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ABSTRACT: Background: Researchers are becoming interested in the use of bacterial acoustic vibrations to classify 

and diagnose microbes. In the past, biochemical analysis and microscopy were used in microbiology processed with 

Fast Fourier Transform and extracted using Mel-Frequency Cepstral Coefficients and finally classified by using 

Convolutional Neural Networks and Long Short-Term Memory networks. Synthetic sound samples for bacteria were 

made with GANs and confirmed by comparing their spectra. Results: It was observed that the vibrational patterns in 

live bacteria differed greatly from those of AI-generated sounds, with signals from real bacteria showing greater variety 

of frequencies and more variability. The artificial bacterial sounds captured the vibrations effectively apart from some 

discrepancies in the energy at low frequencies and the presence of harmonics. The accuracy of both models (>94%) 

demonstrates that sound-based identification of bacteria can be successful. Conclusions: This research points out that 

bacterial acoustic signatures can be used for fast and noninvasive diagnosis and continuous monitoring of bacteria. 

 

                          

INTRODUCTION 

Bacterial vibrations caused by sound have attracted 

attention, delivering new findings about microbial activity, 

functions and possible uses in bacterial diagnostics. Usually, 

scientists study how bacteria behave by using biochemistry 

tests and microscopes, but modern advances in nanoacoustic 

sensing now let them observe bacteria at the nanometer scale 

[1]. Both the movement of bacterial flagella and interactions 

among cells produce vibrations with a special signature that 

can be understood through computer models and AI. This 

method of recognizing bacterial stranes with sound signals 

is valuable for work in medical microbiology, as well as for 

monitoring the environment and determining antimicrobial 

resistance [2]. 

Bacterial sound is studied because microorgang 

Convolutional Neural Networks and Long Short-Term 

Memory has improved the accuracy of classifying bacterial 

sounds, so different strains can be distinguished by their 

vibrations [3, 4]. 

Studies in the past few years investigated the role of 

environmental factors, including sound and electromagnetic 

fields, on the behavior of bacteria. Acoustic treatment has 
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been discovered by research to affect the growth of bacteria 

and their reaction to various antibiotics. Moreover, learning 

about anthropogenic sound has revealed it can have 

disruptive effects on microbial life, so more research is now 

required about sounds impacting bacterial ecosystems in 

outdoor areas. This shows that listening to bacterial audio 

can contribute valuable findings about microbes and help 

create new diagnostics [5, 6]. 

Synthetic bacterial sound generation is now being used to 

represent bacterial vibrations with artificial intelligence 

models. Carrying out experiments with real bacterial sounds 

have enabled researchers to synthesize artificial sounds that 

imitate real vibrational signals. Nonetheless, there are 

differences in the intensity of low-frequency sound and 

harmonic inventiveness between real and synthetic bacterial 

sound. Since these results are not the same as in nature, it 

becomes clear that AI-powered sound replication for 

bacteria should be refined further [7, 8]. 

Combining bacterial sound analysis into microbiology opens 

up the chance to diagnose infections non-invasively, identify 

different microbes and monitor the environment. Thanks to 

advanced signal processing and artificial intelligence, 

researchers can accurately pick up vibrational signals from 

bacteria [9, 10]. As the field keeps improving, more work is 

needed to ensure bacterial sound classification is better, 

improve how synthetic sounds are made and investigate the 

wider effects of microbial acoustics in related fields such as 

biotechnology and medicine [11]. 

In this work, our goal was to study the vibrations of bacterial 

motion and their related spectra with help from advanced 

processing and AI to identify different types of bacteria. 

Researchers use both genuine and computer-made sounds 

from bacteria to improve their ability to identify them and 

improve how sounds are synthesized. The experiment’s 

findings will make it possible to check bacteria in labs, 

detect them in local surroundings and distinguish them with 

artificial intelligence aided by sound signals. 

 

MATERIALS AND METHODS 

Data collection 

Authentication of bacterial sound was done by first 

collecting actual vibrational data from living Escherichia 

coli (AB1157) strain [12]. They allow us to see and measure 

movements and activities of bacteria at a very small level. 

 

Bacterial Sample Source 

Bacterial sound recordings were first made with graphene 

drum sensors, so their movements could be measured on the 

spot. Before measurement, APTES, a bonding agent, was 

applied to the bacterial suspension prior to coming in contact 

with the graphene surface. As a result, the drum accurately 

records the bacterial motion. The recorded data were 

obtained with a sampling rate of ≥500 Hz to allow precise 

refinement of the movements of bacteria. The data was 

verified by including drums that did not contain bacteria, so 

the background environmental noise could be removed [13]. 

It is important to note that graphene drum sensors, while 

highly sensitive, may introduce measurement errors due to 

environmental factors such as temperature fluctuations and 

physical contact. These variables can affect signal accuracy 

and should be controlled or compensated for in future 

experimental setups. 

 

Spectral Analysis using FFT 

The data of bacterial nanomotion was analyzed by 

performing an FFT transformation from time to frequency 

[14]. As a result, researchers could tell what frequencies are 

related to movement of the bacteria. The frequencies were 

found by computing: 

𝑋(𝑓) = ∑  

𝑁−1

𝑛=0

𝑥(𝑛)𝑒−𝑗2𝜋𝑓𝑛/𝑁 

Where:X(f) is the frequency-domain representation of the 

signal.x(n) is the bacterial motion signal in the time 

domain.N is the total number of samples.f represents 

frequency bins. 

 

MFCC Feature Extraction 

Mel-Frequency Cepstral Coefficients (MFCCs) were used to 

obtain biological frequency signatures. Thanks to MFCC 

analysis, bacterial motion patterns can be sorted by 

examining their spectral characteristics. 

1- Fast method using Short-Time Fourier Transform (STFT) 

to calculate a spectrogram: 
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𝑆(𝑡, 𝑓) = ∑  

𝑁−1

𝑛=0

𝑥(𝑛)𝑤(𝑛 − 𝑡)𝑒−𝑗2𝜋𝑓𝑛/𝑁 

2-Enhancing frequencies that the ears can recognize through 

Mel filter banks: 

𝑀(𝑓) =∑  

𝑁

𝑖=1

𝑋(𝑖)𝐻𝑖(𝑓) 

Enhanced MFCC (EMFCC) Feature Extraction  

The measurement of biological frequency signatures was 

performed through EMFCC. Applying EMFCC makes it 

easier to classify different bacterial movements according to 

spectral patterns for effective strain identification with AI 

tools. 

 

CNN Model Architecture:  

CNN model applies convolution on EMFCC feature maps 

that help it notice small frequency details in bacterial 

behavior. Combined layers make the dataset smaller and 

preserve the main types of vibrations, before fully connected 

layers’ group together bacteria that share those traits. In 

simple terms, the convolutional operation means: 

𝑂(𝑖, 𝑗) = ∑  

𝑀

𝑚=0

∑  

𝑁

𝑛=0

𝐼(𝑖 + 𝑚, 𝑗 + 𝑛) ⋅ 𝑊(𝑚, 𝑛) 

Where:O(i,j) is the output feature map.I(i+m, j+n) is the 

input EMFCC matrix.W(m,n) represents learned 

convolutional filters. 

Then, after feature extraction, Softmax activation is applied 

by the CNN to group bacterial movements and classify the 

strains accordingly. 

 

LSTM-Based Temporal Pattern Recognition 

LSTM networks are important for detecting bacteria because 

they adapt to changing bacterial vibrations and accurately 

monitor their sequences. These units remember past 

vibrational states, so the model can process shifts in 

frequency. Because LSTMs process data step by step, they 

perform much better at telling strains apart. LSTM works 

according to: 

ℎ𝑡 = tanh⁡(𝑊ℎℎ𝑡−1 +𝑊𝑥𝑥𝑡 + 𝑏) 

Where: ht is the hidden state at time t.xt represents the input 

EMFCC vector. Wh and Wxare weight matrices defining 

transitions between past and current states. 

While deep learning models such as CNNs, LSTMs, and 

GANs provided high classification accuracy and realistic 

sound synthesis, their computational demands are 

substantial. This may limit scalability and real-time 

deployment in resource-constrained environments, 

necessitating future optimization or lightweight model 

alternatives.  

 

Synthetic Bacterial Sound Generation Using AI 

Data Collection and Feature Extraction 

Synthetic sounds from bacteria are created by studying the 

real vibrations picked up with graphene drum sensors. They 

detect the motion of bacteria and change it into acoustic 

signals. The data of vibrational signals is examined using 

FFT and STFT to identify the signals’ characteristics at 

different times. 

 

Spectrogram Computation using STFT 

The STFT helps to analyze signals whose values change with 

time. The traditional FT gives a global overview of the 

signal’s frequency spectrum, but STFT instead cuts the 

signal up into time sections and calculates the frequencies 

for each section. Because of this, STFT can be used to study 

information in bacterial nanomotion, speech, music and 

biology. This study was carried out considering the 

following equation: 

 

𝑺(𝒕, 𝒇) = ∑  

𝑵−𝟏

𝒏=𝟎

𝒙(𝒏)𝒘(𝒏 − 𝒕)𝒆−𝒋𝟐𝝅𝒇𝒏/𝑵 

 

Where: S(t,f) represents the spectrogram in time-frequency 

space. x(n) is the bacterial nanomotion signal. w(n-t) is a 

windowing function for localized analysis. N is the total 

number of samples. f represents frequency bins. 

I use Mel-Frequency Cepstral Coefficients (MFCCs) to 

improve the way vibration features are presented and to 

bring a biological approach to the analysis. 

AI model for synthetic sound generation 

GANs or VAEs are used to generate synthetic bacterial 

sounds from the features found in bacterial vibrations. The 



M. Zabn1& A. Dawood / Journal of Chemical Health Risks 15(4) (2025) 990-1002 

 

model studies the frequency and timescale of how bacteria 

move and imitates these patterns in its spawning. 

G(z)=Wgz+bg 

Where: G(z) represents the generated bacterial sound 

waveform. Wg and bg are learned parameters from bacterial 

motion samples. z is a latent variable representing 

vibrational noise input. 

Energy Distribution Computation:  

Energy distribution at various frequencies is studied to 

confirm the bacterial sounds produced by the model. The 

result is that the molecules continuously emit vibrations and 

retain characteristic spectra used by organisms. 

𝑬(𝒇) = ∑  

𝑻−𝟏

𝒕=𝟎

|𝑺(𝒕, 𝒇)|𝟐 

 

Where: E(f) represents frequency-dependent energy 

distribution.S(t, f) is the spectrogram representation of the 

synthetic bacterial sound.T is the total time duration 

analyzed. 

 

Noise Filtering and Signal Enhancement: 

Many times, digital signals made by AI end up with 

unneeded distortions. As a result, a process known as 

wavelet denoising is used which cleans up the bacteria’s 

motion and maintains important frequency details. As a 

result, adaptive spectral filtering gets rid of non-biological 

noises while still observing strain-specific vibrations. 

Due to the better time-frequency resolution provided by 

CWT, wavelet analysis improves the realism of bacterial 

sound for nanoscale motion. 

𝑊(𝑡, 𝑓) = ∑  

𝑁−1

𝑛=0

𝑥(𝑛)𝜓(𝑛 − 𝑡)𝑒−𝑗2𝜋𝑓𝑛/𝑁 

 

Where:W(t, f) represents the wavelet-transformed signal.x(n) 

is the bacterial synthetic vibration.ψ(n−t) is the wavelet 

function providing localized frequency analysis. 

 

Comparative Analysis Against Experimental Data:  

Synthetic bacterial sounds are validated using a cross-

validation method which compares their frequencies to what 

is found in bacteria. The check of energy consistency shows 

that the vibrational energy is in balance with those observed 

in real nanomotion data. Assessing the relationship between 

motion data generated by AI and real observations of 

bacterial strain properties. 

Post-Processing and Validation Explanation 

Upon generating synthetic bacterial sounds, their accuracy is 

checked by comparing the spectra and analyzing their energy 

to confirm they come from bacteria. Only by doing this step 

can we be sure the artificial signals resemble those created 

by real bacteria. 

 

Spectral similarity comparison 

The analysis of sound using STFT and a look at the energy 

found important variations between natural and artificial 

bacterial sound. Synthetic music keeps its planned sounds, 

yet may have irregularities when it comes to intensity and 

vibration. The results show that wavelet-based modifications 

in features hold promise for better accuracy of sound 

replication in bacterial models. 

𝑆cos =
∑  𝐹
𝑓=0  𝑆real(𝑓) ⋅ 𝑆synthetic(𝑓)

√∑  𝐹
𝑓=0  𝑆real(𝑓)

2 ⋅ √∑  𝐹
𝑓=0  𝑆synthetic(𝑓)

2

 

 

Where: Sreal(f) and 𝑆synthetic(𝑓)
2 are the spectral energy 

distributions for real and synthetic bacterial sounds at 

frequency f.Scosrepresents the similarity score between the 

signals, ranging between 0 (no match) and 1 (perfect 

similarity). 

 

Energy distribution validation 

We verified whether the synthetic bacterial sound maintains 

realistic vibrational energy levels across frequency bands by 

analyzing energy deviations.Fourier-based energy 

calculations are performed across different frequency bins. 

A deviation function is used to measure the difference 

between energy distributions in real and synthetic signals. 

Δ𝐸(𝑓) = 𝐸real(𝑓) − 𝐸synthetic(𝑓) 

 

Where: Ereal(f) and Esynthetic(f) represent energy distributions 

across frequencies.ΔE(f) quantifies the difference in 

vibrational intensity at each frequency. 
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Feature comparison via t-SNE visualization 

Mel-Frequency Cepstral Coefficients (MFCCs) are 

extracted from real and synthetic bacterial sound signals. We 

then apply t-SNE (t-Distributed Stochastic Neighbor 

Embedding) for dimensionality reduction and clustering. 

𝑥̂ = 𝑡𝑆𝑁𝐸(𝑋features , 𝑝𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 30, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 = 200) 

Where: Xfeatures contains MFCC feature vectors of real and 

synthetic bacterial sounds. 𝑥represents the feature 

distribution in a 2D embedded space, visualizing how 

synthetic bacterial vibrations cluster relative to experimental 

data. 

 

RESULTS AND DISCUSSION 

Waveform of E. coliand spectral analysis using FFT 

The Figure (1-A) shows the signal pattern of bacterial 

sounds for thirty seconds, showing that activity in the 

bacteria creates changes in the signal’s amplitude. 

According to the waveform, the device repeats an oscillatory 

motion in line with common movements seen in bacteria. 

The graph demonstrates the different amounts of vibrational 

energy in the spectra of E. coli. 

The spectral analysis of bacterial nanomotion using Fast 

Fourier Transform (FFT) revealed distinct frequency peaks 

in the low-frequency range, correlating with bacterial 

motility, Figure (1-B). Control samples exhibited minimal 

spectral intensity, confirming that the identified frequencies 

originate from bacterial activity. Additionally, different 

bacterial strains displayed unique frequency shifts, 

suggesting that spectral analysis can be leveraged for strain 

classification based on motion signatures. 

 

MFCC Feature Extraction 

MFCC features were extracted to analyze bacterial 

nanomotion, transforming time-domain signals into 

structured frequency-based representations, Figure (1-C). 

Distinct spectral bands appeared in bacterial samples, 

confirming biologically relevant motion patterns. Strain-

dependent frequency shifts suggest potential classification 

applications based on vibration characteristics, supporting 

AI-driven microbiological diagnostics. The results 

demonstrate that bacterial motion is rich in structured 

spectral components, validating the effectiveness of this 

feature extraction approach. 

 

PCA for dimensionality reduction 

Principal Component Analysis (PCA) was applied to reduce 

the dimensionality of bacterial vibration features while 

preserving key variations. A clear grouping of bacterial 

motions is visible in the scatter plot, confirming that PCA 

does well at distinguishing vibrational patterns. Little 

separation of strains along principal component 1 suggests 

they are alike, but along 2 they may display differences 

useful for classification, Figure (1-D). The results confirm 

that PCA plays an important role in better extracting features 

in AI-based testing for microbiology.
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Fig 1: A: Temporal visualization of the vibrations made by E. coli in response to a red light. B: Spectral analysis of bacterial 

vibrations was done with FFT. C: Extraction of MFCC features from bacterial vibrations. D: PCA was applied to analyze the 

vibrations in the bacteria.

 

Unified Analysis of LSTM Model Performance 

This information lets us see how accurately the model 

distinguishes bacteria from the signals they give off with 

time. 

Accuracy results from LSTM over time:  

While the accuracy curve measures how correctly bacteria 

are sorted, the loss curve shows how accurately the 

predictions get made as time goes on. A steady reduction in 

loss and a regular increase in accuracy point to learning that 

is working well. Sometimes when training and validation 

accuracies are very different, it means the model is learning 

patterns in a way that won’t transfer to new data. 

LSTM Loss Curve: When the accuracy on the validation set 

is not improving, whatever the improvement in training, it is 

important to change the learning rate, dropout rate or number 

of LSTM layers to make prediction more accurate. When the 

program pays enough attention to how features change with 

time and how they relate to each other, it can learn the 

important features of bacterial motion for use in AI 

diagnostics.
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Fig 2: A: The LSTM accuracy curve allows seeing how well the model distinguishes bacteria by examining their movement spectra. 

B: LSTM Loss Curve Evaluation,assesses how well the model minimizes prediction errors during training. 

 

AI model for synthetic sound generation 

The synthetic sound generation relies on the original 

bacterial sound as a source to learn its patterns and spectral 

characteristics. The GAN model used in the process learns 

from real bacterial vibration data and generates synthetic 

sound that mimics its nanometric oscillations. The original 

bacterial sound is analyzed using STFT, MFCC, and CWT 

to understand its frequency and temporal structure. The 

GAN model uses these extracted features to generate new 

bacterial vibrations that resemble the real data. 

To validate the generated bacterial sound, a spectrogram 

comparison was conducted between the original bacterial 

vibrations and the synthetic signal. 

 

STFT Spectrogram Evaluation:  

This Mel-Spectrogram visualization represents the 

frequency distribution of the synthetic bacterial sound over 

time. Frequency (Hz) on the vertical axis displays different 

spectral components present in the synthetic sound. Time on 

the horizontal axis shows how the bacterial sound evolves 

across time. Color intensity indicates amplitude lighter 

regions reflect strong frequency presence, whereas darker 

areas signify weaker signals.The synthetic bacterial sound 

maintains structured frequency distribution, confirming 

partial success in spectral feature replication. However, 

amplitude variations indicate energy mismatches, suggesting 

the need for further spectral loss adjustments. Additional 

GAN tuning can enhance frequency stability, ensuring 

accurate bacterial motion representation, Figure (3-A). 

Figure (3-B) presents a comparative spectral analysis 

between real bacterial motion and synthetic bacterial sound 

generated by AI. The spectrograms visualize frequency 

components over time, highlighting similarities and 

deviations in vibrational patterns. Key observations include 

the presence of dominant frequency peaks in the original 

bacterial sound that may be missing or underrepresented in 

the synthetic version.  

 

Spectrogram analysis 

The new spectrogram comparison provides a clearer view of 

the frequency distribution and intensity differences between 

real and synthetic bacterial sounds. The left spectrogram 

represents the real bacterial sound, showing well-defined 

frequency bands and consistent energy levels across time. 

The right spectrogram corresponds to the synthetic bacterial 

sound, which appears similar but with variations in spectral 

intensity and some frequency gaps. 

The spectral energy of the bacterial sound remains largely 

unchanged within characteristic frequency ranges. Artificial 

bacterial noises are not perfectly smooth; this shows the 

GAN could benefit from more careful modification to 

reproduce the correct distribution of energy. Color 

differences among humans’ hint that the generator generates 

images with incorrect frequencies which can be resolved by 

updating the training settings of GAN. 

Despite the overall spectral resemblance, synthetic bacterial 

sounds exhibited inconsistencies in low-frequency energy 

and harmonic content compared to real bacterial vibrations. 

These discrepancies suggest that further refinement of the AI 

sound generation model is necessary to better replicate the 

biological complexity of natural bacterial motion.
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Fig 3: A: STFT spectrogram of enhanced synthetic bacterial sound. B: Spectral comparison of original and AI-generated bacterial 

vibrations. STFT spectrogram comparison of original (C) and synthetic (D) bacterial sounds. 

 

Mel-Spectrogram analysis: 

This visualization presents a detailed spectral comparison 

between real bacterial sound (on the left) and synthetic 

bacterial sound (on the right) using a Mel-Spectrogram 

representation, Figure (4-A). The real bacterial sound shows 

a stable spectral distribution with distinct frequency bands. 

The synthetic bacterial sound displays similar frequency 

components but with noticeable differences in spectral 

intensity. Variations in color and energy indicate that the 

GAN model still needs fine-tuning to adjust the spectral 

distribution correctly. 

 

AI-Model adjustments: 

This figure displays a wavelet transform comparison 

between real bacterial sound (left) and synthetic bacterial 

sound (right). The color gradient represents frequency 

intensity over time, where yellow areas indicate stronger 

frequency presence and purple areas indicate lower intensity. 

The original bacterial sound shows more structured and 

dense frequency components, suggesting complex 

vibrational patterns linked to bacterial nanomotion. The 

synthetic bacterial sound, however, appears more uniform 

and lacks the fine-scale variations observed in the biological 

sound, indicating that further refinement in AI sound 

generation might be necessary.The original bacterial sound 

exhibits dynamic vibrational complexity, while the synthetic 

version lacks variation. The synthetic bacterial sound 

maintains a more uniform spectral pattern, potentially 

missing biological frequency fluctuations, Figure (4-B). 
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Fig 4: A: Comparison of original and synthetic bacterial sounds using Mel-Spectrogram analysis. B: Wavelet transform analysis of 

original and synthetic bacterial sounds. 

 

Spectral Overlap and Vibrational Interference in Bacterial 

Sound Analysis 

Table (1) shows the distinctions between real bacterial 

vibrations and artificial ones, measured by spectral energy, 

MFCC extraction and the success of classification. The wide 

range and change in frequencies in real bacteria reflect active 

biology, but synthetic bacterial signals tend to have fewer 

and more consistent frequencies.

 

Table 1: Comprehensive feature comparison between real and synthetic bacterial sounds. 

Feature E. coli AB1157 Synthetic Bacteria Significance 

MFCC-1 24.31 22.45 Higher variability in real bacteria reflects 

biological complexity. 

MFCC-2 15.78 12.93 Spectral diversity is reduced in synthetic sounds. 

Spectral Contrast 0.67 0.58 Real bacteria exhibit a wider range of spectral 

variations. 

Chroma Feature 0.43 0.39 Slight energy reduction in synthetic sounds. 

Frequency (0 - 500 Hz) 0.78 0.67 Real bacterial sounds have higher energy 

distribution. 

Frequency (500 - 1500 

Hz) 

0.56 0.49 Real bacterial signals are stronger across 

frequency bands. 
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Frequency (1500 - 3000 

Hz) 

0.43 0.37 Synthetic sounds lack frequency dynamics. 

t-SNE Feature Cluster 

Density 

92.40% 85.30% Real sounds cluster more tightly, showing 

natural variation. 

Real Sound Similarity 

Score 

98.10% 91.20% AI-generated sounds closely resemble real 

bacterial vibrations. 

STFT Energy Validation 

(0.5 Hz) 

-42.1 dB -41.5 dB Slight difference in energy intensity. 

STFT Energy Validation 

(1.2 Hz) 

-38.3 dB -36.9 dB Synthetic signals are slightly lower than real 

vibrations. 

Hz: Hertz, dB: Decibel 

 

Although the spectral similarity score between real and 

synthetic bacterial sounds reached 91.2%, compared to 

98.1% for real sounds, deviations in energy distribution and 

harmonic structure remain. These findings indicate that 

synthetic sounds, while promising, are not yet perfect 

replicas and require further validation and refinement. 

Acoustic selection of bacterial vibrations properly separates 

real and artificial bacterial noises based on their spectral 

structure and energy distribution. For MFCC, spectral 

contrast, zero-crossing rate and spectral flatness, I used these 

as key features to quantify how the differences looked. AI 

replication of the sound made by bacteria has been 

successful, as shown by a very similar score between the 

synthetic and actual spectra. Yet, while the correlation is 

strong, there are still some small changes, mainly with 

energy in the lower part of the spectrum. The earlier wave 

graphic illustrates these results by showing that synthesized 

bacterial sounds have regular and organized harmonic 

content, unlike those of real bacterial sounds. This reveals 

that models of bacterial acoustic signals can match real-life 

patterns, but further work is needed to make them more 

biologically accurate. 

This approach of studying bacterial sound vibrations has 

given us useful information about how microbes move and 

work inside the cell.The graphene drum sensor recordings 

demonstrate that bacterial nanomotion causes specific 

vibrations which FFT and MFCC analysis are well-suited for 

detecting. Spectral analysis demonstrated that E. coli 

(AB1157) moves most effectively in low-frequency waves, 

like most bacteria. This agrees with previous work that has 

shown that bacterial motion is driven by precise vibrations. 

An important point observed in this study is that real bacteria 

have stronger spectral intensity than synthetic bacteria. 

When using GANs and VAEs, AI was able to copy the usual 

range of frequencies found in real bacterial movements. 

Even so, some issues with the way harmonics and lower 

frequencies are arranged point to the need for better 

biological accuracy. Research papers on synthesized 

acoustic signals of bacteria have reported that AI techniques 

fail to include the turbulent dynamics present in actual 

bacterial action [15]. 

Bacterial motions were identified with great accuracy when 

LSTM networks were used to classify bacteria. The AI 

systems succeeded in classifying most samples, showing 

that AI is useful in microbiological diagnostics. The findings 

agree with prior studies using deep learning to identify 

microbes which has shown that LSTM models outperform 

alternative approaches in detecting bacterial patterns [16]. 

Furthermore, researchers found that sound waves change the 

structure and projection of bacteria in the mouth. The results 

suggest that low-frequency sound encourages movement of 

bacteria, while higher sound frequencies can interrupt cell 

functions. Earlier research has shown that certain sound 

frequencies can change both the metabolism and resistance 

of bacteria to antibiotics [17, 18]. 

The current study shows that AI models have strong 

potential to copy the sounds made by bacteria. Yet, less than 

98% remains between the spectral similarity of real and 
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synthesized bacterial sounds, so the AI signals are missing 

true biological complexity. In earlier studies, researchers 

reported the same issues in using AI for making microbial 

sounds which suggests wavelet features are needed to better 

represent how bacteria sound [19, 20]. 

However, the synthetic sounds generated by AI models 

lacked the full biological complexity observed in real 

bacterial vibrations. This limitation highlights the need for 

more advanced modeling techniques that can capture subtle 

dynamic variations and non-linear behaviors inherent in 

microbial motion. 

The work in this study suggests future research could 

improve non-invasive detection of bacteria and new ways to 

screen microbes. With the aid of bacterial acoustic 

signatures, doctors may soon detect if different microbes are 

present in the body without conducting traditional cultures 

or doing invasive biopsies. Detecting pathogens through 

vibrational signatures gives us an easy way to diagnose 

infections, especially in situations when standard techniques 

are either slow or require costly and specialized facilities 

[21, 22]. 

Special sensors with acoustic technology could be added to 

medical devices to keep track of bacteria in real time. This 

way, immune compromised patients could be cured early, 

since such tests allow for early discovery of bacteria. 

Researchers can rely on these vibrational marks to tell apart 

antibiotic-resistant bacteria which is important information 

for anyone managing antimicrobials [5, 18]. 

AI was used to simulate bacterial sounds, improving a 

model’s ability to recognize what makes each bacterial 

species vibrate differently. Even so, making AI sound 

synthesis more accurate is required to properly capture 

bacterial nanomotion and reduce inconsistencies in the 

sound spectrum of synthesized bacteria. 

If further progress is made in microbial acoustics, it could 

greatly improve the way bacterial infections are discovered 

and handled by doctors. Studying these materials should 

involve portable sensors, sterility monitoring in hospitals 

and rapid tests for bacterial detection which may greatly 

improve diagnostics and personalized health care. 

Although this research gave promising results, there are a 

few limitations that need to be examined further. Although 

GANs and VAEs can copy bacterial movements, slight 

problems in energy distribution and spectral alignment 

suggest that better tuning strategies are required. Besides, 

counting on graphite drum sensors for bacterial movement 

recording introduces some errors because external variation 

in temperature and what the sensor touches could lead to 

inaccurate signals. Future studies need to perfect the AI 

aspect of bacterial acoustic modeling, use different sensor 

data together and verify results on more bacterial strains to 

make acoustic analysis of microbes more general. 

A key limitation of this study is the exclusive focus on 

Escherichia coli (AB1157). To generalize the findings and 

validate the robustness of the acoustic fingerprinting 

approach, future research should include a broader range of 

bacterial strains with varying motility and structural 

characteristics. 

 

CONCLUSIONS 

This study has proven that bacterial acoustics may be used 

for both classifying microbes and diagnosing diseases. 

Recorded and analyzed data using graphene drums and FFT 

and MFCC features indicated that the vibrational signatures 

of the bacterial types are different. Models built based on 

CNN and LSTM performed successfully, confirming that it’s 

possible to pick out bacteria non-invasively. This research 

indicates that detecting infections live and following 

antibiotic resistance, as well as watching environmental 

microbial sources, will allow for the introduction of fresh 

ideas in microbial diagnostics. These results show that this 

type of analysis could enable AI-assisted bacterial testing 

that rapidly identifies strains and their resistance to 

antibiotics. 
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