

سنجش آفلاتوکسین \mathbf{M}_1 در شیر خام گاو و مقایسه آن با جیره غذائی و نوع دامداری در شهرستان بابل

دکتر علیرضا خسروی ، دکترعیسی غلامپور عزیزی ، دکتر سید جمال هاشمی **، سید علی اصغر سفیدگر ، حسن عظیمی ، مهدی نوروزی [°]

چکیده

در این مطالعه ۱۲۰ نمونه شیر خام از ٤٠ دامداری سنتی و نیمه صنعتی شهرستان بابل در زمستان ۱۳۸۶ گرفته شد و پس از سانتریفوژ، چربی روی آن برداشته شد و شیر بدون چربی از نظر وجود آفلاتوکسین AFM₁) با روش ELISA رقابتی مورد سنجش قرار گرفت. همزمان نوع جیره مصرفی ثبت گردید. از ۱۲۰ نمونه ۱۸ نمونه (۵۲/۷٪) بین ۵۰ تا ۳۵۲/۳ نانو گرم در لیتر و ۵۲ نمونه (۱۳/۳٪) بین ٤ تا ٥٠ نانوگرم در لیتر آلودگی آفلاتوکسین \mathbf{M}_1 داشتند. میزان الودگی (بیش از o· ng/l) در ماه های دی، بهمن و اسفند به ترتیب برابر با ٤٠ درصد، ٦٥ درصد و ٦٥ درصد نمونه ها بود. بطور کلي ٥٦/٧ درصد نمونه ها بیش از حد مجاز کمیته ارویائی (٥٠ ng/l) آلودگی به آفلاتوکسین ا نمونه ها بین M_1 در تمام نمونه ها بین M_1 در تمام نمونه ها بین M_1 نانوگرم در لیتر تا ۳۵۲/۳ نانوگرم در لیتر (میانگین ۱۰۲/۷۳ ng/l) متغیر بود. تخمین آلودگی AFB_1 از روی آلودگی AFM_1 در مواد غذائی دام های شیری نشان می دهد که μg/kg ۰/۲۰ تا ۲۲ می باشد که بطور اساسی ٤٦/٧ درصد موارد بیشتر از دستور استاندارد کمیته اروپائی (µg/kg ٥) است.با توجه به استاندارد كدكس اليمانتاريوس هيچكدام از نمونه ها الودگي بيش از حد اين استاندارد را نشان ندادند. بیشترین میزان آلودگی مربوط به دامداریهای است که از جیره غذائی نان، تفاله تخم پنبه، مصرف می کردند و کمترین میزان آلودگی مربوط به جیره غذائی علوفه سبز، یوست ذرت و کاه بوده است. ارتباط معنی داری بین میزان الودگی AFM₁ شیر و ماه های مختلف فصل زمستان، نوع دامداری (سنتی و نیمه صنعتی) و نوع جیره غذائی از لحاظ تست آماری بدست نیامد. برای به حداقل رساندن آفلاتوکسین M_1 در شیر، جیره غذائی دام بایستی بطور مرتب از نظر اَفلاتوکسین مورد ارزیابی قرار گیرند و تا حد امکان از آلودگی قارچی دور نگه داشته شوند.

واژگان كليدي: آفلاتوكسين M₁، شير خام ، الايزا.

Determination of aflatoxin M_1 in raw milk and its comparison with feed stuffs and farm type in Babol city

Khosravi, A.R. ¹, Gholampour Azizi, I. ², Hashemi, S. J. ³, Sefidgar. A. A. ⁴, Azimi, H. ⁵, Neurozi, M. ⁵

1-Department of Mycology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran

2-Postgraduated of Mycology, Faculty of Specialised Veterinary Sciences, Islamic Azad University, Science & Research Branch, Tehran, Iran

3-Department of Mycology, Faculty of Medicine, Tehran University, Tehran, Iran

4-Department of Mycology & Parazitology, Faculty of Medicine, Babol University, Babol, Iran

5-Islamic Azad University, Babol Branch, Babol, Iran

A total of 120 raw milk samples from 40 Babol's traditional and semi-industrial cattle farms in winter 2006 were collected. Samples were centrifuged and then skimmed milk detected for aflatoxin M₁ (AFM₁) contamination by competitive ELISA. In 68 from 120 samples (56.7%) AFM₁ was detected between 50 to 352.3 ng/l conceutration and 52 samples(43.3%) contained AFM₁ at levels of 4- 50 ng/l(The AFM₁ contamination levels was between 4 to 352.3 ng/l and average 102.73 ng/l). In general 56.7% of samples were above of European community regulations (50 ng/l). The AFM₁ contamination levels (>50 ng/l) in January, February and March was 40%, 65% and 65% respectively. Estimation of contamination of AFB1 using AFM1 in feed stuff shows that it would be nearly 0.25 to 22 µg/kg which bears the average of 46.7%, being also higher than European community regularrin (5 µg/kg). Statistical evaluations show that there is not a significant relationship between AFM₁ contamination and different months of winter, the type of the dairy farm and the kind of food stuff. To decrease AFM₁ in milk to the lowest point food stuff ration should be checked regularly, and also should be kept away from fungi contamination.

Key words: Aflatoxin M1, ELISA, Raw milk.

۱- گروه قارچ شناسی، دانشکده دامپزشکی دانشگاه تهران، تهران، ایران(khosravi@ut.ac.ir)

۲- دانش آموخته دکتری قارج شناسسی، دانـشکده علـوم تخصـصی دامپزشـکی، دانـشگاه آزاد اســلامی واحــد علـوم و تحقیقات، تهران، ایران

٣- گروه قارچ شناسي دانشكده پزشكي، دانشگاه تهران، تهران، ايران

٤-گروه انگل شناسی و قارچ شناسی دانشگاه علوم پزشکی بابل، بابل، ایران

٥- دانشگاه أزاد اسلامي واحد بابل، بابل، ايران

آفلاتوكسين ها در اكثر محصولات گياهي نظير يسته، گردو، بادام زمینی، مغز نارگیل، سویا، ذرت، برنج، پنبه دانه و گندم یافت می شوند و عمدتا بوسیله سوش های ویژه ای از آسپرژیلوس فلاووس و آسپرژیلوس پارازیتیکوس تولید می شوند. این قارچهای توکسین زا، محصولات غذائی را در مراحل مختلف تهیه و تولید مخصوصاً در شرایط رطوبتی و حرارتي مناسب آلوده مي كنند. آفلاتوكسين ها اصلي شامل AFM_2 و $AFM_1.$ (۲۵) می باشد. G_2 , G_1 B_2 , B_1 متابولیت اکسیداتیو AFB₁ و AFB₂ است که بوسیله اعمال آنزیمهای میکروزومال کبدی ایجاد شده و معمولا از راه شیر، ادرار و مدفوع دامها و بعضی از گونه های پستاندارانی كه جيره غذائي آلوده به آفلاتوكسين مصرف مي كنند، ترشح مي شوند (٦ و ٢). أفلاتوكسيكوز ضمن أنكه وابسته به شرایط محیطی، اجتماعی و اقتصادی است، به شرایط اقلیمی (رطوبت و حرارت) که برای رشد قارچ مناسب می با شند نيز بستگى دارد(٢). آفلاتوكسين ها ايمونوسوپرسيو، موتاژنیک، تراتوژنیک و کارسینوژنیک می باشند(۲۱). آفلاتوکسین M_1 به حرارت پاستوریزاسیون و اتوکلاو و دیگر روشهای متداول در فرایند های غذائی مقاوم است و حرارت در کاهش آن بی تاثیر می باشند(۷ و ۱۹). حد استاندارد غذائی در هر کشور ممکن است با سایر کشورها متفاوت باشد (۲٤). كميته اروپائي، ماكزيمم ميزان آفلاتوکسین M_1 را در شیر خام، مایع، پودر، شیر حرارت

دیده (heat-treated milk) و محصولات شیری فرایند شده را ۵۰ نانوگرم در کیلوگرم (۱۰۰۵ (۱۳۶۸ تعیین می کند و نبایستی از این میزان تجاوز کند(٥). در استرالیا و سوئیس میزان آن در مواد غذائی کودکان به ۱۰ نانوگرم در کیلوگرم کاهش یافته است(۱۰). حد مجاز آلودگی AFB₁ در جیره غذائی دام ۵ $\mu g/kg$ است. آفلاتوکسین M_1 در ۲۲–۱۲ ساعت بعد از خوراندن AFB_1 توسط دام در شیر ظاهر می شود و در مدت کوتاهی مقدار آن به سطح بالا می رسد و هر گاه مصرف AFB_1 قطع شود، غلظت AFB_1 در شیر كاهش يافته و بعد از ٧٢ ساعت غير قابل شناسائي مي AFM_1 نین خطی بین از محققین ارتباط خطی بین (۲۲). موجود در شیر و AFB_1 موجود در غذای مصرفی حیوانات را گزارش کردند(۳). نسبت بین AFB₁ خورده شده و ترشح AFM_1 در شیر Y-۱ درصد تخمین زده شده است و ۲۲). این درصد در هر حیوان و در هر روز و در مورد هر شیر نیز متفاوت است(۱٦). بسیاری از کشور ها برنامه بازرسی و کنترل را روی مایکوتوکسین برای چندین سال جهت بهداشت عمومی انجام می دهند (جدول ۱). در ایران مطالعاتی در مورد آفلاتوکسین M_1 در شیر صورت گرفته است (جدول ۲). هدف از بررسی حاضر سنجش میزان AFM۱ شیر مطالعاتی دامها در دامداریهای سنتی و نیمه صنعتی شهرستان بابل و مقایسه آن با جیره غذائی می باشد.

جدول ۱: بررسی میزان آفلاتوکسین M_1 در شیر خام در کشور های مختلف.

منبع	سال	ميزان غلظت	درصدنمونه اَلوده (ng/l <٥٠)	تعداد نمونه	محققین و سال	كشور
٨	7	ng/ml ٣/١٢-٠/٠٣	٧١/٤	٤٩	Elgerbi et. Al. (2004)	ليبى
11	1991	100 ng/l	•/0	474	Fukal, Brezina	آلمان
٣	7	>o∙ ng/l	٤٤/٣٠	٩.	Bakirci (2001)	تركيه
77"	1999	μg/l •/۲۱	٦	٥٤	Srivastava et .al. (2001)	كويت
١٦	1999	μg/l ·/·ο·-·/·۲۱	١٩/٣	-	Marnis & Martins (2000)	پرتقال
10	7	pg/g \A	٧٦	-	Kim et .al. (2000)	کرہ
١٨	71	بیش از ۵/۰ μg/kg	١٣	17.	Panariti (2001)	آلباني

منبع	سال	ميزان غلظت	درصد آلودگی (ng/l	تعداد نمونه	نوع نمونه	محققین و سال	شهر
١٣	1991	>₀∙ ng/l	AY/Y	٧٣	شير خام	کریم و همکاران (۱۹۹۸)	تهران
18	19,47	71-7	94/10	٥٢	شیر خام	کریم و همکاران (۱۹۸۲)	تهران
17	77	μg/l •/۲۸-•/•10	Y7/1	111	شير خام	کامکار (۲۰۰۵)	سراب
1	7٣	>₀∙ ng/l	NV/A	375	شير پاستوريزه	البرزی و همکاران (۲۰۰٦)	شيراز

جدول ۲: بررسی میزان آفلاتوکسین M1 در شیر و محصولات شیری در شهر های مختلف ایران.

مواد و روش کار

در این مطالعه ۱۲۰ نمونه شیر خام (هر نمونه به میزان۱۰-۱۵ میلی لیتر) از تانکر شیر ۶۰ دامداری سنتی و نیمه صنعتی شهرستان بابل در طی فصل زمستان ۱۳۸۶جمع آوری شدند و در آزمایشگاه دانشگاه علوم پزشکی بابل در دمای ۱۰ درجه سانتی گراد به مدت ۱۰ دقیقه با دور ۳۰۰۰ دور در دقیقه سانتریفوژ گردیدند. سپس چربی روئی را بطور کامل بوسیله پیپت پاستور دور ریخته و شیر بدون چربی را جهت آزمایش AFM₁ در فریزر ۷۰- درجه سانتی گراد نگهداری شد. همزمان نوع جيره مصرفي ثبت گرديد. كيت الايزا ٩٦ تايى آفلاتوكسين Tecna , M₁ ايتاليا -(cat.NO. MA440 (www.tecnalab.com) -MA441) برای شناسائی مورد استفاده قرار گرفت که یک ایمونوآسی آنزیم AFM_1 رقابتی است و بر پایه واکنش آنتی ژن آنتی بادی است. چاهک های (wells) میکروتیتر با آنتی بادی بر علیه پوشانده شده اند. با اضافه کردن AFM_1 استاندارد AFM_1 یا نمونه محلول، مکانهای باند شده با آنتی بادی بطور نسبی به غلظت AFM₁ اشغال مي شوند. هر مكان خالي باقي مانده در مرحله بعد بوسیله آنزیم کونژوگه با آفلاتوکسین اشغال می شوند. در مرحله شستشو، کونژوگه باند نشده M_1 رها می شود. سپس سوبسترا و کروموژن به چاهک ها اضافه شده و سپس انكوباسيون شدند. با اضافه كردن عوامل

متوقف کننده رنگ آبی به زرد تغییرکرده و سپس جذب در طول موج 80° نانومتر در یک خوانشگر الایزا خوانده شدند. در این مطالعه بعد از محاسبه AFM_1 شیر، با استفاده از معادله زیر از طریق غلظت AFM_1 هر نمونه شیر، غلظت تقریبی AFB_1 آنها در نمونه جیره غذائی گاو شیری بدست آمد. چرا که گزارش شده است که فقط AFM_1 /// AFB_1 خورده شده توسط دام های شیری به AFM_1 تبدیل می شود (۹ و شدت می آید (۲۰):

AFB1 ($\mu g/kg$) = $\frac{AFM1 (ng/kg) \times 100}{1.6 \times 1000}$

نتايج

از ۱۲۰ نمونه ۲۸ نمونه (۷۳٫۰٪) بین ۵۰ تا ۳۵۲/۳ نانوگرم در لیتر در لیتر و ۵۲ نمونه (۴۳/۳) بین 3 تا ۵۰ نانوگرم در لیتر آلودگی آفلاتوکسین M_1 داشتند. میزان آلودگی (بیش از ong/l) در ماه های دی، بهمن و اسفند به ترتیب برابر است با ٤٠ درصد، 5 درصد و 5 درصد بود. بطور کلی 5 درصد نمونه ها بیش از حد مجاز کمیته اروپائی 5 درصد نمونه ها بیش از حد مجاز کمیته اروپائی 5 (ong/l) آلودگی 5 (AFM1) داشتند. بعبارتی میزان آلودگی 5 شیر خام دامها در دامداریهای شهرستان بابل در فصل زمستان بیش از ۲ برابر حد استاندارد فوق بود. میزان

آلودگی آفلاتوکسین M_1 بین 3 نانوگرم در لیتر تا M_1 نانوگرم در لیتر (میانگین M_1 بین M_1) بود(جدول M_2). از بین M_1 دامداری M_1 دامداری سنتی و M_2 دامداری نیمه از بین M_2 دامداری M_2 در دامداریهای سنتی M_2 درصد نمونه ما و در دامداریهای نیمه صنعتی M_2 درصد نمونه ها بیش از M_2 نانوگرم در لیتر آلودگی آفلاتوکسین M_3 داشتند. میزان آلودگی در دامداریهای سنتی در ماههای دی، بهمن و اسفند به ترتیب برابر است با M_2 درصد بود ولی در دامداریهای نیمه صنعتی این میزان به ترتیب برابر است با M_2 درصد بود ولی در دامداریهای نیمه صنعتی این میزان به ترتیب برابر است با M_2 و M_3 درصد بود ولی در دامداریهای نیمه صنعتی این میزان به ترتیب برابر است با M_3 و M_4 درصد بود ولی در دامداریهای نیمه صنعتی این میزان میزان آلودگی مربوط به دامداریهای است که از جیره غذائی نان خشک، تفاله تخم پنبه، مصرف می کردند و کمترین میزان آلودگی مربوط به جیره غذائی

علوفه سبز، پوست ذرت و کاه بوده است. تخمین آلودگی AFB_1 از روی آلودگی AFM_1 در مواد غذائی دام های شیری نشان می دهد که 7.0 تا 9.0 9.0 متغیر می باشد که بطور اساسی 9.0 درصد موارد بیشتر از دستور استاندارد کمیته اروپائی (9.0 9.0 در سال 9.0 در سال 9.0 در ماه دی و است(جدول 9.0 و 9.0). کمترین میزان آلودگی در ماه دی و بیشترین میزان آلودگی مربوط به ماههای بهمن و اسفند (به یک نسبت) بود. ارتباط معنی داری بین میزان آلودگی تست آماری بدست نیامده است(جدول 9.0). با استفاده از آزمون آماری مشخص گردید که بین میزان آلودگی آفلاتوکسین 9.0 شیر و نوع دامداری (سنتی و نیمه صنعتی) آزناط معنی داری وجود ندارد (جدول 9.0).

جدول ۳: توزیع فراوانی AFM1 در شیر خام دامداریهای شهرستان بابل در زمستان سال ۱۳۸۶

درصد کل	فراوان <i>ی</i> کل	حداقل	حداكثر	انحراف معيار	$Mean \pm se *$	درصد	کمتر از ۵۰ ng/l	درصد	بیشتر از ۵۰ ng/l	تعداد نمونه	ماه
٣٣/٣	٤٠	٦/٥	707/7	112/09	1· {/97±1/6	٦٠	75	٤٠	١٦	٤٠	دی
*** / *	٤٠	٤	799	99/٣9	1·٣/07±10/V1	٣٥	1 £	٦٥	77	٤٠	بهمن
٣٣/٣	٤٠	۸/۲	799	VT/T9	99/70±11/09	۳٥	١٤	٦٥	77	٤٠	اسفند
1	17.	٤	707/7	97/77	1 • Y/V٣±٨/V٩	٤٣/٣	٥٢	٥٦/٧	7./	17.	جمع

eMean میانگین se انحراف از میانگین

جدول ٤: توزيع فراواني شيوع AFM1 در شير خام در فصل زمستان سال ١٣٨٤

	مقدار توزیع بر حسب ng/l														
701>		7.1-	- ۲0 •	101-	101-7		10.	01-1		Y7-0•		0-40		٥<	
درصد	تعداد	درصد	تعداد	درصد	تعداد	درصد	تعداد	درصد	تعداد	درصد	تعداد	درصد	تعداد	درصد	تعداد
17/0	10	V/0	٩	١٠	17	٥	٦	Y1/V	77	17/0	١٥	Y9/Y	٣٥	1/٧	۲

جدول ٥: میزان آلودگی AFM1 شیر و نوع دامداری در شهرستان بابل در سال ۱۳۸٤

			نيمه صنعتى		سنتى										
ng/le در شیر	ک ا: • د	بیشتراز ng/lo۰ در شیر			ng/ld در	كمتراز ١٠	ng/l در	بیشتراز ۰۰		کمتراز ۰۰ ng/l در		ng/l در	بیشتراز ۰۰		
۱۱ ها در سیر	عسوار			مورد	شير		شير		مورد	شير		شير		مورد	ماه
درصد	تعداد	درصد	تعداد	55	درصد	تعداد	درصد	تعداد))	درصد	تعداد	درصد	تعداد	-55	
٦.	72	٤٠	١٦	٤٠	٥٧/١٤	٨	٤٢/٨٦	٦	١٤	71/02	١٦	37/27	1.	77	دی
٣٥	١٤	٦٥	۲٦	٤٠	27/73	٦	٥٧/١٤	٨	١٤	٣٠/٧٧	٨	79/75	١٨	77	بهمن
٣٥	18	٦٥	۲٦	٤٠	27/13	٦	٥٧/١٤	٨	١٤	٣٠/٧٧	٨	79/75	١٨	۲٦	اسفند
٤٣/٣	٥٢	٥٦/٧	W	17.	٤٧/٦٢	۲٠	۵۲/۳۸	77	٤٢	٤١/٢٠	٣٢	0A/9V	٤٦	V۸	جمع

جدول ٦: توزيع فراواني شيوع AFB1 درجيره در فصل زمستان سال ١٣٨٤

مقدار توزیع بر حسب μg/kg												
18 8. 3.000 7												
۲۰>	>	17-1	·	11-	١٥	0-1	•	<-				
درصد	تعداد	درصد	تعداد	درصد	تعداد	درصد	تعداد	درصد	تعداد			
1/V	۲	١٠/٨	١٣	٩/٢	11	۲٥	٣.	٥٣/٣	٦٤			
1/V	7	1 • / ٨	11-	7/4	11	7.0	4.	01./1.	-12			

جدول ۷: توزیع فراوانی AFB1 در جیره دامداریهای شهرستان بابل در فصل زمستان سال ۱۳۸۶

در <i>صد</i> کل	فراوانی کل	حداقل	حداكثر	انحراف معيار	$Mean \pm se *$	درصد	کمتر از ٥ μg/kg	درصد	بیشتر از ه μg/kg	تعداد نمونه	ماه
٣٣/٣	٤٠	•/٤	77	V/14	7/00±1/17	٦٠	37	٤٠	۲۱	٤٠	دی
۲۳/۳	٤٠	•/٢٥	1A/V	7/11	7/2V±•/9A	٥٠	7.	٥٠	۲٠	٤٠	بهمن
۲۳/۳	٤٠	•/01	15/25	٤/٥٨	%/Y*±•/V Y	٥٠	۲.	٥٠	۲٠	٤٠	اسفند
1	17.	•/٢٥	77	7.1	7/£7±•/00	٥٣/٣	٦٤	£7/V	۲٥	17.	جمع

Mean = میانگین se انحراف از میانگین

بحث

آفلاتوكسين مشكل جدى براي انسان ايجاد مي كند. از آنجائی که شیر برای کودکان غذای اصلی است، لازم است تدابیر خاص جهت حفاظت جیره غذائی دامی از کپک های آفلاتوکسیژن و کیفیت شیر به عمل بیاید.در آلمان Fukal و (۱۱) Brezina را در ۳۷۹ شیر خامی که برای تهیه غذای کودکان بکار می رفت، مورد سنجش قرار دادنـد. فقـط ۲ نمونـه (۰/۰٪) غلظـت بـیش از ۰/۱ شناسائی شدند(۱۱). در ترکیه Bakirci در سال ۲۰۰۰ میزان (۸۷/۷۷٪) AFM را در شیر خام و محصولات بدست آمده از همان شیر را بررسی نمود. ۷۹ نمونه از ۹۰ نمونه شیر AFM₁ جدا شد. ۳۵ مورد (۴۰٪٤٤٪) از نمونه های مثبت بالاترین میانگین حد مجاز (۰/۰۵ ppb) استاندارد را نشان دادند. ارزیابی آماری نشان می دهد که اختلاف معنی داری بین غلظت AFM₁ نمونه شیر بدست آمده از ماه مارس تا آوریل و مارس تا ماه مـه وجـود دارد . از سوی دیگر اختلاف معنی داری بین میانگین غلظت نمونه شير بدست آمده از آوريل تا ژوئن و ماه مه تا AFM_1 روئن (p<0.01) وجود دارد. كمترين ميران AFM_1 در شير خام ۰/۰۳۰۲ ppb در ماه ژوئن و بیشترین آن ۰/۰۳۳۲ ppb

 AFM_1 در آپریل بود. ٤٠٪ نمونه شیر خام در ماه ژوئین نداشته اند (۳). در ژاپن Nakajima و همکاران در زمستان سال ۲۰۰۱ از ۲۰۸ نمونه شیر AFM_1 در ۲۰۷ مورد (۹۹/۵) از ۱-۰/۲۹ شناسائی شد که اختلاف معنی داری شد که اختلاف معنی داری بین آلودگی AFM₁ در مناطق مختلف ژاپن مشاهده نشد(۱۷). از ۷۳ نمونه شیرهای تحویلی به کارخانجات شیر یاستوریزه تهران در سال ۱۹۹۸ توسط کریم ۲۰ نمونه(۸۲/۲٪) آلودگی به AFM۱ به میزان بیش از حد مجاز استاندارد اتحادیه اروپا (۵۰ نانوگرم در لیتر) بودند(۱۳) و در مطالعه در سال ۱۹۸۲ توسط کریم از ۵۲ نمونه شیر مایع ٤٨ مـورد(۹۲/۳٪) اَلـودگی بــا غلظت بین ۲۳ و ۳۰۰۰ داشتند(۱٤). کامکار در شهر سراب در سال ۲۰۰۳ از ۱۱۱ نمونه شیر خام ۸۵ مورد(۷۲/۸٪) با غاظت بین ۰/۰۱۵ و ۲۸/ $\mu g/l$ آلودگی داشتند. میزان $\mu g/l$ نمونه های مثبت بالاترین حد مجاز(۰/۰٥) اتحادیه اروپا بورند(۱۲). البرزی و همکاران در شهر شیراز در سال ۲۰۰۳ در فصول بهار و تابستان از ۱۲۶ نمونه شیر یاستوریزه ۱۰۰٪ ألودگي داشتند كـه ۱۷/۸٪ نمونـه هـا بيـشتر از حـد مجـاز اتحادیه اروپا (۵۰ نانوگرم در لیتر) بودند(۱). در شمال ایران بعلت شرایط مناسب محیطی در رشد کیکهای آفلاتوکسیژن بخصوص در فصول سرما، تدابیری در جهت تهیه، تولید و

۸-ایجاد آزمایشگاههای تشخیص سم در مراکـز اسـتانها و فراهم آوردن امکانات سریع تشخیص.

تشکر و سیاسگزاری

بدینوسیله از حمایت مالی ریاست محترم دانشگاه آزاد اسلامی واحد بابل جناب آقای حاج حسن قلی پور تشکر به عمل می آید.

فهرست منابع

- 1-Alborzi, S., Pourabbas, B., Rashidi, M. and Astaneh, B. (2006): Aflatoxin M1 contamination in pasteurized milk in Shiraz (south of Iran). Food Control. 17(7): 582-584.
- 2- Aycicek, H., Aksoy, A. and Saygi, S. (2005): Determination of aflatoxin levels in some dairy and food products which consumed in Ankara, Turkey. Food Control. 16(3): 263-266.
- 3- Bakirci, I. (2001): A study on the occurrence of aflatoxin M_1 in milk and milk products produced in Van province of Turkey. Food control. 12: 47-51.
- 4- Barbieri, G., Bergamini, C., Ori, E., and Reska, P. (1994): Aflatoxin M_1 in parmesan cheese: HPLC determination. Journal of Food Science. 59(6): 1313–1331.
- 5- Codex Alimentarius Commissions (2001). Comments submitted on the draft maximum level for Aflatoxin M1 in milk. Codex committee on food additives and cotaminants 33rd sessions, Hauge, The Netherlands. Available from: http://www.ecolomicsinternational. org/cad_codex_alimentarius evaluation report 2002.htm
- 6- Creppy, E.E. (2002): Update of survey, regulation and toxic effects of mycotoxins in Europe, Toxicology Letters. 127: 19-28.
- 7-Deshpande, S.S. (2002): Fungal toxins. In: S.S. Deshpande, Editor, Handbook of food toxicology, Marcel Decker, New York pp: 387–456.
- 8- Elgerbi, A.M., Aidoo, K.E., Candlish, A.A. and Tester, R.T. (2004): Occurrence of aflatoxin M₁ in randomly selected North African milk and

نگهداری منابع غذائی حیوانی بایستی اتخاذ گردد.در جدول ۱ میزان فراوانی آلودگی AFM₁ در شیر در کشور های مختلف آورده شده است. نتایج نشان می دهد که میزان آلودگی در اکثر کشور ها در حال کاهش می باشد و این امر بخاطر جدی گرفتن کیفیت تغذیه دام و بهداشتی نمودن آن است. نتایج این مطالعه نشان می دهد که میزان آفلاتوکسین M_1 در شیر منطقه بابل است و این موضوع برای بهداشت عمومی مسئله جدی است. چرا که همه گروه های سنى شامل بچه ها و كودكان بطور وسيعي از اين محصولات مصرف مي كنند. با توليد و ذخيره مناسب مي توان میزان AFB₁ را در مواد خام کاهش داد. کاهش رشد قارچ و در نتیجه تولید AFB_1 در محصولات کشاورزی ضروری است، چرا که این محصولات به مصرف انسان و حيوان مي رسند. جيره غذائي با غلظت بالا AFB نبايستي به خوراک دام بخصوص دامهای شیری برسد. جلوگیری از آلودگی غذای دام شیری به کیک ها و در نتیجه تولید سم توسط آنها یکی از اقدامات اساسی پیشگیری است که باید بطور جدی مورد توجه تولیدکنندگان و مسئولان قرار گیرد.

ييشنهادات

۱- عدم استفاده از جیره غذایی کپک زده به دامهای شیری.
۲- برداشت به موقع گیاهان و جلوگیری از صدمه به آنها.
۳- کاشت و تولید گیاهان با سویه های مقاوم در مقابل رشد قارچ یا تولید سم.

٤- مبارزه شيميايي در برابر رشد قارچها در مواد غذائي
٥-خشک کردن مناسب و درست محصولات برداشته شده
قبل از ذخيرهسازي.

7- سنجش آفلاتوکسین B_1 جیره غذائی مشکوک، از مراکز تولید و عرضه.

۷- کنترل جدی و دائم جیره های وارداتی توسط مراکز
دامیز شکی از بنادر.

- cheese samples .Food Addit Cotam. 21(6): 592-7.
- 9- Ferbisch, R.A., Bradley, B.D., Wagner, D.D., Long-Bradley, P.E. and Hariston, H. (1986): Aflatoxin residue in milk of dairy cows after ingestion of naturally contaminated grain, Food Protection. 49: 781–785.
- 10- Food and Agriculture Organization, Worldwide regulations for mycotoxins in food and feed in 2003, Food and Agriculture Organization. Rome (2004) FAO Food and Nutrition. PP:81.
- 11- Fukal, L. and Brezina, P. (1991): Determination of aflatoxin M_1 level in milk in the production of baby and children's food using immunoassay. Nahrug . 35(7):745-8.
- 12-Kamkar, A. (2005): A study on the occurrence of aflatoxin M1 in raw milk produced in Sarab city of Iran. Food Control. 16(7):593-599.
- 13- Karim, G. (1998): Study on the contamination of raw bulk milk with aflatoxin M1 in Tehran area using ELISA method, Journal of Pajoohesh and Sazandeghi 40–42: 163–165.
- 14- Karim, G. (1982): Study on the contamination of milk with aflatoxin in Tehran area, Journal of Iranian Public Health 11 (1–2):19–23.
- 15- Kim, E.K., Shon, D.H., Ryu, D., Park, J.W. Hwang, H.J. and Kim, Y.B. (2000): Occurrence of aflatoxin M1 in Korean dairy products determined by ELISA and HPLC, Food Additive and Contaminants. 17 (1): 59–64.
- 16- Martins, M.L. and Martins, H.M. (2000): Aflatoxin M1 in raw and ultra high temperature—treated milk commercialized in Portugal, Food Additive and Contaminants. 17 (10): 871–874.
- 17- Nakajima, M., Tabata, S., Akiyama, H., Itoh, Y., Tanaka, T., Sunagawa, H., Tyonan, T., Yoshizawa, T. and Kumagai, S. (2004): Occurrence of aflatoxin M_1 in domestic milk Japan during the winter season. Food Addit Contam. 21(5): 472-8.
- 18- Panariti E. (2001): Seasonal variations of aflatoxin M_1 in the farm milk in Albania. Arh Hig Rada Toksikol. 52(1):37-41.
- 19- Park, D.L. (2002): Effect of processing on aflatoxin, Advances in Experimental Medicine and Biology 504:173–179.

- 20- Rastogi S., Premendra, D.D., Subhash, K.K. and Mukul, D. (2004): Detection of Aflatoxin M1 contamination in milk and infant milk products from Indian markets by ELISA. Food Control. 15 (4): 287–290.
- 21- Ricordy, R., Coacci, R., Augusti-o, F. (2004): Aflatoxin B_1 and cell cycle perturbation. Food abd Nutrition Toxicity. 4: 213-233.
- 22- Rodriguesz, M.L., Velasco, M.M. Calonge, D. and Ordonez Escudero, D. (2003): ELISA and HPLC determination of the occurrence of aflatoxin M_1 in raw milk. Food Additives and Contaminants. 20(3):276-280
- 23- Srivastava, V.P., Bu-Abbas, A., Alaa-Basuny, W., Al-Johar, Al-Mufi, S. and Siddiqui, M.K. (2001): Aflatoxin M1 contamination in commercial samples of milk and dairy products in Kuwait, Food Additives and Contaminants. 18 (11): 993–997.
- 24- Stoloff, L., Van Egmond, H.P. and Parks, D.L. (1991): Rationales for the establishment of limits and regulations for mycotoxins. Food Additives and Contaminants. 8 (2): 222–231.
- 25- Van Egmond, H.P. (1991): Mycotoxin International Dairy Federation Special Issue. 9101:131–145.
- 26- Van Egmond, H.P. (1989): Aflatoxin M₁: occurrence, toxicity, regulation. In: Hans P. van Egmond, Editor, Mycotoxins in dairy products. Elsevier Applied Science, New York. Pp: 11–55.