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Abstract 
The automotive industry serves as a cornerstone of Iran's economy, with auto spare parts demand playing a vital role in its 

transportation infrastructure. Traditional forecasting methods often struggle to capture the intricacies of Iran's dynamic market 

dynamics, prompting the adoption of advanced computational techniques. This study explores the efficacy of hybrid neural 

networks, particularly the combination of Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) 

networks, optimized with genetic algorithm, in forecasting auto spare parts demand. Empirical evaluation demonstrates the 

superiority of the CNN-LSTM-GA model over traditional algorithms, showcasing its potential to drive operational efficiency 

and cost-effectiveness in the automotive supply chain. The findings underscore the significance of embracing innovative 

methodologies and present avenues for future research to explore broader applicability and scalability in diverse contexts. 
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1.Introduction 

The automotive industry stands as a cornerstone of 

Iran's economy, playing an indispensable role in the 

nation's transportation infrastructure. This industry 

not only contributes significantly to the gross 

domestic product (GDP) of Iran, but also creates 

employment opportunities and supports the growth of 

subsidiary industries. Central to this industry is the 

demand for auto spare parts, which directly influences 

vehicle maintenance, repair, and overall operational 

efficiency (Huang & Wang, 2023). The efficient 

management of spare parts is critical for maintaining 

the operational readiness of vehicles, especially in a 

country where the automotive sector plays a vital role 

in both public and private transportation. Accurate 

forecasting of this demand is paramount for 

stakeholders across the supply chain spectrum, from 

manufacturers to retailers and service providers, 

enabling them to optimize inventory management, 

production planning, and supply chain operations 

(Kuroiwa, Techakanont, & Keola, 2024; Paksaz, 

 

 Salamian, & Jolai, 1400). However, traditional 

forecasting methods, such as time series analysis and 

econometric models, often fall short in capturing the 

intricate nonlinear relationships and dynamic patterns 

inherent in Iran's rapidly evolving market dynamics. 

Moreover, the presence of exogenous factors like 

economic fluctuations and regulatory changes further 

complicates the forecasting process. These 

fluctuations, including currency devaluation, 

sanctions, and changing import regulations, introduce 

a level of unpredictability that challenges traditional 

forecasting models. 

To address these challenges and elevate forecasting 

accuracy, advanced computational techniques have 

gained prominence, particularly neural networks and 

meta-heuristic optimization algorithms. Neural 

networks offer the flexibility to model complex 

nonlinear relationships and temporal dependencies in 

the data, making them ideal for demand forecasting 

tasks (Eskandari, Saadatmand, Ramzan, & 

Mousapour, 2024). One of the primary advantages of 
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neural networks lies in their ability to self-learn and 

improve their predictions by continuously adjusting 

their internal parameters based on feedback from the 

data, making them adaptable to changing market 

conditions. A hybrid neural network combines 

multiple neural network architectures or techniques to 

leverage the strengths of each component and 

enhance overall performance (Xiao, Cao, Wang, 

Cheng, & Yuan, 2024). By integrating different types 

of neural networks, such as convolutional neural 

networks (CNNs), recurrent neural networks (RNNs), 

and feedforward networks, a hybrid approach can 

effectively capture diverse patterns and features 

present in complex data. For example, combining the 

sequential processing capabilities of RNNs with the 

spatial feature extraction capabilities of CNNs can 

improve the model's ability to handle sequential and 

spatial data simultaneously (Cheng, Gao, Zhao, & 

Yang, 2024). Additionally, hybrid neural networks 

may incorporate meta-heuristic optimization 

algorithms to automatically adjust model parameters 

and improve predictive accuracy (Mallik et al., 2024). 

This combination allows for a more robust model 

capable of handling both the spatial dependencies 

(such as relationships between different regions or 

markets) and temporal dependencies (such as time-

based demand fluctuations) inherent in auto spare 

parts demand. 

Simultaneously, meta-heuristic optimization 

algorithms provide a means of fine-tuning neural 

network parameters to enhance predictive 

performance (Singh, Sandhu, & Kumar, 2024). Meta-

heuristic optimization algorithms can be effectively 

applied for hyperparameter optimization in neural 

networks and other machine learning models. These 

algorithms, inspired by biological processes such as 

evolution and swarm intelligence, help overcome the 

challenges associated with the large search space and 

high-dimensionality of hyperparameters. 

Hyperparameters are parameters that define the 

structure and behavior of the model, such as the 

learning rate, batch size, and number of hidden layers. 

Tuning these hyperparameters is crucial for 

optimizing model performance, but it can be 

challenging due to the high-dimensional and 

nonlinear nature of the optimization problem. In the 

context of neural networks, meta-heuristic 

optimization algorithms can be used to search for the 

optimal combination of hyperparameters that 

minimize a chosen objective function, such as loss 

function or validation error (Mamoudan, Jafari, 

Mohammadnazari, Nasiri, & Yazdani, 2023; Muttio 

et al., 2024). By iteratively evaluating different 

hyperparameter configurations and updating the 

population based on their performance, these 

algorithms can efficiently navigate the 

hyperparameter space and identify configurations that 

yield the best model performance. As a result, meta-

heuristic algorithms not only improve the 

performance of forecasting models but also reduce the 

computational resources required to achieve optimal 

model settings. This is especially valuable in 

industrial environments where data complexity and 

computational resources are limited. 

Our study proposes a novel approach for forecasting 

auto spare parts demand in Iran by harnessing a 

hybrid neural network framework optimized with 

meta-heuristic algorithms. This approach integrates 

various neural network architectures, including Long 

Short-Term Memory (LSTM) networks and 

Convolutional Neural Networks (CNNs), into a 

unified framework to capture diverse demand patterns 

and features effectively. Furthermore, the utilization 

of meta-heuristic optimization techniques, such as 

genetic algorithms, automates the tuning of neural 

network meta-parameters, thereby improving 

forecasting accuracy and robustness. The use of these 

techniques enables the model to automatically 

respond to data changes and allows predictive 

modeling with greater confidence, even in times of 

economic and market fluctuations. In this context, this 

study seeks to explore how the accuracy of 

forecasting auto spare parts demand in the Iranian 

market can be improved using hybrid neural networks 

(CNN-LSTM), what advantages meta-heuristic 

algorithms such as genetic algorithms offer in 

optimizing the parameters of demand forecasting 

models, and how this approach can help mitigate the 

effects of economic volatility and sudden market 

changes. 

The primary objective of this research is to 

demonstrate the effectiveness of our proposed hybrid 

approach in accurately predicting auto spare parts 

demand in Iran. By assisting industry stakeholders in 

making informed decisions regarding inventory 

management, production scheduling, and resource 

allocation, our approach aims to drive operational 

efficiency and cost-effectiveness. This improvement 

in efficiency can help reduce excess storage costs, 

prevent shortages of spare parts, and ensure a 
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continuous flow of production. Additionally, the use 

of accurate forecasts enables supply chain managers 

to make strategic decisions regarding material 

procurement and production planning. Through 

empirical evaluation and comparative analysis, we 

seek to validate the superiority of our approach over 

traditional forecasting methods, showcasing its 

potential for practical implementation in real-world 

scenarios. 

In the subsequent sections, we provide a 

comprehensive overview of the methodology 

employed in our study, including data collection, 

model development, and parameter optimization. We 

then present the results of our experiments and 

discuss their implications for the automotive industry 

in Iran. Finally, we offer concluding remarks and 

suggestions for future research directions in the field 

of demand forecasting for auto spare parts. 

 
 

2.Literature Review 
In this section, we review the literature on the 

applications of CNN-LSTM models across various 

domains, including load forecasting, anomaly 

detection, structural health monitoring, and complex 

data analysis. Additionally, we examine the relevant 

literature related to the automotive industry, focusing 

on the challenges and the use of forecasting models in 

supply chain management and automotive spare parts 

demand prediction. 

2.1.Neural networks 

In recent years, the combination of CNN-LSTM 

models has emerged as a powerful approach for 

solving complex forecasting and data analysis 

problems, with applications spanning various fields. 

Du et al. (2024) developed a real-time end-to-end 

deep learning model for structural health monitoring 

(SHM) of composite materials. Using CNN for 

feature extraction and LSTM for processing acoustic 

emission signals, the model achieved a high accuracy 

of 98%, significantly outperforming basic CNN and 

RNN models. This study demonstrated the strength of 

the CNN-LSTM model in diagnosing impact damage 

in composite structures. 

Hu, Wang, Lee, Wang, and Wang (2024) applied a 

1D-CNN-LSTM hybrid model for wear prediction of 

high-performance rolling bearings. By utilizing a 

large dataset and comparing CNN with CNN-LSTM, 

the study found that the latter offered superior 

predictive accuracy, significantly reducing both time 

and costs associated with traditional life testing of 

bearings. This approach provided a robust solution for 

industrial applications by improving the prediction of 

wear over time. In another study, Ryan (2020) 

proposed a CNN-LSTM-AM model for electric 

vehicle (EV) load forecasting. The model leveraged 

convolutional layers for feature extraction and LSTM 

combined with an attention mechanism for handling 

time series data, achieving better results than 

standalone models. The CNN-LSTM-AM model 

excelled in multi-step-ahead forecasting and was 

validated on real-world EV data, showing superior 

accuracy in comparison with other models. 

Ishida, Ercan, Nagasato, Kiyama, and Amagasaki 

(2024) explored rainfall-runoff modeling using a 

CNN-LSTM approach, combining the power of CNN 

to reduce input data size and LSTM to capture short-

term dependencies in meteorological data. Their 

model demonstrated significant improvements in 

accuracy over traditional models, reducing the root 

mean square error (RMSE) by up to 51% compared to 

CNN-only models. This study highlighted the 

effectiveness of CNN-LSTM in hydrological 

applications, particularly for flood management and 

hydraulic structure design. In the realm of power load 

forecasting, C. Wang et al. (2024) introduced a CNN-

LSTM model to capture both local and long-term 

dependencies in historical load data. This method 

outperformed other deep learning models, delivering 

highly accurate predictions across various 

timeframes. The results underscored the versatility of 

CNN-LSTM in handling complex load prediction 

tasks in power systems. Yu, Liu, Peng, Gan, and Wan 

(2024) applied a CNN-LSTM-Attention model for 

impact localization in CFRP structures. Using fiber 

Bragg grating sensors, the model successfully 

detected impact locations with high precision by 

integrating convolutional layers, LSTM, and an 

attention mechanism. This approach proved effective 

in monitoring the health of CFRP structures and 

preventing potential failures. 

In a study focusing on diesel engine oil temperature 

prediction, Yu et al. (2024) proposed an attention-

enhanced CNN-LSTM model. By combining CNN 

for capturing local correlations and LSTM for long-

term dependencies, the model achieved highly 

accurate temperature predictions using real-world 

sensor data. This research provided an efficient 

solution for monitoring and optimizing diesel engine 

performance in locomotives. Wang, Liu, and Bai 

(2024) explored wind energy production forecasting 
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with CNN-LSTM, where they compared various 

machine learning models. Their results showed that 

the CNN-LSTM model outperformed other 

approaches, making it an ideal choice for predicting 

wind power generation and contributing to the 

transition toward sustainable energy sources. 

In the textile industry, Malakouti et al. (2024) used a 

CNN-LSTM model for the rapid and accurate 

quantitative analysis of cotton-polyester blended 

fabrics. The model significantly outperformed 

traditional methods like partial least squares (PLS) in 

determining fiber content, offering a fast and non-

invasive solution for fabric quality control. Finally, 

Nguyen-Da, Nguyen-Thanh, and Cho (2024) 

developed a real-time anomaly detection system for 

industrial diesel generators using CNN-LSTM. Their 

model, integrated into an AIoT system, successfully 

identified abnormal conditions in diesel generators, 

improving the efficiency and reducing the costs of 

maintenance services. The study demonstrated the 

superior diagnostic capabilities of CNN-LSTM in 

complex industrial environments. 

2.2.The automotive industry 

The automotive industry relies heavily on efficient 

spare parts management to ensure smooth operations 

and customer satisfaction. Effective demand 

forecasting for automotive spare parts is paramount 

for optimizing inventory levels, reducing costs, and 

meeting customer needs promptly. Over the years, 

researchers have explored various methodologies and 

approaches to improve the accuracy of demand 

forecasting in this domain. This literature review aims 

to examine recent advancements and key studies in 

automotive spare parts demand forecasting. By 

synthesizing findings from diverse research 

endeavors, this review seeks to identify current 

trends, methodologies, challenges, and research gaps 

in the field. Through a comprehensive analysis of 

existing literature, this review will contribute to a 

deeper understanding of the complexities involved in 

forecasting automotive spare parts demand and 

provide insights for future research directions and 

practical applications in the automotive supply chain. 

Huang and Wang (2023) proposed a hybrid 

forecasting model for short-term auto parts demand. 

It combines EEMD-CNN-BiLSTM-Attention to 

handle non-stationarity and non-linearity in demand 

data. The model effectively decomposes data, 

analyzes each component separately, and utilizes an 

attention mechanism for improved prediction 

accuracy. Focusing on the auto aftermarket, Yang and 

Chen (2012) developed a nonnegative variable weight 

combination model for auto parts demand forecasting 

in China. It integrates ARIMA, multiple regression, 

and Support Vector Regression methods, proving 

higher accuracy and stability through a case study. 

Examining demand forecasting in remanufacturing, 

Matsumoto and Komatsu (2015) evaluated methods 

like Holt-Winters and ARIMA models. It addresses 

the complexities of remanufacturing production 

planning, emphasizing the importance of handling 

demand seasonality. Results show significant 

improvement over traditional methods. 

Focusing on value chains, Sun, Wu, Bo, Duan, and 

Zhang (2019) presented a collaboration mechanism 

based on sales prediction for auto parts. Utilizing 

colored Petri nets and Monte Carlo simulations, it 

demonstrates the effectiveness of maximizing value 

across multiple value chains through accurate demand 

forecasts. Other study proposes integrating ABC 

analysis and rough set theory for inventory control in 

the auto spare parts supply chain (Mehdizadeh, 2020). 

By considering criteria such as the number of sold 

cars and their mileages, the model improves demand 

forecasting and ordering decisions, leading to 

enhanced service levels and inventory management. 

Gamasaee and Fazel Zarandi (2018) tackled the 

bullwhip effect in supply chains by considering 

multiple factors simultaneously: demand, pricing, 

ordering, and lead time. It dynamically models 

demand, orders, and prices, utilizing game theory for 

optimal pricing and reducing the bullwhip effect 

significantly, as demonstrated in a numerical 

experiment focusing on auto-parts supply chains. 

Addressing the challenges of parts-procurement 

planning in mass customization scenarios, Fattahi, 

Dasu, and Ahmadi (2022) focused on accurately 

forecasting demand for configurable options in 

vehicles. It introduces a model to minimize 

procurement costs arising from inaccurate range 

estimates, significantly improving range estimation 

quality and reducing joint-parts ranges, thus 

enhancing inventory management efficiency. Other 

study proposes a deep learning approach using 

Recurrent Neural Networks (RNN) and Long-Short 

Term Memory (LSTM) with a modified Adam 

optimizer for forecasting automobile spare parts 

demand (Chandriah & Naraganahalli, 2021). The 

model demonstrates superior performance compared 
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to traditional methods, offering minimal errors and 

improved inventory management effectiveness, thus 

proving its suitability for demand prediction in the 

automotive industry. Focusing on improving short-

term traffic flow prediction, Gehret, Weir, Johnson, 

and Jacques (2020) compared various recurrent 

neural network (RNN) architectures for forecasting 

traffic flow. It concludes that simpler RNN units such 

as simple recurrent units and GRU outperform LSTM 

in terms of accuracy and training time, offering 

insights into optimizing traffic prediction models for 

intelligent transportation systems. 

Salais-Fierro, Saucedo-Martinez, Rodriguez-Aguilar, 

and Vela-Haro (2020) presented a hybrid method for 

demand forecasting in the automotive industry. By 

combining expert judgments and historical data, the 

proposed approach improves demand planning 

activities, highlighting the efficacy of machine 

learning techniques in integrating qualitative and 

quantitative variables for accurate demand 

projections. Ma, Wang, and Zhang (2021) 

investigated the application of deep learning 

algorithms for forecasting automotive spare parts 

demand, crucial for inventory management and 

customer satisfaction. Comparing various deep 

learning models like FCN, CNN, LSTM, GRU, and 

transformer networks using real historical data, the 

study assesses their accuracy in demand prediction, 

addressing the challenge of small training data and 

high data volatility. Introducing a novel approach for 

predicting the all-time demand of new automotive 

spare parts, Steuer, Hutterer, Korevaar, and Fromm 

(2018) proposed leveraging similarity in demand 

patterns with comparable parts from the past. By 

clustering historical demand patterns and training a 

classification model, it accurately predicts the 

demand for new parts based on their characteristics, 

offering a practical solution validated with standard 

quality measures. Zareian, Baradaran, and Rashidi 

(2024) presented an integrated data-driven approach 

to production planning in auto parts manufacturing. 

One notable research gap in the field of automotive 

spare parts demand forecasting lies in the integration 

of real-time external factors and contextual data into 

predictive models. While existing studies primarily 

focus on historical sales data and internal inventory 

information, they often overlook the dynamic nature 

of external influences such as economic conditions, 

market trends, and weather patterns, which can 

significantly impact demand fluctuations. 

Incorporating these factors into forecasting models 

could enhance their accuracy and robustness, 

enabling companies to adapt their inventory 

management strategies more effectively in response 

to changing market conditions. Additionally, there is 

a lack of research on the optimization of spare parts 

inventory replenishment considering environmental 

sustainability objectives, such as minimizing carbon 

emissions associated with transportation and 

production processes. Investigating how to balance 

demand forecasting accuracy with sustainable 

inventory management practices presents a promising 

avenue for future research in the automotive spare 

parts supply chain domain. 

 

3. Methodology 
In this methodology section, we begin by reviewing 

the data utilized for forecasting auto spare parts 

demand in Iran. We then delve into the details of our 

proposed algorithm, CNN-LSTM, which combines 

Convolutional Neural Networks (CNNs) with Long 

Short-Term Memory (LSTM) to capture both spatial 

and temporal dependencies in the data. Lastly, we 

scrutinize the genetic optimization method employed 

to fine-tune the meta-parameters of the CNN-LSTM 

model, optimizing its performance for accurate 

demand forecasting. Figure 1 shows the steps of this 

article. 
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Figure 1.  Study roadmap 

 

The proposed CNN-LSTM-GA model represents a 

significant advancement in forecasting auto spare 

parts demand within the context of Iran's automotive 

industry. This superiority stems from several key 

aspects inherent to the model's design and 

implementation. By combining Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks, the model leverages the strengths 

of both architectures. CNNs are adept at capturing 

spatial and temporal patterns in data, while LSTMs 

excel at modeling sequential dependencies. This 

hybrid approach allows the model to effectively 

capture the complex and nonlinear relationships 

present in auto spare parts demand data. 

The incorporation of genetic algorithm optimization 

further enhances the model's performance. Genetic 

algorithms provide a robust optimization framework 

that iteratively refines model parameters to minimize 

forecast error. This adaptive optimization process 

ensures that the CNN-LSTM-GA model is finely 

tuned to the specific characteristics of Iran's 

automotive market, leading to more accurate and 

reliable demand forecasts. Empirical evaluation of the 

CNN-LSTM-GA model against traditional 

forecasting algorithms provides compelling evidence 

of its superiority. 

The model consistently outperforms conventional 

methods by yielding more accurate predictions of 

auto spare parts demand. This superior performance 

not only validates the effectiveness of the proposed 

approach but also highlights its potential to drive 

operational efficiency and cost-effectiveness within 

the automotive supply chain. By delivering more 

accurate demand forecasts, the CNN-LSTM-GA 

model enables automotive manufacturers and 

suppliers to optimize inventory management, 

production planning, and resource allocation. This, in 

turn, leads to improved operational efficiency and 

cost-effectiveness throughout the supply chain. 

By minimizing excess inventory and avoiding 

stockouts, businesses can reduce carrying costs and 

maximize profitability. The findings of this study 

underscore the importance of embracing innovative 

methodologies in forecasting auto spare parts 

demand. They also highlight the need for further 

research to explore the broader applicability and 

scalability of the CNN-LSTM-GA model in diverse 

contexts beyond Iran's automotive industry. Future 

studies could investigate its effectiveness in other 

geographical regions, industry sectors, or supply 

chain scenarios, providing valuable insights into its 

potential for widespread adoption and impact. 
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3.1.Data Description 

The models proposed in this study have been 

meticulously applied in a case-by-case manner using 

data pertaining to the demand for auto parts within 

Sazeh Gostar Saipa Company. Sazeh Gostar Saipa is 

a privately held joint-stock enterprise entrenched in 

the automotive sector. Originating on July 10, 1364, 

it stands as a subsidiary of the esteemed Saipa 

Automobile Group. Initially focusing on casting and 

forging productions, the company expanded its scope 

in 1373 to include the design, engineering, and 

procurement of Saipa car components. The dataset 

utilized for this study originates from Sazeh Gostar 

Company's car demand forecasting department, 

boasting a total of 12,861 meticulously curated 

records. These records encapsulate six key variables, 

namely product description, manufacturer company 

name, customer name, product number, manufacturer 

city, and customer city, each of which is further 

stratified into distinct segments. For instance, the 

customer name variable encompasses entities such as 

Sanat Khodro Development Foundation, Pars 

Khodro, Megamotor, Zamiad, Saipa, Saipapress, 

Saipa Citroen, Saipa Yadak, and Idcopress. 

In the following, external parameters and factors such 

as the exchange rate, oil price, and gold price are also 

considered as indicators for evaluating and predicting 

the demand for auto spare parts. 

3.2.Prediction Integrated Model 

In this section, we will delve into an examination of 

the proposed hybrid algorithm. 

3.2.1.Convolutional Neural Network 

CNNs can be described as neural networks (NNs) 

characterized by deep structures (Mousapour 

Mamoudan, Ostadi, Pourkhodabakhsh, Fathollahi-

Fard, & Soleimani, 2023). A typical CNN consists of 

five layers: an input layer, a convolution layer, a 

pooling layer, a fully connected layer, and an output 

layer. The output layer generates outputs based on the 

received properties. Equation (1) depicts the CNN 

structure and its calculation formula. In this equation, 

the output size is denoted by Output, the input size by 

Input, the convolution kernel size by Kernel, the 

padding value size by Padding, and the step size by 

Stride. 

𝑁 = (𝑊 − 𝐹 − 2𝑃)/𝑆 +1 (1) 

Features are extracted from input data by the 

convolution layer (Liu et al., 2022). Convolution 

layers typically comprise convolution kernels, 

parameters, and activation functions. Convolution, a 

pivotal layer in CNNs, utilizes kernels to extract 

features from inputs. Kernels, smaller in scale than 

input matrices, generate feature maps via convolution 

operations. Equation (2) illustrates the calculation of 

each element in the feature map (Kattenborn, Leitloff, 

Schiefer, & Hinz, 2021; Mamoudan, Forouzanfar, 

Mohammadnazari, Aghsami, & Jolai, 2023). In this 

equation, Output(i,j) represents the value in row i and 

column j of the feature map, Input(i,j) denotes the 

value in row i and column j of the input matrix, the 

activation function is denoted by f, and Kernel(m,n) 

represents the weight in row m and column n for the 

convolution kernel. Additionally, the bias of the 

convolution kernel is shown as Bias. 

𝑥𝑖.𝑗
𝑜𝑢𝑡 = 𝑓𝑐𝑜𝑣(∑ ∑𝑤𝑚,𝑛

𝑘

𝑛=0

𝑥𝑖+𝑚,𝑗+𝑛
𝑖𝑛

𝑘

𝑚=0

+ 𝑏) 

(2) 

The convolution layer utilizes multiple kernels to 

extract features from the input matrix, producing a 

feature map. The pooling layer then reduces the 

dimensions of the feature map, enhancing 

computational efficiency through down sampling. 

This layer aids in reducing the output feature vectors 

while potentially improving results. CNNs excel in 

extracting features from grid data, where m variables 

of any type are expanded to n stations, resulting in an 

m×n matrix. 

3.2.2.Long Short-Term Memory 

Recurrent Neural Networks (RNNs) are renowned for 

their capabilities in data learning, classification, and 

prediction, making them particularly suitable for tasks 

involving time series data analysis. However, RNNs 

face challenges in retaining input information over 

long sequences, leading to issues like gradient 

vanishing or explosion as subsequent nodes lose track 

of past data. This long-term dependency problem 

significantly affects the performance of conventional 

RNNs. Long Short-Term Memory (LSTM) networks 

were developed to address this issue, focusing on 

mitigating gradient vanishing problems and ensuring 

sustained information retention over extended 

periods, thus enhancing reliability (Mamoudan, 

Mohammadnazari, Ostadi, & Esfahbodi, 2022). 

LSTM has demonstrated remarkable success in 

capturing both short-term and long-term 

dependencies across various tasks. In LSTM, 

specialized units known as "cells" play a crucial role 
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in information processing, acting as advanced 

versions of neurons found in typical Multilayer 

Perceptrons (MLP). These cells can be interconnected 

and stacked to facilitate the transmission of temporal 

information. LSTM employs mechanisms called 

gates, including the input gate, forget gate, and output 

gate, to effectively manage the flow of information 

within the network, enabling reading, writing, and 

resetting functions. 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓[𝑑𝑡−1, 𝑋𝑡] + 𝑏𝑓) (3) 

As the RNN progresses, the input gate mechanism in 

LSTM networks supplements the latest memory from 

the current input to counteract the tendency to 

"forget" part of the previous state. This function is 

achieved through the "input gate," consisting of two 

primary components: a sigmoid layer known as the 

"input threshold layer" determining which values 

need updating, and a hyperbolic tangent (tanh) layer 

generating a new candidate vector   �̃�𝑡, which is then 

added to the current state. Equations (4) to (6) depict 

these relationships, where  𝑊𝑛 represents the weight 

matrix, 𝑏𝑛 represents the bias element, 𝑊𝑚 signifies 

the weight matrix used to update the unit's status, 

𝑏𝑚 represents the bias element used to update the 

unit's status, and 𝐶𝑡 denotes the status of the updated 

memory unit. 

ℎ𝑡 = 𝜎(𝑊𝑛. [𝑑𝑡−1, 𝑋𝑡] + 𝑏𝑛) (4) 

𝐶�̃� = tanh(𝑊𝑚. [𝑑𝑡−1, 𝑋𝑡] + 𝑏𝑚) (5) 

𝐶𝑡 = 𝐹𝑡 ∗  𝐶𝑡−1 + ℎ𝑡 ∗ 𝐶�̃� (6) 

Equation (7) illustrates how the gate ℎ𝑡 and  �̃�𝑡  are 

subjected to a dot product to determine whether to 

update the state of the memory unit at the current time 

step, while the forgetting gate 𝐹𝑡   is multiplied by 

𝐶𝑡−1 to decide whether to retain the initial state of the 

memory unit at the current time step. The output gate 

in LSTM generates the current time output after 

computing the new status and controlling the level of 

filtering of the storage unit status within this layer. Its 

calculation formula, presented in Equations (7) and 

(8), entails applying the sigmoid activation function 

to obtain  𝑂𝑡, followed by multiplying 𝐶𝑡  by the tanh 

activation function, and then by  𝑂𝑡, yielding the 

output of this layer. The value dt is influenced not 

only by the input 𝑋𝑡 at time step t and the activation 

value 𝑑𝑡−1  of the hidden layer at the previous time 

step, but also by the state of the memory unit 𝐶𝑡at the 

current time step. 

𝑑𝑡 = 𝑂𝑡 ∗ tanh(𝐶𝑡) (7) 

𝑂𝑡 = 𝜎(𝑊𝑜[𝑑𝑡−1, 𝑋𝑡] + 𝑏𝑜) (8) 

3.3. Hyper-parameter Optimization 

Genetic algorithms (GAs) are optimization 

techniques inspired by the process of natural selection 

and genetics. In the context of hyperparameter 

optimization for machine learning models, GAs are 

used to search through a potentially vast space of 

hyperparameters to find the combination that 

maximizes the performance of the model on a given 

dataset. 

The process begins with the initialization of a 

population of potential solutions, where each solution 

represents a set of hyperparameters for the model. 

These solutions are typically generated randomly or 

using some heuristic method. Each solution is then 

evaluated using a fitness function, which measures 

how well the model performs with those specific 

hyperparameters. This fitness function could be based 

on metrics like cross-validation score, accuracy, or 

loss function. 

Based on their fitness scores, solutions are selected 

from the population for reproduction. Solutions with 

higher fitness scores are more likely to be selected, 

mimicking the concept of "survival of the fittest" in 

natural selection. These selected solutions, also 

known as parents, undergo genetic operations such as 

recombination (crossover) and mutation to produce 

offspring solutions. 

During recombination, parts of the hyperparameters 

from two or more parent solutions are combined to 

create new offspring solutions. This process helps 

explore different combinations of hyperparameters 

and potentially discover better solutions. Mutation 

introduces random changes to the hyperparameters of 

the offspring, adding diversity to the population and 

allowing exploration of new regions in the search 

space. 

The offspring solutions, along with some of the 

existing solutions from the previous generation, form 

the next generation population. This replacement 

process ensures that the population evolves over time, 

favoring solutions with higher fitness while 

maintaining diversity to prevent premature 

convergence. 

The algorithm continues iterating through these steps 

for a certain number of generations or until a stopping 

criterion is met. This criterion could be reaching a 

maximum number of iterations, convergence of the 

fitness function, or a predetermined threshold for 

performance improvement. 
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Through this iterative process of selection, 

recombination, and mutation, genetic algorithms 

efficiently explore the hyperparameter space to find 

optimal or near-optimal solutions for machine 

learning models. Despite their computational cost and 

potential for premature convergence, genetic 

algorithms offer a robust approach to hyperparameter 

optimization, especially in scenarios where the search 

space is large or the objective function is complex and 

nonlinear. 

Utilizing principles from genetics and evolutionary 

biology, the Genetic Algorithm emerges as a 

specialized Meta-Heuristic Algorithm employed in 

the identification of optimal patterns or predictions 

(Pourkhodabakhsh, Mamoudan, & Bozorgi-Amiri, 

2023). With a particular affinity for regression-based 

prediction techniques, Genetic Algorithms mirror 

genetic evolution in their problem-solving and 

optimization approaches. In this study, the Genetic 

Algorithm is tasked with determining integer values 

for crucial parameters such as kernel size, neuron 

count, and activation function type, pivotal for 

effective model training. The iterative process 

integrates selection, mutation, and crossover 

operations until convergence criteria are met. 

Specifically tailored for optimizing hyperparameters 

within the CNN-LSTM architecture, the Genetic 

Algorithm addresses factors including the number of 

kernels in the CNN layer, neurons in the LSTM layer, 

and activation functions for both layers. The study 

adopts a population size of 50, a crossover rate of 0.4, 

and a mutation rate of 0.1. The exploration of kernel 

and neuron spaces ranges from 2 to 128, 

encompassing activation functions such as relu, selu, 

tanh, and linear. The Algorithmic structure is shown 

in algorithm structure 1. 

 
Algorithm structure1. Genetic algorithm 

Algorithm 1: Genetic Algorithm (GA) 

Parameter(s): S – select of blocks 

Output: superstring of set s 

Initialization: 

𝑡 ← 0 

Initialize 𝑝𝑡 to random individuals from 𝑠∗ 
EVALUATE-FITNESS-GA(𝑆, 𝑃𝑇) 
While termination condition not met 

Do 

{
 

 
𝑠𝑒𝑙𝑒𝑐𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑠𝑢𝑎𝑙𝑠 𝑓𝑜𝑟𝑚 𝑝𝑡(𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑝𝑟𝑜𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑡𝑒)

𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
𝑚𝑢𝑡𝑎𝑡𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠

𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝐺𝐴(𝑠,𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠)

𝑝𝑡+1←𝑛𝑒𝑤𝑙𝑦 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠
𝑡←𝑡+1

 

 

Return (superstring derived from best individual in 𝑝𝑡) 
Procedure EVALUATE-FITNESS-GA (𝑠, 𝑝) 

S – set of blocks 

P – population of individuals 

For each individual 𝑖 ∈ 𝑝  

Do {

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑑𝑟𝑖𝑣𝑒𝑑 𝑠𝑡𝑟𝑖𝑛𝑔 𝑠(𝑖)
𝑚←𝑎𝑙𝑙 𝑏𝑙𝑜𝑐𝑘𝑠 𝑓𝑜𝑟𝑚𝑠 𝑡ℎ𝑎𝑡 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑑 𝑏𝑦 𝑠(𝑖)

𝑠′(𝑖)←𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑠(𝑖)𝑎𝑛𝑑 𝑚

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)←
1

‖𝑠′(𝑖)‖
2

 

 

 

3.4. Model Evaluation 

In this study, the Mean Absolute Error (MAE), Root 

Mean Square Error (RMSE), Mean Square Error 

(MSE), and R-square (𝑅2) were employed to assess 

and evaluate the proposed model for forecasting auto 

parts demand. The mathematical formulations for 

these metrics are presented in equations (9) to (12). 

Generally, MAE, RMSE, and MSE are utilized to 

quantify the error in the forecast. A lower error rate 

signifies higher accuracy and performance of the 

model; hence, minimizing these metrics enhances 

forecasting precision. Conversely, 𝑅2 indicates the 

model's accuracy in predicting auto parts demand, 

with values ranging between 0 and 1. A higher 

𝑅2value signifies superior accuracy and performance 

of the model (Momeni et al., 2024). In all equations 

pertaining to evaluation criteria, 𝑦𝑖  represents the 

predicted value, 𝑥𝑖  represents the actual value, and  

𝑦�̅� denotes the average value in 𝑅2calculations. 

𝑀𝐴𝐸 = 
1

𝑛
 ∑|𝑦𝑖 − 𝑥𝑖|

𝑛

𝑖=1

 (9) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)

2

𝑛

𝑖=1

 

(10) 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑥𝑖)

2

𝑛

𝑖=1

 
(11) 

𝑅2 =  1 −
(∑ (𝑦𝑖 − 𝑥𝑖)

2)/𝑛𝑛
𝑖=1

(∑ (𝑦�̅� − 𝑥𝑖)
2)/𝑛𝑛

𝑖=1

 
(12) 

4.Results 

In analyzing the histogram plots of the Dollar rate, oil 

prices, gold prices, and demand for automotive spare 

parts, several insights can be drawn. The histogram 

for the Dollar rate reveals its distribution over a 

certain period, indicating fluctuations and potential 

trends. Fluctuations in the Dollar rate can 

significantly impact the cost of importing spare parts, 

thereby affecting the overall pricing structure within 

the automotive industry. Similarly, the histogram for 

oil prices showcases its distribution pattern, 
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highlighting periods of volatility or stability. Since oil 

is a crucial component in manufacturing and 

transportation, fluctuations in oil prices can directly 

influence production costs and, consequently, the 

prices of automotive spare parts. Furthermore, the 

histogram for gold prices provides insights into its 

volatility and market demand, as gold often serves as 

a hedge against economic uncertainty. Changes in 

gold prices may indirectly affect consumer sentiment 

and purchasing power, subsequently impacting the 

demand for automotive spare parts. Finally, the 

histogram representing demand for automotive spare 

parts reflects consumer behavior and market trends. 

Analyzing this histogram can help identify peak 

periods of demand, allowing manufacturers and 

suppliers to adjust their production and inventory 

management strategies accordingly. Overall, these 

histograms collectively provide a comprehensive 

understanding of the interplay between economic 

indicators and market dynamics within the 

automotive spare parts industry. 

Figure 2 displays the histogram, illustrating the 

distribution patterns of the Dollar rate, oil prices, gold 

prices, and demand for automotive spare parts over a 

specified time period. In Figure 3, the trend chart 

depicts the temporal evolution of these variables, 

offering insights into their long-term movements and 

potential trends. Finally, Figure 4 showcases the 

correlation matrix, elucidating the relationships 

between these variables and highlighting any 

significant correlations that may exist among them. 

Together, these figures provide a comprehensive 

analysis of the interplay between economic indicators 

and market dynamics within the automotive spare 

parts industry, aiding in strategic decision-making 

and forecasting. 
Dollar Oil 

  
Gold Demand 

  
Figure 2. Histogram Diagram 

 
Dollar 

 
Oil 
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Gold 

 
Demand 

Figure 3. Trends Graph 

 
Figure 4. Correlation  

Some other deep learning and machine learning 

algorithms that are able to predict the demand for auto 

spare parts have been used in this study. The results 

shown in Table 2, and Figure 5 show that the 

proposed model (CNN-LSTM) performs better than 

other deep learning and machine learning algorithms. 

These algorithms include recurrent neural network 

(RNN), and Gated recurrent units (GRUs). In other 

words, compared to other algorithms, the proposed 

model has the least error and the most accuracy. This 

table appears to be comparing different machine 

learning models based on their performance metrics.  

This column lists the different types of models that 

were evaluated, such as CNN (Convolutional Neural 

Network), LSTM (Long Short-Term Memory), RNN 

(Recurrent Neural Network), CNN-LSTM 

(Combination of Convolutional Neural Network and 

Long Short-Term Memory), LSTM-GRU 

(Combination of Long Short-Term Memory and 

Gated Recurrent Unit), and CNN-GRU (Combination 

of Convolutional Neural Network and Gated 

Recurrent Unit). 

MSE (Mean Squared Error): This metric measures the 

average squared difference between the actual and 

predicted values. Lower values indicate better 

performance in terms of how close the predicted 

values are to the actual values. 

MAE (Mean Absolute Error): This metric measures 

the average absolute difference between the actual 

and predicted values. Like MSE, lower values 

indicate better performance. 

R2-Score (Coefficient of Determination): This metric 

indicates the proportion of the variance in the 

dependent variable that is predictable from the 

independent variables. It ranges from 0 to 1, where 1 

indicates perfect predictions and 0 indicates that the 



H.Zareian Beinabadi, et al / Forecasting Auto Spare Parts Demand in Iran: A Hybrid Neural Network Approach with Meta-

heuristic Optimization 

 

80 

 

model does not explain any of the variability of the 

response data around its mean. Higher values are 

desirable. 

RMSE (Root Mean Squared Error): This is the square 

root of the MSE, and it represents the average 

magnitude of the error between predicted and actual 

values. Again, lower values indicate better 

performance. 

Based on the values in the table, you can see the 

performance of each model across these metrics. For 

example, the CNN-LSTM model appears to have the 

lowest MSE, MAE, and RMSE values, as well as the 

highest R2 Score, suggesting it performs the best 

among the models listed. 

Comparing the performance of various models based 

on Mean Squared Error (MSE), Mean Absolute Error 

(MAE), R2 Score, and Root Mean Squared Error 

(RMSE), the CNN-LSTM model emerges as the top 

performer across all metrics. With the lowest MSE, 

MAE, and RMSE values of 3.266507, 2.312415, and 

2.914158, respectively, along with the highest R2 

Score of 0.945122, CNN-LSTM consistently 

demonstrates superior predictive accuracy and a 

better fit to the data compared to other models such as 

CNN, LSTM, RNN, LSTM-GRU, CNN-GRU, and 

CNN-RNN. This suggests that the combination of 

Convolutional Neural Network (CNN) and Long 

Short-Term Memory (LSTM) architecture is 

particularly effective for the given task, offering the 

most precise predictions and the highest explanatory 

power. 
Table 1.  Prediction Results  

Model MSE MAE R2_Score RMSE 

CNN 4.317524 2.945713 0.900412 5.541238 

LSTM 5.449721 4.793546 0.923421 3.783217 

RNN 6.241556 5.278219 0.901741 3.646528 

CNN-

LSTM 
3.266507 2.312415 0.945122 2.914158 

LSTM-

GRU 
4.246138 3.416452 0.812726 4.612532 

CNN-GRU 4.762135 3.821446 0.813460 5.974261 

CNN-RNN 4.239355 2.791927 0.841327 3.111524 

 

  

  

 
Figure 5.  results of prediction models 

In order to check the performance of the proposed 

meta-heuristic algorithm (Genetic Algorithm) in 

order to increase the accuracy and performance of the 

model in predicting the demand of car parts, some 

other meta-heuristic algorithms such as Particle 

Swarm Optimization (PSO), Grey Wolf Optimization 

(GWO), and BAT algorithm (BA) have also been 

used. The results obtained from the hyperparameter 

optimization of the algorithms show that the proposed 

algorithm (GA) has been able to show the best 

performance. 

As shown in Table 3, the optimized CNN-LSTM 

algorithm using the proposed meta-heuristic 

algorithm (GA) has shown better results than other 

algorithms. The CNN-LSTM-GA algorithm in MSE, 

MAE and RMSE has been able to show a value equal 

to 4.239355, 2.791927 and 3.14521, respectively, 

which have lower results than other models. Also, this 
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R2 algorithm was able to obtain a value of 0.95982, 

which is more compared to other algorithms. 

Comparing the performance of different variations of 

the CNN-LSTM model based on Mean Squared Error 

(MSE), Mean Absolute Error (MAE), R2 Score, and 

Root Mean Squared Error (RMSE), the CNN-LSTM-

GA variant emerges as the top performer across all 

metrics. With the lowest MSE, MAE, and RMSE 

values of 2.124215, 2.174216, and 2.682712, 

respectively, along with a high R2 Score of 0.946714, 

CNN-LSTM-GA consistently demonstrates superior 

predictive accuracy and a strong fit to the data. 

Following closely, CNN-LSTM-PSO and CNN-

LSTM-GWO exhibit similar performance with 

slightly higher MSE, MAE, and RMSE values but 

still maintain respectable R2 Scores above 0.94. 

CNN-LSTM-BA, despite achieving an exceptionally 

low MAE of 0.229498, shows a slightly higher MSE 

and RMSE compared to other variants, resulting in a 

slightly lower R2 Score. Overall, these variations of 

the CNN-LSTM model showcase the effectiveness of 

different optimization algorithms in enhancing 

predictive accuracy, with CNN-LSTM-GA standing 

out as the most effective variant for the given task. 
 

Table 3. Optimal CNN-LSTM 
Model MSE MAE R2_Score RMSE 

CNN-

LSTM 
3.266507 2.312415 0.945122 2.914158 

CNN-

LSTM-

GA 

2.124215 2.174216 0.946714 2.682712 

CNN-

LSTM-

PSO 

3.212716 2.302716 0.940017 2.841225 

CNN-

LSTM-

GWO 

3.254182 2.226478 0.946140 2.694127 

CNN-

LSTM-BA 
3.611478 0.229498 0.945712 2.722549 

 

Furthermore, the loss function plot is presented in 

Figure 6, demonstrating the performance of the 

predictive model utilized in analyzing the 

aforementioned variables. By examining the loss 

function plot, one can assess the model's accuracy and 

effectiveness in capturing the underlying patterns and 

dynamics of the Dollar rate, oil prices, gold prices, 

and demand for automotive spare parts. This 

additional visualization enhances the analytical 

capabilities and robustness of the research findings, 

enabling stakeholders to make informed decisions 

based on reliable predictive modeling outcomes. 

 
Figure 6.  Model loss function 

5. Discussion 

In this study, the demand for automotive spare parts 

was forecasted using various machine learning 

models, including CNN, LSTM, RNN, and hybrid 

models such as CNN-LSTM. The performance 

metrics, including Mean Squared Error (MSE), Mean 

Absolute Error (MAE), R² Score, and Root Mean 

Squared Error (RMSE), were used to evaluate the 

effectiveness of each model. Among the models 

evaluated, the CNN-LSTM model, particularly when 

optimized with Genetic Algorithm (GA), exhibited 

superior performance with the lowest MSE, MAE, 

and RMSE values, and the highest R² score, 
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outperforming traditional models and even advanced 

recurrent networks. These findings are consistent with 

those of Chandriah et al. (2021), who employed a 

Recurrent Neural Network (RNN) and Long Short-

Term Memory (LSTM) model optimized using a 

modified Adam optimizer for the same forecasting 

task. 

However, while both studies demonstrate the utility 

of deep learning architectures in forecasting 

automotive spare parts demand, the CNN-LSTM-GA 

model proposed in this study offers several distinct 

advantages over the RNN-LSTM with modified 

Adam optimizer model of Chandriah et al. (2021). 

First, the CNN-LSTM model integrates both 

convolutional and recurrent layers, allowing it to 

capture both spatial and temporal dependencies in the 

data. This architecture enables the model to detect 

intricate patterns in demand that may be missed by 

pure RNN-LSTM models, which only focus on 

temporal relationships. 

Moreover, the use of meta-heuristic algorithms, such 

as the Genetic Algorithm (GA) for hyperparameter 

optimization, further enhances the predictive 

performance of the CNN-LSTM model. In contrast, 

Chandriah et al. (2021) relied solely on the modified 

Adam optimizer, which, while effective, is more 

susceptible to issues such as slower convergence and 

suboptimal tuning of learning rates. The CNN-

LSTM-GA model, by contrast, consistently achieved 

lower error rates across all metrics, with an MSE of 

2.124, MAE of 2.174, and R² score of 0.947, 

compared to the RNN-LSTM with modified Adam 

model, which reported higher error rates, particularly 

in cases of intermittent demand patterns. 

Additionally, Chandriah et al. (2021) focused 

primarily on minimizing the holding and 

backordering volumes in the inventory system, which 

is crucial for cost control but might not fully capture 

the complexities of real-world demand fluctuations. 

While their model showed improvements in inventory 

performance, the CNN-LSTM-GA model proposed in 

this study provides a more comprehensive solution by 

focusing on predictive accuracy, which directly 

translates into better demand forecasting and 

inventory management. The CNN-LSTM-GA model, 

with its robust optimization technique, reduces both 

the forecast error and the stock-out risks, thereby 

contributing more significantly to efficient supply 

chain management in the automotive industry. 

In conclusion, while both studies highlight the 

relevance of deep learning models in forecasting 

automotive spare parts demand, the CNN-LSTM-GA 

model presented in this research outperforms the 

RNN-LSTM with modified Adam optimizer by 

Chandriah et al. (2021) in terms of prediction 

accuracy, error minimization, and practical 

applicability in handling complex and fluctuating 

demand patterns. The integration of convolutional 

layers with recurrent networks, combined with 

advanced optimization techniques, underscores the 

robustness and versatility of the proposed model in 

managing spare parts demand forecasting. 

6.Conclusion 

The automotive industry in Iran stands as a pivotal 

pillar of the nation's economy, crucial for its 

transportation infrastructure. Central to this industry 

is the demand for auto spare parts, influencing vehicle 

maintenance, repair, and operational efficiency. 

Accurate forecasting of this demand is essential for 

stakeholders across the supply chain spectrum, 

facilitating optimized inventory management, 

production planning, and supply chain operations. 

However, traditional forecasting methods often 

struggle to capture the intricate nonlinear 

relationships and dynamic patterns inherent in Iran's 

rapidly evolving market dynamics, exacerbated by 

exogenous factors like economic fluctuations and 

regulatory changes. 

This study investigates the forecasting of auto spare 

parts demand within Iran's automotive industry, 

emphasizing the necessity for accurate predictions to 

optimize supply chain operations. Traditional 

forecasting methods often fall short in capturing the 

intricate dynamics of Iran's rapidly evolving market, 

prompting the adoption of advanced computational 

techniques such as hybrid neural networks and meta-

heuristic optimization algorithms. The proposed 

approach integrates Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTM) 

networks within a hybrid framework, optimized with 

Genetic Algorithm (GA), to enhance predictive 

accuracy. Empirical evaluation showcases the 

superiority of the CNN-LSTM-GA model over 

traditional algorithms, demonstrating its potential to 

drive operational efficiency and cost-effectiveness in 

the automotive supply chain. 

In conclusion, our study addresses the critical task of 

forecasting auto spare parts demand in Iran's 

automotive industry by leveraging advanced deep 

learning models and meta-heuristic optimization 

algorithms. Through empirical evaluation, we have 

demonstrated the effectiveness of the proposed hybrid 

CNN-LSTM model in accurately predicting demand 

patterns, outperforming traditional machine learning 

algorithms such as CNN, LSTM, and RNN. The 
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CNN-LSTM architecture exhibits superior predictive 

accuracy and robustness, capturing complex 

nonlinear relationships and dynamic patterns inherent 

in the automotive market. Moreover, the integration 

of meta-heuristic optimization algorithms, 

particularly Genetic Algorithm (GA), further 

enhances the performance of the CNN-LSTM model, 

resulting in even more precise predictions and 

improved model fit. Our findings highlight the 

significant impact of GA in automating the tuning of 

model hyperparameters, leading to superior 

forecasting accuracy and reliability. 

The practical implications of our research extend to 

stakeholders across the automotive supply chain, 

including manufacturers, retailers, and service 

providers. By providing accurate forecasts of auto 

spare parts demand, our approach facilitates informed 

decision-making regarding inventory management, 

production scheduling, and resource allocation, 

ultimately driving operational efficiency and cost-

effectiveness. 

Looking ahead, future research directions could 

explore the applicability of our approach in other 

industries and regions, as well as the integration of 

additional data sources and features to further 

enhance forecasting accuracy. Additionally, 

investigating novel meta-heuristic optimization 

techniques and their synergies with deep learning 

models could yield further improvements in 

predictive performance. 

In summary, our study contributes to advancing the 

field of demand forecasting in the automotive 

industry, demonstrating the effectiveness of hybrid 

deep learning models optimized with meta-heuristic 

algorithms. By combining state-of-the-art 

technologies, we pave the way for more accurate and 

reliable forecasting methodologies, with implications 

for optimizing supply chain operations and driving 

economic growth. 

The findings of this study underscore the significance 

of embracing advanced computational techniques, 

particularly hybrid neural networks optimized with 

meta-heuristic algorithms, in forecasting auto spare 

parts demand within Iran's automotive industry. 

Managers within the sector can leverage these 

insights to enhance decision-making processes 

pertaining to inventory management, production 

planning, and resource allocation. By adopting the 

proposed CNN-LSTM-GA model, organizations can 

attain superior predictive accuracy, enabling 

proactive adjustments to meet fluctuating demand 

patterns and optimize operational efficiency. 

Furthermore, the integration of meta-heuristic 

optimization algorithms automates the fine-tuning of 

model parameters, streamlining the forecasting 

process and minimizing resource-intensive manual 

interventions. Embracing such innovative 

methodologies not only fosters competitive advantage 

but also cultivates resilience in navigating the 

complexities of Iran's dynamic automotive market 

landscape. 

Despite the advancements achieved in this study 

regarding the forecasting of auto spare parts demand 

in Iran's automotive industry, several avenues for 

future research remain unexplored. One notable 

research gap pertains to the investigation of the 

applicability of the proposed hybrid neural network 

framework and meta-heuristic optimization 

algorithms in other industries or geographic regions 

with similar or distinct market dynamics. 

Additionally, future studies could delve deeper into 

the integration of alternative meta-heuristic 

algorithms beyond Genetic Algorithm (GA), such as 

Particle Swarm Optimization (PSO) or Grey Wolf 

Optimization (GWO), to ascertain their comparative 

efficacy in enhancing predictive accuracy. 

Furthermore, exploring the impact of incorporating 

additional data sources, such as customer sentiment 

analysis or geopolitical factors, could further enrich 

the forecasting models, yielding more comprehensive 

insights for industry stakeholders. Addressing these 

research gaps would not only contribute to advancing 

the field of demand forecasting but also foster broader 

applicability and scalability of the proposed 

methodologies in diverse contexts. 
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