims, especially in real-world high-dimensional software 

product line Data sets. 

 

Table 3 

Statistical Confidence Analysis of the Proposed Model on NASA 

Data sets 

Data set 
Accuracy 

Mean 
Lower CI Upper CI 

CM1 98.62% 98.12% 99.12% 

JM1 97.81% 97.31% 98.31% 

KC1 98.59% 98.09% 99.09% 

PC1 98.71% 98.21% 99.21% 

 

 

 

Fig. 21.Visualization of 95% Confidence Intervals for Accuracy 

on NASA Data sets 

5.4.6.Execution Time Analysis 

Execution Time Breakdown To examine our model's 

computational cost, we divided the execution process into two 

primary stages: feature selection and model training. Table 4 and 

Figure 22 show that the total execution time remains within 

acceptable limits, typically under 21 seconds for all Data sets. This 

demonstrates the feasibility of applying the proposed model in 

production environments, even when dealing with complex feature 

spaces. 

 

Table 4 

Execution Time Breakdown for Feature Selection and Model 

Training on NASA Data sets 

Data set Feature Selection Model Training Total Time 

CM1 12.3 7.4 19.7 

JM1 11.8 6.9 18.7 

KC1 10.5 6.2 16.7 

PC1 13 7.8 20.8 
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Fig. 22.Runtime Distribution of the Proposed Model on NASA 

Data sets 

We provide a worst-case time complexity analysis to 

assess the computational feasibility and scalability of 

the proposed three-layered architecture. Let T denote 

the number of iterations per metaheuristic algorithm, 

P the population size, n the number of features, m the 

number of training samples, f the number of selected 

features after the fusion step, and k the number of 

trees used in the XGBoost classifier. The total worst-

case time complexity of the method is approximately: 

 𝑂(6𝑇𝑃𝑛𝑚 +  𝑓² +  𝑚²𝑛 +  𝑘 · 𝑚 · 𝑙𝑜𝑔 𝑚) )9) 

The term 6TPnm corresponds to the feature selection 

layer, where six independent metaheuristic 

algorithms evaluate populations over multiple 

iterations. The term f² accounts for the cost of 

redundancy elimination during the feature fusion 

process. The remaining terms, m²n and k · m · log m 

represent the training costs of the base classifiers used 

in the stacked ensemble, including KNN, decision 

tree, Naive Bayes, and XGBoost. Although the 

architecture involves multiple stages, its total time 

complexity remains polynomial. Moreover, the 

feature selection and classification components are 

inherently parallelizable, significantly reducing wall-

clock runtime and making the approach suitable for 

real-world applications involving high-dimensional 

data. 

 

5.4.7.Ablation Study 

Contribution of Individual Components To evaluate the 

importance of each component in the proposed architecture, 

an ablation study was conducted. Table 5 and Figure 23 

illustrate the impact of removing key elements feature 

fusion, stacking, and metaheuristic-based feature selection 

on the overall accuracy. The results demonstrate that each 

layer contributes significantly to the model's performance. 

Notably, removing metaheuristic selection causes a drop of 

over 7%, underscoring its critical role in optimizing feature 

relevance. 

 

Table 5 

Impact of Component Removal on Accuracy (Ablation Study on NASA 

Data sets) 

Data set 
Full 

Model 

Without 

Fusion 

Without 

Stacking 

Without Feature 

Selection 

CM1 98.62% 96.45% 94.87% 91.3% 

JM1 97.81% 95.92% 93.34% 90.12% 

KC1 98.59% 96.78% 94.25% 89.87% 

PC1 98.71% 97.1% 95.6% 90.45% 

 

 

 

Fig. 23.Effect of Component Removal on Model Accuracy 

(Ablation Study) 

5.4.8.Statistical Significance Test 

To evaluate whether the performance improvements 

of the proposed model are statistically significant, the 

Wilcoxon signed-rank test was conducted on 

accuracy results from four NASA Data sets (CM1, 

JM1, KC1, PC1), comparing our model with baseline 

approaches such as GWO+SVM and LTHFFA. The 
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test resulted in a Wilcoxon statistic of 0.0 and a p-

value of 0.125, which exceeds the 0.05 significance 

threshold. Therefore, while the observed gains are not 

statistically significant at the 95% confidence level, 

the proposed model consistently outperformed all 

baselines across multiple Data sets and metrics, 

including precision, recall, and F1-score. These 

findings suggest that the model's improvements are 

practically meaningful in real-world SPL scenarios 

despite limited statistical confirmation due to sample 

size. Future work should extend the analysis using 

larger and more diverse Data sets and incorporate 

additional statistical tests to strengthen the 

conclusions. 
 
Table 6 

P-values from Wilcoxon Signed-Rank Test Comparing the 

Proposed Model vs. Baselines 

Method P-value 

GWO+SVM 0.1250 

PSO+RF 0.1250 

LTHFFA 0.1250 

 
5.4.9.Sensitivity Analysis 

Sensitivity to Metaheuristic Algorithms We 

performed a sensitivity analysis to determine the 

impact of each metaheuristic algorithm used in the 

feature selection phase. Each algorithm was removed 

one at a time, and the model's accuracy was re-

evaluated. The results in Table 7 demonstrate that 

omitting any individual algorithm leads to a drop in 

accuracy. This confirms the synergy and 

complementary strengths of the selected six 

algorithms. 

 
Table 7 

Accuracy Impact of Removing Each Metaheuristic Algorithm 

(Sensitivity Analysis on NASA Data sets) 

Data 

set 

All Six 

Algorithms 

Without 

HHO 

Without 

ACO 

Without 

GWO 

Without 

GA 

Without 

PSO 

Without 

WOA 

CM1 98.62% 96.90% 96.85% 97.30% 96.92% 96.80% 97.02% 

JM1 97.81% 96.40% 96.23% 96.50% 96.10% 95.88% 96.38% 

KC1 98.59% 97.85% 97.60% 97.95% 97.72% 97.40% 97.65% 

PC1 98.71% 97.60% 97.42% 97.55% 97.30% 97.10% 97.50% 

 

5.6.Convergence and Performance Analysis 

To evaluate the optimization performance of the 

metaheuristic algorithms applied during the feature 

selection stage, we analyzed their convergence 

behavior over 100 iterations. Figure 24 illustrates the 

convergence curves of the six algorithms utilized in 

this study: Harris Hawks Optimization (HHO), Ant 

Colony Optimization (ACO), Grey Wolf Optimizer 

(GWO), Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), and Whale Optimization 

Algorithm (WOA). The steady decline in fitness 

values indicates consistent convergence toward 

optimal solutions. Each algorithm demonstrates a 

distinct convergence pattern, reflecting its unique 

balance between exploration and exploitation. 
 

 

Fig. 24.Convergence Curves of HHO, ACO, GWO, GA, PSO, 

and WOA over 100 Iterations 

5.7.Performance Analysis of the Proposed Model 

A comparative performance analysis benchmarked 

the proposed model against the best-performing 

baseline approach. Table 8 summarizes key 

evaluation metrics, including Accuracy, Precision, 

Recall, and F1-Score. The results indicate that the 

proposed model consistently outperforms the baseline 

across all metrics. These findings highlight the 

integrated architecture's strength and practical 

potential for software defect prediction in highly 

variable Software Product Line (SPL) environments. 

 
Table 8 

Comparative Evaluation of the Proposed Model vs. the Best 

Baseline Approach 

Metric 
Proposed 

Model 
Best Competing Model 

Accuracy 98.7% 94.5% 

Precision 97.9% 93.6% 

Recall 98.4% 92.8% 

F1-Score 98.1% 93.1% 

The performance improvements observed in Table 8 

align with the objective of our fitness function 

(Section 4.2), which penalizes excessive feature 

selection while rewarding classification accuracy. 

This balance encouraged the generation of compact 

yet informative feature subsets. Moreover, the fusion 
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of diverse feature sets produced by different 

metaheuristic algorithms enhanced classification 

robustness and reduced overfitting. These outcomes 

validate the effectiveness of our multi-objective 

optimization and ensemble learning strategy in line 

with the model's theoretical foundation. 

 

5.8.Discussion  

In this section, We conducted a comparative analysis 

of our proposed model with several previously 

conducted works in software defects detection using 

the Linux Variable Analysis Tools (LVAT) 

repository and NASA Data set[25], as summarized in 

Tables 9 and 10 . The experimental results 

demonstrate that combining multiple feature selection 

methods through metaheuristics, followed by feature 

fusion and stacked ensemble learning, yields 

significant improvements in defect prediction. The 

model is exceptionally robust in high-dimensional 

Data sets and is common in SPLs due to complex 

feature interdependencies. This proves the method's 

effectiveness not only in accuracy but also in handling 

real-world constraints such as scalability and feature 

redundancy. The study described in [30] utilized a 

hybrid optimization method combined with a 

Random Forest classifier. Reference [16] employs a 

combination of gray wolf optimization and SVM 

classifier (GWO+SVM) for anomaly detection. 

Similarly, the work in [21] explored the LTHFFA 

algorithm, which integrates three types of linear 

features: kernel-based features (BAVSSA), global 

features (KPCA), and local features (LLE). Another 

study [31] investigated Logistic Regression combined 

with the Fractional Chaotic Gray Wolf Optimizer 

(FCGWO) for software defect prediction. These 

studies highlight a diverse range of approaches 

combining meta-heuristic algorithms with various 

classifiers and feature selection techniques to improve 

the prediction and detection of software defects. In 

[14], it combines PSO and RF algorithms. Lastly, 

selecting features using OCSA and classification 

using Recurrent Neural Network (RNN) classifier 

[32]. In contrast, this article proposes using a 

combination of meta-heuristic algorithms in 

conjunction with ensemble learning stacking. This 

comparison provides insights into the efficacy and 

novelty of the proposed approach relative to 

established methods in the field. 

 
Table 9 

Comparison of the final accuracy of the proposed method 

compared to previous methods on the LVAT Data set 

Study Data set Method Accuracy(%) 

[30] 

LTS1 

Hybrid optimization 

technique 

combined+Random forest 

94.31% 

[16] GWO+SWM 90.00% 

[21] LTHFFA 91.65% 

Proposed 

method 
Proposed method 95.1% 

[32] 

LTM2 

OCSA+RNN 90.11% 

[21] LTHFFA 69.78% 

[16] GWO+SWM 67.22% 

Proposed 

method 
Proposed method 94.2% 

[30] 

LTL3 

Hybrid optimization 

technique 

combined+Random forest 

93.22% 

[16] GWO+SWM 96.11% 

[21] LTHFFA 94.28% 

Proposed 

method 
Proposed method 97.3% 

[16] 

LTV4 

GWO+SWM 93.2% 

[31] 

Integrated Logistic 

Regression and Fractional 

Chaotic Grey Wolf 

Optimizer 

93.97% 

[14] PSO+Random Forest 94.54% 

Proposed 

method 
Proposed method 99.4% 

 
Table 10 

Comparison of the final accuracy of the proposed method 

compared to previous methods on the NASA Data set 

Study Data set Method Accuracy(%) 

[30] 

CM1 

Hybrid optimization 

technique 

combined+Random forest 

97.12% 

[16] GWO+SWM 92.61% 

[21] LTHFFA 94.25% 

Proposed 

method 
Proposed method 98.62% 

[16] 

JM1 

GWO+SWM 94.24% 

[31] 

Integrated Logistic 

Regression and Fractional 

Chaotic Grey Wolf 

Optimizer 

72.33% 

[14] PSO+Random Forest 69.41% 

Proposed 

method 
Proposed method 97.81% 

[30] 

KC1 

Hybrid optimization 

technique 

combined+Random forest 

95.16% 

[16] GWO+SWM 97.88% 

[21] LTHFFA 96.71% 

Proposed 

method 
Proposed method 98.59% 

[32] 

PC1 

OCSA+RNN 94.97% 

[21] LTHFFA 96.17% 

[16] GWO+SWM 96.01% 

Proposed 

method 
 Proposed method 98.71% 
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Our hybrid approach capitalizes on the strengths of 

both metaheuristic and machine-learning algorithms. 

The proposed method has a Higher accuracy on the 

testing Data set and significantly performed well 

compared to the previous research and some well-

known machine learning models. Although 

employing six metaheuristic algorithms may suggest 

increased computational overhead, our architectural 

design effectively addresses this concern. Since each 

algorithm functions independently, they can be 

executed in parallel, significantly reducing wall-clock 

time. Furthermore, we do not aggregate all selected 

features into one large set; instead, a selective feature 

fusion strategy is employed to filter out redundancy 

and preserve only the most informative attributes. 

This results in a compact and computationally 

efficient final feature set. As shown in Table 4, the 

total runtime across all datasets, including feature 

selection and model training, remained under 21 

seconds, confirming the practical feasibility of the 

method. Given the substantial gains in accuracy, 

precision, and recall, this modest computational cost 

represents a justified and cost-effective trade-off, 

especially for high-stakes applications like defect 

prediction in SPLs where early and accurate detection 

is critical. Furthermore, to ensure a meaningful 

evaluation of our model's effectiveness, we included 

a comparative analysis against several state-of-the-art 

methods published in the latest studies. These include 

deep learning-based models, hybrid metaheuristic 

techniques, and advanced ensemble classifiers. 

Across both NASA and LVAT datasets, our model 

consistently outperformed these recent approaches 

regarding accuracy, precision, recall, and F1-score. 

This demonstrates our method's competitiveness with 

the latest research and confirms its robustness and 

scalability across different datasets and algorithmic 

baselines. 

5.9.Threats to Validity 

Like any empirical research, this study is subject to 

potential threats to validity. Internal threats include 

potential overfitting due to multiple feature selection 

algorithms and ensemble models. To mitigate this, we 

used cross-validation and confidence interval 

analysis. External threats stem from Data set 

dependency; all experiments were conducted on 

NASA and LVAT Data sets, and results may not 

generalize to other domains. Construct validity may 

be affected by the choice of metrics; while we used 

standard ones like precision, recall, and F1-score, 

more domain-specific metrics could yield different 

insights. 

6.Conclusion and Future Work 

In this study, we proposed a novel three-layered 

architecture for software defect prediction in 

Software Product Lines (SPLs). The model integrated 

six metaheuristic algorithms (WOA, ACO, GWO, 

GA, PSO, and HHO) for optimal feature selection, 

followed by a feature fusion strategy and a stacked 

ensemble classifier. The feature selection process was 

guided by a fitness function that balanced 

classification accuracy and feature reduction. The 

proposed method improved significantly over both 

baseline models and recent state-of-the-art 

techniques. Specifically, it reached up to 99.4% 

accuracy and consistently delivered higher precision, 

recall, and F1 scores across the NASA and LVAT 

datasets. Integrating multiple optimizers and 

ensemble learning contributed to robustness, 

scalability, and generalizability, validating the 

approach's effectiveness. Future work could explore 

extending this framework using deep neural networks 

for further classification enhancement or integrating 

adaptive parameter tuning within the optimization 

stage. Applying this method to larger and more 

diverse industrial datasets may provide additional 

insights into its scalability and effectiveness in real-

world scenarios. 
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