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ABSTRACT: In many areas, salinization is considered as one of the most serious dangers to environmental resources 

and human health. Calcium has a crucial role in plant resistance to salinity stress. In order to investigate the impact of 

calcium supplementation on photosynthetic pigments, compatible osmolytes contents and membrane stability index 

(MSI) in triticale (x Triticosecale Wittmack) exposed to salinity stress, an experiment as a completely randomized 

design with 3 replications in greenhouse condition (25  2°C, 35% relative humidity, 16-hour photoperiod) was 

conducted. The seeds were germinated in soil. One week old triticale seedlings (with two leaves) were imposed by 0, 

50, 100 and 150 mmol L-1 NaCl and 0, 6 and 10 mmol L-1 CaCl2 for 5 weeks and assayed for some morpho-

physiological parameters including fresh weight (FW) and dry weight (DW) of shoot, photosynthetic pigments 

(chlorophyll (Chl) a and Chl b, total Chl and carotenoids (Car)) contents, proline and glycine betaine (GB) contents, 

soluble sugars and starch contents and MSI in leaves. Results showed that with incrementing salinity meaningfully 

decremented FW and DW of shoot, photosynthetic pigments, starch content and MSI while proline, GB and soluble 

sugars contents incremented in leaves. Calcium treatment meaningfully incremented FW and DW of shoot, 

photosynthetic pigments, starch content and MSI but caused a meaningful decline in proline, GB and soluble sugars 

contents in leaves. It can be concluded that calcium had exerted an ameliorative impact on triticale under salinity 

stress. Maximum ameliorative impact of calcium was observed in plants exposed to 6 mmol L-1 CaCl2. 

 

                           INTRODUCTION 

At the current, most agricultural areas are seriously affected 

by salinity, which has emerged as a serious global issue 

owing to the potential detrimental impacts on human and 

animal health [1]. Calcium is considered as an essential 

element in most plants processes [2]. Moreover, calcium is 

as a crucial mineral for human health and it aids in the 

formation of teeth and bones. Also, calcium assists muscle 

movement and nerve communication [3]. Calcium (Ca2+) 

has been demonstrated to be a major indicator of plant salt 

resistance, conferring preserving benefits on plants growing 

in sodic soils [4]. Ca2+ is required for the functional and 

structural integrity of cell membranes of plant, as well as 

the stabilization of cell wall structures, the regulation of ion 

transport and selectivity, and the control of ion-exchange 

behavior and cell wall enzyme activities [5]. Depending on 

the genotype of the plant, the nature of these reactions will 
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differ [4, 5]. Ca2+ regulates the function, structure, and 

signaling of membranes by forming bonds with the 

phospholipid bilayer, therefore maintaining and enhancing 

the structural integrity of membrane organelles in plants 

under stress [6]. Ca2+ serves as a second messenger in 

signaling of stress, which is one of its most important roles 

[4,7].  

Plant growth is slowed by salinity stress, which is one of 

the most major osmotic stresses [8]. The adverse impact of 

salinity stress in plants is its osmotic impacts, ion toxicity 

impact and interference in nutrient absorption [9, 1]. In a 

study on rice, it was reported that salt stress diminished the 

fresh weight (FW) and dry weight (DW) of shoot, while the 

addition of calcium treatment diminished the adverse 

impacts of salinity stress and incremented FW and DW of 

shoot [10]. 

Salinity stress promotes the buildup of reactive oxygen 

species (ROS), which is a critical factor in plant growth 

retarding [8, 11]. Plants create a multitude of compatible 

solutes and antioxidant components that are triggered to 

give secondary protection against oxidative stress in order 

to minimize cellular damage caused by ROS buildup [12].  

The buildup of adaptive solutions is one of the strategies 

against salinity stress in plants [11]. These solutions include 

essential metal ions such as K+ and they are basically 

organic solutions. The most major organic osmotic 

solutions which accumulate in plants due to salinity include 

soluble sugars, proline, glycine betaine (GB), and etc. [13, 

14]. 

Salinity stress raises proline synthesis in the plant [15]. 

Proline is an essential amino acid and important osmolyte 

that is soluble in water and it is a response to the initial 

defense to balance osmotic pressure in cells under salinity 

stress [9]. It was reported that salinity stress raised proline 

levels in cotton, while addition of calcium treatment to the 

saline environment diminished proline levels [16]. 

Photosynthesis is one of the important physiological 

processes in plants, which is affected by genetic and 

environmental factors [11]. It was reported that the addition 

of calcium treatment to sweet sorghum exposed to salt 

stress diminished the adverse impacts of stress and raised 

the chlorophyll (Chl) level [17].  

Triticale (×Triticosecale Wittmack) is a human-made cereal 

that combines the functionality and high production of 

wheat (Triticum spp.) with the durability of rye (Secale 

cereale L.) [18]. Triticale has been planted all over the 

world, mostly for grain and fodder production, but also for 

bioenergy generation in recent years [19]. Furthermore, in 

the human food market, it likewise has a developing 

potential [20]. Triticale contains a lot of non-starch 

polysaccharides (such as arabinoxylans), phenolic acid, and 

anthocyanin, which can cause to prevent heart disease, 

cancer, diabetes, and neurodegenerative disorders [21]. 

Also, triticale has antioxidant and antihypertensive 

properties [22]. It will become a key cereal crop for world 

populations in the near future [19]. Due to the value of 

triticale as a cereal crop plant with great developmental 

potential in the food market and the expansion of saline 

land areas, identifying a component for salinity stress 

tolerance in triticale is critical. 

Since salinity is one of the most major problems in different 

regions of the world and calcium plays a crucial role in 

resistance of plants to salinity, it is necessary to study the 

sodium-calcium interaction in plants. To the best of the 

authors’ knowledge, there is no study on the interaction of 

sodium-calcium with triticale. This study provides baseline 

information on the influence of calcium chloride on triticale 

exposed to salinity stress. The present research was carried 

out to investigate the impact of calcium supplementation on 

photosynthetic pigments, compatible osmolytes contents 

and membrane stability index (MSI) in triticale (x 

Triticosecale Wittmack) exposed to salinity stress. This will 

provide a simple, cheap and economic solution to deal with 

salinity and further enhance sustainable agriculture. 

MATERIALS AND METHODS 

Growth condition and treatments 

To investigate the interactive impact of sodium chloride and 

calcium chloride on physio-biochemical parameters in 

triticale leaves, a research as a completely randomized 

design with three replications was conducted in greenhouse 

condition (temperature 25±2°C, relative humidity 35%, with 

a 16-hour photoperiod). Seeds of triticale cultivar Moreno 
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were planted in soil. Physico-chemical properties of soil are 

shown in Table 1. One week after seed cultivation in the 

soil, seedlings were subjected to various doses of sodium 

chloride and calcium chloride. Treatments included 0, 50, 

100 and 150 mmol L-1 NaCl levels and 0, 6 and 10mmol L-1 

CaCl2 levels. Applying the treatments (as addition to the 

soil) was done for 5 weeks. After the treatment period, 42-

day-old plants (Figure 1-4) harvested and then evaluated 

some morpho-physiological parameters including FW and 

DW of shoot, photosynthetic pigments, proline and GB, 

soluble sugars and starch contents and MSI in the leaves.  

Table 1. Physico-chemical properties of soil. 

Texture 
Clay 

)%( 

Silt 

(%) 

Sand 

(%) 

Saturation percentage 

)%( 

Organic matter 

)%( 
pH 

EC 

(dS m
-1

) 

Sandy Loam 10 26.5 63.5 54.713 1.231 7.31 0.838 

Soluble Anions (mEq 100 g
-1 

soil) Soluble Cations (mEq 100 g
-1

 soil) 

HCO3
-
          Cl

-
 SO4

-2
 

 
Mg

+2
 Ca

+2
 K

+
 Na

+
 

 
0.402 0.0191 0.074 

 

0.1105 0.353 0.037 0.059 

 
 

 

Figure 1. The impact of various doses of sodium chloride on vegetative growth of triticale plants (photograph of 42-day-old plants). 

 

Figure 2. The impact of various doses of calcium chloride on vegetative growth of triticale plants exposed 50 mmol L
-1

 sodium chloride treatment 

(photograph of 42-day-old plants). 
 

 

Figure 3. The impact of various doses of calcium chloride on vegetative growth of triticale plants exposed 100 mmol L
-1

 sodium chloride treatment 

(photograph of 42-day-old plants). 



M. Jahani et al / Journal of Chemical Health Risks 13(2) (2023) 367-378 

370 

 

 

Figure 4. The impact of various doses of calcium chloride on vegetative growth of triticale plants exposed 150 mmol L
-1

 sodium chloride treatment 

(photograph of 42-day-old plants). 
 

Growth analysis 

To determine shoot FW, FW of each sample was measured 

with a Sartorius digital scale model TE214S with an 

accuracy level of 0.0001 g. Then for measuring shoot DW, 

each sample was separately inserted into an aluminum foil 

and dried in an oven at 70°C for 48 h and then weighed with 

the same digital scale. 

Physio-biochemical analysis 

The contents of Chls (Chl-a, Chl-b, and total Chl) and Car 

were assessed by a spectrophotometric method at 

wavelengths of 646.8, 663.2, and 470 nm [23].  

The amount of proline was assayed by a spectrophotometric 

method [24]. Utilized technique focuses on the creation of a 

color combination under acidic circumstances at 100°C via 

a reaction between the proline and ninhydrin reagent. At 

520 nm, the proline content was measured and finally 

computed utilizing a standard curve. Moreover, amount of 

GB was analyzed at 365 nm utilizing a spectrophotometer 

[25].  

The phenol sulfuric acid technique [26] was utilized to 

assess the amount of soluble sugars and insoluble sugars 

(starch). A spectrophotometer was utilized to detect the 

absorbance at 485 nm, and the soluble sugars and starch 

content were computed utilizing a standard glucose curve. 

For MSI estimation, leaf discs were washed in diH2O and 

put in two groups of vials containing 15 mL of ddH2O. At 

25°C, one group was incubated for 2 hours. After that, the 

solution's electrical conductivity (EC1) was estimated. The 

conductivity (EC2) of the second group was estimated after 

it was heated in a water bath for 20 minutes at 95°C. 

Afterwards, MSI was defined utilizing the following 

formula [27]:  

MSI = [1 − (EC1 / EC2)] × 100 

Statistical analysis 

The experiment was conducted in a completely randomised 

design with three independent repetitions. Statistical 

analyses were performed utilizing analysis of variance 

(ANOVA) by SPSS v.22 software and were expressed as 

the mean values ± SD. The significance of differences 

between treatments was evaluated utilizing Tukey's test at 

5% probability level. 

RESULTS 

The results showed that, as salinity incremented, shoot FW 

and DW diminished meaningfully, but addition of calcium 

treatment to the salinity environment incremented FW and 

DW of shoot meaningfully. The highest FW and DW was 

related to the control plant, and the lowest FW and DW was 

related to the plant imposed by 150 mmol L-1
 sodium 

chloride, which meaningfully diminished 67% and 68.67% 

respectively compared to the control plant (Figure 5). 
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Figure 5. The interaction impacts of NaCl and CaCl2 on (A) fresh weight and (B) dry weight of triticale shoot. Values are mean of three replicates ± SD. 

Different letters represent a meaningful difference between treatments (P≤0.05). 

 

The results showed that, as salinity incremented, Chl-a, 

Chl-b, total Chl and Car content in leaf diminished 

meaningfully, while addition of calcium treatment to the 

saline environment incremented Chl-a, Chl-b and total Chl 

content in leaf meaningfully (Figure 6). 

The highest Chl-a, Chl-b and total Chl content was 

observed in the control and the lowest Chl-a content was 

observed in the plant imposed by 150 mmol L-1
 sodium 

chloride, had decremented 53.33% respectively compared 

with the control plant (Figure 6). The lowest Chl-b content 

was observed in the plant imposed by 150 mmol L-1
 sodium 

chloride which decremented 79.22% compared to the 

control plant (Figure 6).  

The lowest total Chl content was observed in the plant 

imposed by 150 mmol L-1
 sodium chloride which 

decremented 59.60% compared to the control plant (Figure 

6). The highest carotenoid content was observed in the 

control and the plant imposed by 50 mmol L-1
 sodium 

chloride and 6 mmol L-1
 calcium chloride. The lowest 

carotenoid content was observed in the plant imposed by 

150 mmol L-1
 sodium chloride and the plant imposed by 

150 mmol L-1
 sodium chloride and 10 mmol L-1

 calcium 

chloride, had decremented 68.44% and 63.53% respectively 

compared with the control plant (Figure 6). 
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Figure 6. Interaction impacts of NaCl and CaCl2 on (A) chlorophyll (Chl) a, (B) Chl-b, (C) total Chl and (D) carotenoids (Car) contents in triticale leaf. 

Values are mean of three replicates ± SD. Different letters represent a meaningful difference between treatments (P≤0.05). 

 

Results showed that the highest proline and GB contents 

were observed in the plant exposed to 150 mmol L-1
 sodium 

chloride with an increment of 2.28 and 2.08 times 

respectively compared with the control plant and the lowest 

proline content was related to the control plant (Figure 7). 

 

 

Figure 7. Interaction impacts of NaCl and CaCl2 on (A) the proline and (B) glycine betaine contents in triticale leaf. Values are mean of three replicates ± 

SD. Different letters represent a meaningful difference between treatments (P≤0.05). 
 

The results showed that, as salinity incremented, soluble 

sugars contents incremented meaningfully, but addition of 

calcium treatment to the salinity environment decremented 

soluble sugars content meaningfully. The highest soluble 

sugars content was related to the plant exposed to 150 

mmol L-1
 sodium chloride, which meaningfully incremented 

1.38 times compared to the control plant, and the lowest 
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soluble sugars content was related to the control plant 

(Figure 8).  

Also, the results showed that starch content decremented 

under salinity stress but incremented slightly with calcium 

supplementation. The highest strach content was observed 

in the control and the lowest starch content was observed in 

the plant imposed by 150 mmol L-1
 sodium chloride with a 

diminish of 39.26% compared with the control plant (Figure 

8). 

 

 

Figure 8. Interaction impacts of NaCl and CaCl2 on (A) the soluble sugars and (B) starch contents in triticale leaf. Values are mean of three replicates ± SD. 

Different letters represent a meaningful difference between treatments (P≤0.05). 
 

The results showed that leaf MSI decremented under 

salinity stress but raised with calcium addition. The highest 

MSI was related to the control plant and the lowest MSI 

was related to the plant exposed to 150 mmol L-1
 sodium 

chloride, which meaningfully decremented 32.24% 

compared to the control plant (Figure 9).  

 
 

Figure 9. Interaction impacts of NaCl and CaCl2 on the membrane stability index (MSI) in triticale leaf. Values are mean of three replicates ± SD. Different 

letters represent a meaningful difference between treatments (P≤0.05). 
 

                         DISCUSSION 

In the present study, salinity resulted in a meaningful 

decline in the shoot biomass while the addition of calcium 

incremented the shoot biomass meaningfully (Figure 5). 

The reason for the weight loss caused by salinity could 

probably be due to the presence of many harmful ions such 

as Na+ and Cl- in the saline environment where these ions 

are harmful themselves or cause interference in other 

nutrients absorption, for example the competition of K+ and 

Na+ or Clˉ and NOˉ3 causes interference in nutrients 

absorption in the plant [28]. 

In studies conducted on tomato [29, 30, 31], barley [32], 

sorghum [33], rice [34], cotton [16] and soybeen [35], it 

was reported that salinity stress decremented shoot FW and 

DW, while calcium addition to the saline environment 

incremented shoot FW and DW, which is in agreement with 

the results of the present study. Also, salinity stress may  
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cause a secondary osmotic stress or a physiological drought 

stress in the plant which prevents water lost by the closure 

of stomata in the leaves. Stress also diminishes leaf area and 

ultimately diminishes photosynthesis and dry matter [28]. 

It has been reported that the addition of calcium to saline 

environments decrements the adverse impacts of salinity on 

plant growth, by maintaining the structure and integrity of 

cell membrane and incrementing cell division, diminishing 

sodium absorption and transport to the upper organs, 

incrementing potassium absorption and therefore 

incrementing the potassium to sodium ratio in the plant, 

enhancing nitrogen metabolism and photosynthetic activity 

[36, 5]. 

In the current study, parallel to the inhibitory impacts of 

salinity on growth, there was a meaningful decrement in the 

photosynthetic pigments content under salt stress but 

addition of calcium treatment incremented meaningfully 

photosynthetic pigments content in treated seedlings 

(Figure 6). In studies conducted on soybean [35], wheat 

[37] indian mustard [38], chili pepper [39], tomato [40] and 

rice [34, 41], it was reported that salinity stress diminished 

the Chl content while calcium addition to the saline 

environments incremented the Chl content, which is 

consistent with the results of the current research.  

In salinity condition, the decline in photosynthesis and 

biomass has been related to stomatal closure [42], and the 

incremented generation of ROS in chloroplasts [43]. 

Calcium application under salt stress could cause to 

simultaneous increment in stomatal conductance and 

intercellular CO2 dose and finally cause to increment of 

photosynthesis and plant biomass [44]. 

Data presented here showed that salinity treatments led to 

rising proline content in the treated triticale seedlings while 

addition of calcium treatment meaningfully diminished the 

proline content in seedlings (Figure 7a). Proline is an 

osmotic regulator that responds to salinity stress by 

incrementing [1, 15]. The incremented proline during stress 

is probably due to the increment of the proline biosynthesis 

enzymes activities such as P5CS (proline-5-carboxylate 

synthase) and P5CR (proline-5-carboxylate reductase) and 

decrement of the proline degradation enzymes activities 

such as PROX (proline oxidase) and PDH (proline 

dehydrogenase) [45, 46].  

In study on Catharanthus roseus seedlings, salt stress 

caused to increment in P5CS activity and proline content 

and decrement in PROX activity while addition of calcium 

to salinity-exposed plants caused to diminish in proline 

content by incrementing in PROX activity and decrement in 

P5CS activity [47]. Calcium application under salt stress 

could cause to increment in PROX activity and decrement 

in P5CS activity and finally cause to diminish in proline 

content [47]. In studies carried out on rice [41, 48], mung 

bean [49], peanut [50] and broad bean [51], it was reported 

that salinity stress incremented proline content, while 

addition of calcium to saline environments diminished the 

proline content, which is consistent with the results of the 

current research.  

Furthermore, in the present study, salinity resulted in a 

meaningful increment in GB while the addition of calcium 

decremented GB meaningfully (Figure 7b). As compatible 

osmolytes, GB and proline preserve plants against 

environmental stressors [52, 53]. According to this study, 

the incremented amounts of proline and GB in response to 

salt stress might represent a metabolic adaptation to 

scavenge ROS. Similarly, a rise in GB levels owing to salt 

stress has been documented in tomato [54]. 

In the present study, salinity resulted in a meaningful 

increment in soluble sugars and a meaningful decrement in 

starch whiles the addition of calcium supplementation 

meaningfully decremented soluble sugars and slightly 

incremented starch (Figure 8). Probably the reason for the 

accumulation of soluble sugars during salinity stress is the 

insoluble sugars (starch) decompose and form soluble 

sugars to maintain osmotic potential and reduce the risk of 

dehydration [55]. In addition, stopping the growth and 

synthesis of sugars by non-photosynthetic pathway can be 

another factor in incrementing the concentration of soluble 

sugars in during of stress [55]. Calcium may decrement 

salinity stress in the plant due to reduced sodium 

accumulation, thereby reducing the need for the plant to 

accumulate soluble sugars as osmotic protectors [36]. 

Similarly, it was reported that salinity stress raised the 

amount of soluble sugars in rice [56]. Also, in cowpea, it 
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was reported that salinity stress incremented the soluble 

sugars content while adding calcium supplementation 

diminished the soluble sugars content [57]. 

Data presented here showed that MSI decremented under 

salinity stress but incremented with calcium addition 

(Figure 9). Here, the heightened Na+ levels owing to 

salinity stress may compromise cell membrane integrity, 

which results in ion leakage and disruption of cellular 

metabolism. Incremented permeability for ions, which may 

be easily detected by electrolyte leakage, is a great sign of 

cellular membrane disorder caused by salt stress [50]. 

Calcium ions may compete for membrane-binding sites 

with sodium ions. As a result, it's been proposed that high 

calcium levels can preserve cell membranes against the 

negative impacts of salt [5, 58]. The plasma membrane 

permeability to Na+ can be diminished by high Ca2+ levels. 

The passive influx of Na+ is decreased when membrane 

permeability to Na+ is decreased by Ca2+ [58]. Similarly, it 

was reported a diminish in MSI in tomato subjected to 

salinity stress and an improvement in MSI by calcium 

supplementation [40]. Also, in olive plant subjected to 

salinity stress was documented a decrement in electrolyte 

leakage by supplementary calcium [59].  

CONCLUSIONS 

Calcium is a crucial mineral nutrient, and it is effective in 

diminishing the adverse impacts of salinity. In addition, 

because of the importance of triticale as a cultivating plant 

and the increment of extents of salty lands, determination of 

the optimal concentration of calcium is important for plants 

resistance in stress conditions. Results of this research 

revealed that the addition of calcium to saline environments 

decrements the adverse impacts of salinity stress and the 

maximum improving impacts of calcium was observed at a 

concentration of 6 mmol L-1
 calcium chloride which can be 

a simple, cheap and economical strategy to deal with 

salinity stress and incrementing soil productivity and it may 

be recommended for utilize by farmers as a suitable option 

against salinity stress.  
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