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Abstract 
A technique that blends semi-supervised learning and clustering is called semi-supervised clustering. In semi-supervised 

clustering, using labeled data can significantly enrich the results quality. However, clustering is an NP-hard and multi-

objective problem that necessitates the utilization of multi-objective meta-heuristic algorithms to generate satisfactory 

solutions. The main challenge associated with these algorithms lies in their susceptibility to local optima and the manual 

adjustment of parameters. To overcome these issues, this study introduces an adaptive multi-objective cuckoo algorithm for 

semi-supervised clustering termed "Informed AdamCo," The motion coefficient parameter has been adjusted automatically 

using fuzzy control in this algorithm. The proposed algorithm can also increase the diversity of non-dominated solutions with 

a mutation capacity based on preference information to overcome the local optima trap problem. The adaptive adjustment of 

the migration coefficient parameter using fuzzy control considers three practical inputs simultaneously: Iteration, Error, and 

Distance.  To evaluate the proposed approach, 10 UCI and six synthetic datasets, as well as the KDD Cup 1999 dataset were 

used in the experiments. Statistical and numerical analyses demonstrate the superiority of Informed AdamCo over the other 

five algorithms compared. 
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1. Introduction 

Semi-supervised clustering plays an important function in 

machine learning. It has been extensively utilized as a pre-

processing method in many real-world situations, such as 

anomaly identification [1], analysis of gene expression 

patterns [2], image segmentation [3], to name but a few. 

Considering the NP-hard and multi-objective nature of the 

clustering problem, applying multi-objective optimization 

algorithms is favored for addressing the challenge. Multi- 

bjective algorithms, compared to single-objective ones, 

can also provide high-robustness results. Yet, both these 

algorithms (single-objective and multi-objective) suffer 

from the two challenges of manual parameter adjustment 

and getting stuck in the local optimum.  

Semi-supervised clustering algorithms can be categorized 

into three fundamental sorts: distance-based, search-

based, and hybrid approaches [4]. Within the distance-

based approach, an existing clustering strategy is utilized, 
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and based on supervised information the distance measure 

is adjusted. This shift aims to decrease the distance 

between data points with identical clusters (Must-Link 

constraints: ML) and increase that distance for data points 

with separated clusters (Cannot-Link constraints: CL). [5]. 

In essence, the distance measure exploiting the prior 

knowledge (ML and CL) is parameterized [6]. However, 

it is important to note that the modified distance measure 

in the distance-based method may not always yield 

accurate results. For example, two samples with a Must-

Link constraint may still be far apart and end up in 

different clusters. Some studies that have employed this 

method include  Sanodiya et al. (2019),  Zhang et al. 

(2003), and [9]. 

On the other hand, search-based approaches to lead the 

clustering process and ameliorate results modify existing 

clustering algorithms by incorporating prior knowledge 

(labeled data or constraints). This is achieved by 

converting the clustering algorithm objective function in 

various ways. For instance, constrained COBWEB  [10], 

optimizes clustering objectives making use of constraints 

in the incremental partitioning process. Seeded K-means 

[11] embodies labeled data to the conventional K-means 

in the initialization step of the algorithm. Similarly, 

constrained K-means [11] benefits from prior knowledge 

in the two steps of the K-means algorithm: initialization 

and assignment steps. Combined methods incorporate 

distance and constraint-based perspectives and benefit 

from both in the effective solving of this problem. 

As mentioned above, in search-based methods, prior 

knowledge is added to traditional clustering to optimize 

clustering performance, with one such technique being the 

modeling of clustering as a multi-objective optimization 

problem [5]. This technique has been employed in the 

studies conducted by Akbarzadeh et al. (2019), Ebrahimi 

and Abadeh (2012), and Kumar Alok et.al (2017). 

However, the literature shows that single-objective 

methods are still utilized (Dong et al., 2016; Dong et al., 

2017; Lai et al., 2020). Therefore, to address the problem 

of semi-supervised clustering, this paper presents a fuzzy-

based method, called Informed AdamCo, for the adaptive 

adjustment of the migration coefficient parameter of the 

multi-objective cuckoo algorithm aimed at achieving the 

optimal solution of the semi-supervised clustering 

problem.  To achieve this objective, the single-objective 

cuckoo algorithm is first converted into a multi-objective 

cuckoo algorithm. Afterwards, the labeled data is used in 

the initialization phase and training process of the 

proposed approach. Informed mutations are also included 

in the algorithm to increase the diversity of solutions and 

create more efficient populations. Finally, the motion 

coefficient parameter of the cuckoo algorithm is adjusted 

using a fuzzy method, which consists of three input 

components: algorithm iterations, population diversity, 

and error. The main results of this study are summarized 

as follows: 

 Adaptive adjustment of motion coefficient 

parameter in multi-objective cuckoo Algorithm 

using a fuzzy control technique. 

 Improving the variety of non-dominant solutions 

and providing better direction for the entire 

Cuckoo population to reach an optimal solution 

through the establishment of a mutation algorithm 

that relies on preference data. 

 Applying two coefficients to the cuckoo 

movement pattern to improve the convergence in 

the multi-objective development of Rajabioun’s 

cuckoo Algorithm. 

The remainder of the paper is organized as follows. 

Section 2 reviews related research on semi-supervised 

clustering, and Section 3 presents the proposed algorithm. 

Section 4 reviews the experiments and results on the 

dataset and compares them with state-of-the-art 

algorithms. Finally, Section 5 concludes the study. 

 

2. Related Work 

 

The literature in this domain has been categorized 

into two distinct groups: 1) Papers using the fuzzy 
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control of parameters within swarm intelligence 

algorithms (FC-SI group). 2) Papers employing the 

fuzzy control of parameters within evolutionary 

algorithms (FC-EA group). In the following, we will 

further examine only the first group, as it directly 

pertains to the cuckoo algorithm, a swarm 

intelligence algorithm. 

2.1. FC-SI Group 

 

 In this section, we review only the articles that focus 

on adjusting the parameters of swarm intelligence 

algorithms using fuzzy control techniques. 

[22] applied a fuzzy control strategy to regulate the 

evaporation rate ρ within the Ant Colony Algorithm. 

The control mechanism involves the use of an error 

metric to precisely adjust the parameter values. 

 Mishra (2005) introduced a fuzzy control technique 

to modify the step size C in Bacterial Foraging 

Optimization (BFO) by taking into account the 

fitness value of the best individual in the population. 

Similarly, [24] suggested a fuzzy control system for 

adapting this parameter in BFO, utilizing the error in 

the objective function and the C parameter current 

value as input. In the study by [25], a fuzzy method 

was hired to regulate the α and γ parameters of the 

Firefly algorithm, where α controls the random 

walks step sizes and γ controls the visibility of 

fireflies (and hence search modes). The strategy 

involves integrating an adaptive weight that 

dynamically updates these parameters based on their 

previous values, with the fuzzy engine directly 

managing the control of this weight. 

[26] introduced a fuzzy adjustment technique for the 

G, which has an important effect on agent 

acceleration in the Gravitational Search Algorithm 

(GSA). This approach utilizes the best fitness value 

of an individual, the iteration number without 

improvement, and the variance in population fitness 

to fine-tune the G parameter. Similarly, [27] 

proposed a GSA variant with a fuzzy adaptation of 

the gravitational constant. The best fitness achieved 

at iteration T, the iteration number without fitness 

improvement, and the fitness variance at iteration T 

are used as inputs to dynamically tune G.  

Additionally, Kumar et al. (2013) presented a fuzzy 

adjustment method for the GSA algorithm, which 

utilizes an individual normalized fitness and the 

gravitational constant G current value to adapt and 

optimize the constant. In an alternative context, [29] 

suggested a fuzzy control strategy for parameter α, 

responsible for regulating the speed of convergence. 

They incorporated three measures: population 

diversity, population progress, and the iteration 

number to modify the parameter value through 

increments or decrements.[30] introduced a fuzzy 

control method for the parameters C1 (the cognitive 

coefficient) and C2 (the social coefficient) within the 

Particle Swarm Optimization (PSO) algorithm. This 

technique relies on three factors: iteration number, 

diversity, and an error measure to dynamically adjust 

the parameters. Similarly, [31] demonstrated a fuzzy 

control approach for the parameters ω (the inertia 

weight), C1 and C2 in PSO. The control strategy 

makes use of the finest fitness value and the iteration 

number without fitness improvement to adjust the 

parameters. Furthermore, Olivas et al. (2013) put 

forward a fuzzy control method for the parameters 

C1 and C2 in PSO. This method utilizes a measure of 

population diversity and the number of iterations to 

modify the parameter values. Additionally, they 

introduced an altered fuzzy control approach where 

the input variables, population diversity, and the 

number of generations are treated as fuzzy. In their 
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research, the second model produced superior 

outcomes. [33] introduced a fuzzy control technique 

for the adjustment of C1 and C2 parameters in PSO 

using population fitness values. 

 [34] proposed two fuzzy models to tune visual 

parameters in the fish field algorithm. The first 

model, named Fuzzy Uniform Fish, takes as input 

the number of iterations and the proportion of 

individuals with the best current physical condition. 

The second model, called Fuzzy Autonomous Fish, 

uses the distance, fitness rating, and number of 

iterations of the best individual as inputs. 

[35] introduced a method that incorporates a novel 

definition of population diversity in the improved 

Cuckoo algorithm. This fuzzy control approach is 

employed to regulate parameter changes for 

determining the location of sensor network nodes. In 

our study, fuzzy adaptation of migration coefficient 

parameter is employed to regulate changes in 

Cuckoo’s algorithm for semi-supervised clustering 

problem. A new informed mutation algorithm has 

also been used to increase the diversity of non-

dominated solutions and to overcome the local 

optima trap problem with a mutation capacity based 

on preference information. 

As previously highlighted, clustering poses 

challenges as an NP-hard and multi-objective 

problem [36]. The computational complexity of 

clustering remains high, even for reasonably sized 

datasets. It is necessary to employ meta-heuristic 

algorithms, such as swarm intelligence algorithms, 

which have shown success in solving clustering 

problems. Multi-objective clustering, in particular, 

aims to optimize clustering based on multiple criteria 

instead of a single objective. By leveraging multi-

objective optimization algorithms, clustering 

methods effectively reduce the search space and 

strive to optimize diverse and complementary 

criteria. These algorithms are preferred over their 

single-objective counterparts due to their ability to 

generate robust results. Our investigation into swarm 

intelligence algorithms and their potential 

capabilities led us to the conclusion that the Cuckoo 

algorithm could be beneficial in solving the semi-

supervised clustering problem. 

On the other hand, the studies referenced above 

indicate that despite the challenges associated with 

defining thresholds and fuzzy rules, fuzzy control 

techniques continue to be utilized due to their 

promising outcomes. In particular, these techniques 

have been integrated into various swarm intelligence 

algorithms such as PSO, BFO, ACO, AFSA, GSA, 

FA, CS, BA, and ABC. Among these algorithms, 

fuzzy control within the PSO stands out for its 

simplicity and efficiency, making it a viable option 

for testing and implementation in other algorithms. 

Therefore, we deem these approaches worthy of 

consideration. 

Through comprehensive analysis and review of the 

literature, we have identified crucial factors 

influencing parameter adjustment, including the 

time/number of repetitions, the error rate of each 

cuckoo (indicating the disparity between the 

objective function of each cuckoo and the best 

cuckoo of each generation), and the Euclidean 

distance among every cuckoo and the finest cuckoo 

of every generation. Consequently, appropriate 

definitions for these factors were devised. 

Subsequently, those elements were hired as inputs 

for the fuzzy system to permit fuzzy adaptation of 
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the migration coefficient. Lastly, the fuzzy system 

was integrated into the multi-objective cuckoo 

algorithm to enhance its effectiveness and 

performance. 

3. Proposed Informed AdamCo for Semi-

supervised Clustering 

In this section, we first define semi-supervised 

clustering problems and research objectives. We 

then explain each step to reach the proposed method 

and present our algorithm. 

3.1.  Research Objectives and Problem Definition 

Clustering serves the purpose of classifying 

unmarked samples into distinct classes or clusters, 

based on their similarity [37]. In semi-supervised 

algorithms, there exists a combination of labeled data 

𝑋𝑙 = (𝑥1. 𝑥2. … . 𝑥𝑙) with labels {1,…,k} and 

unlabeled data 𝑋𝑢 = (𝑥𝑙+1. 𝑥𝑙+2. … . 𝑥𝑙+𝑢) with 

unknown labels, where the number of labeled 

instances (l) is significantly smaller than the number 

of unlabeled instances (u). Both datasets, labeled and 

unlabeled, are independently sampled from the same 

data distribution. The objective of semi-supervised 

methods is to utilize the available labeled data to 

guide the algorithm towards achieving improved 

outcomes. 

 Our proposed framework, depicted in Fig. 1, 

presents an adaptive multi-objective method 

to solve the semi-supervised clustering 

problem. Following an examination of 

various techniques, we concluded that meta-

heuristic algorithms are more suitable for 

solving clustering problems given their NP-

hard nature.  

 On the other hand, clustering is a multi-objective 

challenge, and different and complementary 

objectives must be considered simultaneously to 

narrow the search space and obtain a better result.  

Hence, the concept of transforming the single-

objective cuckoo into its multi-objective 

counterpart was investigated. Concurrently, the 

initialization step of the algorithm utilized labeled 

data as cluster centers. To increase the diversity of 

non-dominated solutions and efficiently steer the 

entire Cuckoo population toward a superior 

solution, a mutation algorithm grounded on 

partiality information was implemented. 

 Then, to achieve better results, we investigated the 

challenges and practical considerations in the 

performance of such algorithms. The challenges 

encompassed issues such as entrapment in local 

optima and the need for manual parameters. In this 

regard, the existing methods for automatic 

parameter adaptation were studied, and their 

practical components were consequently 

extracted. Finally, the extracted features were 

applied through a fuzzy system design. 
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Fig. 1. The framework to achieve informed fuzzy adaptation 
based multi-objective method for semi-supervised clustering 

problem. 

3.2. The multi-objective Cuckoo algorithm 

 
The multi-objective cuckoo algorithm is a generalization 

of the single-objective cuckoo algorithm to solve multi-

objective problems. However, several adaptations have 

been incorporated as follows: 

Determining the best cuckoo based on two objective 

functions is done using a concept called archive, which 

includes a population of non-dominated solutions found so 

far and is kept separate from the main population. This 

pool has a limited capacity and always contains solutions 

that approximate the Pareto front. Moreover, each cuckoo 

has two sources of information for movement: the current 

position and the position of the best cuckoo of each 

generation. Therefore, in the multi-objective cuckoo 

algorithm, the concept of the best position in the 

population has changed. The best position of the cuckoo 

population is not a fixed position. All the collections of 

cuckoos in the archive are among the best.  

3.3. Cuckoos State Encoding and Cluster Centers 

Initialization 

In the Informed AdamCo, a set of real numbers represents 

the state of cuckoos. These real numbers indicate the 

locations of the cluster centers and are initially chosen 

from labeled data of each cluster. Each cuckoo state is a 

matrix with ‘k’ rows and ‘d’ columns, where ‘k’ is the 

number of clusters and ‘d’ is the number of data 

dimensions. 

3.4. Assignment of Points 

The minimum Euclidean distance measure has been 

utilized to assign unlabeled data. A special point P is 

given to the cluster with the minimum Euclidean distance 

from its center (Equations 1 and 2). 

𝑃 ∈ 𝑖| 𝑎𝑟𝑔𝑚𝑖𝑛𝑖{ 𝑑𝑒(𝐶𝑖 . 𝑃)}            (1) 

𝑖 = 1. . . 𝑘         (2)                                                                                                                             

𝐶𝑖 is the ith cluster center and 𝑑𝑒 designates the Euclidean 

distance. 

 

3.5. Objective Functions 

Two objective functions are considered for optimization: 

The compactness and the Normalized Mutual Information 

(NMI) index. Compactness is obtained through the 

calculation of the Sum of Squares of Errors (SSE) of a 

solution according to Eq. 3 and represents the distance 

between an object and the closest cluster center. In 

calculating this error, labeled data are assigned to their 

respective cluster and not necessarily to the cluster from 

which they have a shorter distance: 

𝑆𝑆𝐸( ₵) = ∑ ∑ ||𝑥𝑗∀𝑥𝑗∈𝑐𝑖

𝑘
𝑖=1 − 𝜇𝑖||

2       (3) 

where ||.|| indicates the Euclidean distance, 𝜇𝑖 is the 

cluster center 𝐶𝑖, and 𝑥𝑗 denotes the jth element of the 

dataset. As the objective function, the SSE should be 

minimized.  

The NMI index is a symmetric measure that calculates the 

shared information between the members of a pair of 

clusterings. Our optimization algorithm reaches the best 

result through minimization. Therefore, the NMI negation 

is minimized and defined as follows: 

I(X; Y)=H(X)-H(X|Y)    (4) 

NMI = I(X. Y)/√H(X)H(Y)    (5) 

Eq. 4 represents the mutual information between X and Y. 

X and Y are two random variables described by clustering 

labels with different numbers of clusters. H(.) indicates 

the entropy according to Eq. 5 [38].  

3.6. Informed Mutation 

To expand the set of superior solutions and guide the 

whole population towards enhanced solutions, a well-

informed mutation method is presented. This mutation 

approach relies on preference details, namely Negative 
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and Positive information. The method is built on two key 

principles: Negative information, which involves the 

average positions of dominated solutions, and Positive 

information, which encompasses the average positions of 

non-dominated solutions at each iteration. In the first half 

of the evolutionary process, the negative information is 

used to manage the cuckoo population and quickly discard 

unfavorable cuckoo positions. Later, both positive and 

negative information are used to steer the overall 

population's evolution, facilitating the rapid attainment of 

optimal solutions and augmenting the diversity of these 

solutions during the latter half of the evolution process. 

This approach is mathematically formulated in Eqs. 6 and 

7. 

Positive Information=
∑ CuckooPop(i). Position

|N|
i=1

|N|
⁄  

(6) 

NegativeInformation=
∑ CuckooPop(j). Position

|D|
j=1

|D|
⁄  

(7) 

|N| and |D| represent the number of non-dominant and 

dominated cuckoos in each iteration, respectively. The 

Informed mutation algorithm is defined below (Algorithm 

1). 

 

 

 

 

3.7. Fuzzy Parameter Adjustment 

In this section, we discuss the design of the fuzzy system 

that is used in the adaptation of the migration coefficient 

parameter. 

The equation of cuckoos’ movement in each generation is 

defined as follows: 

Hij
new = C1 ∗ Hij

old + C2 ∗ F ∗ λ(Hij
best − Hij

old) (8)  

 

where 𝐻𝑖𝑗
𝑛𝑒𝑤  is a new position, 𝐻𝑖𝑗

𝑜𝑙𝑑indicates the current 

cuckoo position, F denotes the migration coefficient, λ is a 

uniform random number between zero and one, and  

𝐻𝑖𝑗
𝑏𝑒𝑠𝑡 represents the position of the best cuckoo in the best 

cluster in each generation. C1 = (1 −

exp (−
1

current iteration 
 )), and 

C2 = (0.5 + 1.5 ∗ (1/

sqrt(current iteration )))^Norm(NormalizedError) 

coefficients have been added to the cuckoo movement 

pattern of [39] to increase convergence inspired by [40]. 

𝑁𝑜𝑟𝑚(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐸𝑟𝑟𝑜𝑟) will be described 

subsequently. 

The migration coefficient (F) and λ help cuckoos explore 

a broader range of positions in all environments. F needs 

to be adjusted manually; we have adapted this coefficient 

automatically using fuzzy logic. According to [30], the 
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recommended values of this parameter fall within the 

range of 0.5 to 2.5.  

Since the practical components affecting parameter 

adaptation include the diversity of the swarm, the error, 

and the algorithm iterations, in our proposed method, all 

the mentioned components are used to adapt the migration 

coefficient parameter through the fuzzy system in each 

iteration dynamically. Mamdani's fuzzy system framework 

is designed according to Fig. 2. 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 2. Fuzzy system design of adaptive parameter adjustment of 
the multi-objective cuckoo algorithm with informed mutation for 

semi-supervised data clustering. 

To measure iteration, the percentage of repetitions has 

been considered: at the initial iterations of the algorithm, 

the percentage of repetitions is low, but when the 

repetitions are completed, the value for iteration increases, 

which is defined as Eq. 9: 

Iteration =
Current iteration

Maximum of iterations
   (9) 

To measure diversity, we used the Euclidean distance 

criterion so that the greater the distance of cuckoos from 

the best cuckoo of the best cluster is, the greater its 

diversity will be. The diversity is normalized as given in  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝐷𝑖𝑠𝑡

=
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝑎𝑐ℎ 𝐶𝑢𝑐𝑘𝑜𝑜 𝑓𝑟𝑜𝑚 𝐵𝑒𝑠𝑡 𝐶𝑢𝑐𝑘𝑜𝑜 𝑜𝑓 𝑡ℎ𝑒 𝐵𝑒𝑠𝑡 𝐶𝑙𝑢𝑠𝑡𝑒𝑟)

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

(10) 

The Error criterion is also defined as the difference 

between the fitness value of each cuckoo and the fitness 

of the best cuckoo of the best cluster in each generation 

(Eq. 11). 

𝐸𝑟𝑟𝑜𝑟 = |𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) − 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑒𝑠𝑡𝐶𝑢𝑐𝑘𝑜𝑜)|   (11) 

 

To have the Error value between 0 and 1, we 

normalize it as Eq. 12: 

 

NormalizedError =
Error−min (Error)

max(Error)−min (Error)
   (12) 

 

The Error vector is represented as a two-dimensional 

vector. To simplify the calculation and comparison of the 

results, the normalized form of Eq. 12 is adopted as the 

fuzzy system input, as indicated in Eq. 13.  

Norm(NormalizedError)

= Norm2(NormalizedError) 

 

 (13)       

         

 

Therefore, three inputs are applied to the fuzzy system to 

tune the migration coefficient parameter dynamically. The 

outcome of the fuzzy system represents the modified 

migration coefficient. The input variables have been 

designed according to Figs. 3 (a), (b), and (c), which show 

iteration, distance-based diversity, and error, respectively. 

Each input is crumbled into three Gaussian membership 

functions. As mentioned earlier, the output variable’s 

range of change is considered between 0.5 and 2.5, 

defined by five Gaussian membership functions and 

illustrated in Fig. 3 (d). 
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(a) 

 

 

(b) 
 

 

(c) 

 

(d) 
 
Fig. 3. a) Iteration input. b) Diversity input. c) Normalized 

Error input. d) Output (adjusted migration coefficient). 

 

The rules of the fuzzy system are formulated based on the 

following logic: the exploration must be high in the initial 

iterations, and gradually, as the algorithm approaches the 

final iterations, exploitation should be increased due to the 

enrichment of the exploration. On the other hand, when 

the diversity of the population is low, the cuckoos are, 

accordingly, close to the best cuckoo. Therefore, the 

exploration should be increased. In scenarios of high 

diversity, however, the exploitation should be increased. 

The rules of the fuzzy system are shown in Fig. 4: 

 

 

 

Fig. 4. The rules of the designed fuzzy system to estimate the 

migration coefficient. 
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3.8. The Informed AdamCo Algorithm 

 
This study introduces the Informed AdamCo algorithm, an 

adaptive multi-objective cuckoo algorithm for semi-

supervised clustering. By utilizing fuzzy parameter 

adaptation and preference information, the algorithm aims 

to enhance the clustering process. To provide a 

comprehensive understanding of the Informed AdamCo 

algorithm, its pseudocode is presented in Algorithm 2. 

According to the pseudocode, the cuckoo population is 

initialized and the objective values of each cuckoo are 

obtained in Steps 5 to 6. Subsequently, the initial cuckoo 

population undergoes the non-dominated sorting method to 

extract and store the non-dominated individuals. Steps 9 to 

11 involve the calculation of Positive and Negative 

Information, the application of the mutation algorithm to 

the current cuckoo population, and the computation of the 

objective values for the mutated population. The mutated 

population is then subjected to the non-dominated sorting 

algorithm to identify the non-dominated cuckoo 

individuals, which are stored as a non-dominated solution 

for updating in Steps 12 to 14. Steps 15 to 16 include 

grouping the cuckoo population by the K-means algorithm 

to find the best group using the mean of each group's 

objective values and, subsequently, defining the best 

cuckoo in the population by specifying the best one in the 

best group. Calculation of the fuzzy system inputs using 

Eqs. 9, 10, and 13 are carried out in Step 17, which leads 

to the estimation of the migration coefficient parameter. 

Then, in Step 18, the cuckoo population moves towards 

the best cuckoo via Eq. 8. In the final stages of the 

algorithm, the objective values of the migrated cuckoo 

population are calculated, and the archive is updated with 

non-dominated members. Steps 9 to 23 continue in a loop 

until the maximum iteration is reached and the archive of 

non-dominated members is finally returned.  

 

4. Experimental Results and Analysis 

4.1. Experimental Datasets and Parameter 

Settings 

In this section, we delineate the experiments carried out to 

demonstrate the effectiveness of the proposed Informed 

AdamCo clustering approach. Furthermore, we conduct a 

numerical and statistical analysis of the results obtained. 

A total of seventeen datasets were selected to assess the 

performance of Informed AdamCo, with ten UCI datasets 

and six artificial datasets included in the evaluation. The 

artificial datasets were created using the software 

developed by Julia Handl and were formatted as Xd-Xc-

noX, where 'd' represented attributes, 'c' indicated clusters, 

and 'no' denoted the dataset number. For example, the 

dataset 2d-10c-no0 consisted of two attributes, ten 

clusters, and a dataset number of zero. The last dataset 

selected for the study i.e., 10kdd, is a practical standard 

for comparing different intrusion detection methods. This 

dataset contains 494,021 records, 41 features, and 23 

clusters (one cluster contains standard records, and the 

other clusters represent different types of network 

attacks). Since the proposed method can be applied to 

numerical data, the three features of this dataset are not 

numeric. First, the strings of these three features were 

merged into one. In the next step, a number between 0 and 
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208 was assigned to each unique string. Instead of 23 

clusters, two clusters were considered. One cluster is for 

the standard records, and the other is for all the other 22 

types of network attacks. The relief method was applied to 

select the 10 top features and showed that many records 

were repeated. As a result, duplicate records were 

removed, leaving a total of 41351 records in the end. The 

Informed AdamCo algorithm was applied to this 

collection. Table 1 provides detailed descriptions of these 

datasets. The number of features across the 17 datasets 

ranges from 2 to 200, while the number of samples ranges 

from 100 to 494021. All simulation experiments were 

conducted using MATLAB R2022a on a system equipped 

with Windows 10, an Intel (R) Core (TM) i7-6500 CPU 

running at 2.5 GHz, and 8.00 GB of RAM. 

Table 1 

Information on 17 Datasets. 

#Class #Attribute

d(D) 
#Example 

Name 

3 4 150 Iris 
3 13 178 Wine 
2 2 373 Jain 
2 4 1372 Bank 

Authentication 

8 7 336 Ecoli 
7 2 788 Aggregati

on 
7 17 101 Zoo 
2 30 569 WDBC 
3 7 210 Seeds 
5 200 801 GenPAN

CAN-801*200 
3 110 100 110d-3c-

HighD 
10 2 2972 2d-10c-no 
4 2 1623 2d-4c-no1 
4 2 1064 2d-4c-no2 
4        2 1123 2d-4c-no3 
4 2 863 2d-4c-no4 
2 10 49402

1 

10kdd 

 

The partitioning results obtained were compared with 

various state-of-the-art algorithms, including semi-

supervised NSGAII (semi-NSGAII), semi-supervised 

MOPSO (semi-MOPSO), semi-supervised multi-objective 

evolutionary algorithm based on decomposition (semi-

MOEA/D), semi-supervised multi-objective grasshopper 

(semi-MOGHopper), and semi-supervised multi-objective 

adaptive guided differential evolution (semi-MOAGDE). 

The standard parameters for these comparative algorithms 

were consistent: population size (nPop) = 30, maximum 

iterations (MaxIt) = 150, and number of repository 

members (nRep) = 100. To account for the randomness of 

the optimization algorithm, each approach was executed 

20 times on the datasets to calculate the average result. 

The specific parameter configuration for Informed 

AdamCo and the other comparative algorithms can be 

found in Table 2. To ensure an equitable comparison 

among different algorithms, all semi-supervised clustering 

algorithms utilized the same labeled dataset (10%) in our 

experiment. Moreover, the number of clusters 'k' was set 

to correspond with the number of ground truth clusters. 

                 Table 2 
               Parameter settings for all comparative algorithms. 

Parameters Y 

 

Algorithm 

Inertia weight w = 0.7; 

maximum velocity Vmax = 

0.6; inflation parameter of   the 

grid is set to 0.1; and the 

acceleration constants c1=1, 

and c2 = 2. 

2005 MOPSO 

Crosser probability pCross = 

0.7; mutation rate mu= 0.02;  
2002 NSGAII 

Number of neighbors T=20; 2007 MOEA/D 

Default parameter settings are 

used 
2017 MOGHopper 

Default parameter settings are 

used 

2

021 
MOAGDE 

 

4.2. Clustering Results of Informed AdamCo and 

Five Other Algorithms 

To evaluate the performance of Informed AdamCo with 

other algorithms, five state-of-the-art semi-supervised 

multi-objective algorithms, including semi-NSGAII [41], 

semi-MOPSO [42], semi-MOEA/D  (Zhang & Li, 2007), 
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semi-MOGHopper [44], semi-MOAGDE [45] were 

employed for comparison.  The relevant parameter 

settings of these algorithms are outlined in Table 2. To 

assess the clustering performance of each algorithm, two 

commonly used evaluation metrics were used: the 

Adjusted Rand Index (ARI) [46], and the Accuracy (Acc) 

[47]. The Adjusted Rand Index is an external measure 

with a value between -1 and 1. The closer the ARI value 

to one, the better the clustering quality. The Accuracy is 

also an external measure and is equivalent to the ratio of 

accurate matching pair number to the total matching pair 

number. The experimental results of comparison with 

these five algorithms are shown in Table 3 with optimal 

results highlighted in bold. As seen in Table 3, the three 

metric values of Informed AdamCo are better than those 

of the other algorithms on 13 datasets, except for datasets 

Iris, Ecoli, Aggregation, and Zoo.  

The results in Table 3 show that the Informed AdamCo 

algorithm improves the clustering performance for most 

datasets compared to the other five algorithms compared. 

The significance of the results is confirmed via the t-test. 

According to Table 3, the values of the criteria of 

Informed AdamCo are better than those of semi-NSGAII, 

semi-MOPSO, semi-MOEA/D, semi-MOGHopper, and 

semi-MOAGDE on 13 datasets, except for Ecoli, 

Aggregation, and Zoo datasets. Specifically, semi-

MOAGDE exhibits superior performance on the  

Aggregation dataset, semi-MOEA/D achieves better 

results on the Ecoli dataset, and semi-MOGHopper 

demonstrates improved performance on the Zoo dataset. 
In summary, Informed AdamCo has revealed superior 

clustering performance on most datasets. Thanks to its 

motion coefficient parameter adaptation, more efficient use 

of labeled data, and its informed mutation method, the 

Informed AdamCo algorithm can enhance the likelihood 

of obtaining superb candidate individuals. In examining 

the data in which the proposed method did not work better 

than other comparable methods, it seems that most of such 

data are highly cluttered. 

                       Table 3  
                          Comparing The Performance of The Proposed Method with 5         

Algo                  Other Algorithms. 

 

Dataset              Algol                                           
semi-NSGAII semi-MOPSO 

ARI Acc ARI Acc 

Iris 0.53 70 0.53 70.27 

Wine 0.38 68.06 0.39 68.06 

Jain 0.62 90 0.63 90.07 

BankAuthentication0402 0.69 90.6 0.7 90.67 

Ecoli 0.44 64.2 0.45 64.27 

Aggregation 0.57 69 0.58 69.1 

Zoo 0.74 81 0.75 81.24 

WDBC 0.73 93 0.74 93.18 

Seeds 0.33 60 0.34 60.93 

GenePANCAN-801*200 0.71 78 0.72 78.47 

2d-10c-no0 0.82 87 0.83 87.27 

2d-4c-no1 0.88 90 0.89 90.17 

2d-4c-no2 0.87 93 0.88 93.13 

2d-4c-no3 0.93 95 0.94 95.92 

2d-4c-no4 0.94 96 0.95 96.44 

110d-3c-HighD 0.85 90 0.86 90.2 

110kdd-10-02 0.57 89.5 0.58 90 

                           

                          Table 3 Continued 

                          Comparing The Performance of The Proposed Method with 5         

Algo                  Other Algorithms. 
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  Table 3 Continued 

  Comparing The Performance of The Proposed Method with 5     

Other Algorithms 

5. Conclusion 

The AdamCo demostrates high search capability, a simple 

structure, and good stability. Furthermore, most of the 

currently used optimization-based clustering techniques 

are prone to produce suboptimal solutions. The present 

study introduced the AdamCo algorithm based on 

preference information and adaptive adjustment of the 

migration coefficient parameter to address these clustering 

issues. First, the single-objective cuckoo algorithm was 

analyzed and then converted to a multi-objective cuckoo 

algorithm due to the multi-objective and NP-hard nature of 

clustering. Labeled data were employed in two steps (the 

initialization step and the learning phase) of the proposed 

method. To produce a better population, an informed 

mutation was also used in the algorithm to improve the 

diversity of the solutions. Finally, the migration coefficient 

parameter of the cuckoo algorithm was adapted using the 

fuzzy technique with three input components: algorithm 

iterations, population diversity, and error. AdamCo was 

tested on several UCI, artificial, and 10kdd datasets and 

compared with five other state-of-the-art algorithms. The 

experimental results illustrate that the AdamCo algorithm 

outperforms the other compared algorithms in terms of 

ARI and Accuracy. Future research can focus on the 

weaknesses of the Informed AdamCo algorithm. One such 

work can be improving the performance of the algorithm 

on datasets with mixed clusters. 
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