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ABSTRACT: In this century, exposure to numerous chemical from different sources became common in human life. 

Conversely, the toxicological data for a large portion of chemicals for its risk assessment are unknown. Potassium 

sorbate (PS) is preservative used in wide variety of food, cosmetic and pharmaceutical products and there many 

authors reported about the effect of PS. This investigation is to integrate computational TGx and predictive toxicology 

and first report of potassium sorbate on this aspect. It was aimed in order to understand the potential adverse health 

effects of PS by ADMET prediction and their curated interactions between PS-gene–disease relationships. 

PreADMET and Comparative Toxicogenomics Database were used for the computational study. PreADMET revealed 

prediction data for ADME via physic-chemical parameter along with Caco-2 cell, MDCK cell and BBB (blood-brain 

barrier), HIA (human intestinal absorption), skin permeability and plasma protein binding and toxicological prediction 

using chemical structures, such as mutagenicity and carcinogenicity. CTD results established curated and inferred 

interactions between PS-gene–disease relationships. The CTD outcomes exposed that PS may possess endocrine 

disruption potency and have impact on endocrine system diseases etiology. It is concluded, that computational 

prediction approach offers both a better understanding of the potential risks of chemical exposure to humans and a 

direction for future toxicological investigation. 

 

                            INTRODUCTION 

Exposure to several chemicals from various sources 

became ubiquitous in human life over the twentieth 

century. Conversely, the toxicological data for a large 

portion of chemicals for its risk assessment are unknown. 

Toxicogenomics (TGx) is a swiftly growing discipline 

that promises to aid researchers to understand the 

molecular and cellular effects of chemicals in biological 

systems. To comprehend chemicals, available 

experimental data from the scientific literature can be 

used. Toxicity, mechanisms, and mode of action, as well 

as exposure, may be determined using a predictive 

research model that also referred as In silico. No 

definitive definition for In silico study method or 

preparation to evaluate the safety of a chemical. 

Irrespective of the methodology employed, to figure out 

the risks and safety of the chemical by using available 

data and data findings from In silico [1].  

The data such as existing knowledge on toxicology of the 

chemical, the process of read-across (similar chemicals), 

results from in vitro testing and high-throughput methods 

that reveals chemical’s action and mechanisms and the 

impacts at the cellular or molecular level [2]. In silico 

toxicity prediction uses computational methodologies 

and technologies to analyse, model, simulate, and predict 

the toxicity of chemical to offer precedent for extending 

toxicological studies [3]. To construct pipelines for 

systems toxicology applications by utilizing abundantly 
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available publicly accessible knowledge about chemical, 

gene/protein, disease and biological networks [4]. 

Potassium sorbate is preservative used in wide variety of 

food, cosmetic and pharmaceutical products and there 

many authors reported about the effect of PS. Molecular 

docking study conducted by [5] to understand the 

interaction with Human serum albumin (HSA) and PS. 

PS interacted with HAS subdomains IA and IB via 

physical connection with a non-covalent. Advanced 

glycation end products (AGEs), an agent of oxidative 

stress and clinical complications of diabetes mellitus and 

PS activated and increased the levels of AGE on HSA in 

the presence and absence of glucose. The results of that 

study confirmed PS could aggravate complication of 

diabetes and provides information on risk impact by PS. 

Computational studies on PS would be most appropriate 

to initiate the process before performing any time-

consuming and tedious In vitro and In vivo studies. 

Hence, this leads to recognise the demand to study 

further to find effect of PS safety and on other public 

health issues. 

The physicochemical properties, reactivity and 

toxicological parameters could be certainly characterised 

using conventional QSAR models. Challenging to model 

as a result of insufficiency data and the complicated of 

biological systems and toxicological mechanisms. 

Generally based on the hypothesis of a single binding 

mode QSAR models were developed. At the same time, 

diverse binding modes have been discovered in X-ray 

examination and this need attention. Toxicogenomic 

evidence from vast diverse chemical sets added a whole 

new approach of scientific information that could be 

valuable for chemical safety assessment [6].  

For that reason, this investigation is to integrate 

computational TGx and predictive toxicology. Therefore, 

it was aimed in order to understand the potential adverse 

health effects of Potassium Sorbate (PS) by ADMET 

prediction using PreADMET and Comparative 

Toxicogenomics Database for their curated and inferred 

interactions between PS-gene–disease relationships. This 

could potentially aid with future risk assessment findings 

on PS, as different data inputs from the prediction 

outcome of this study could be recorded and analysed to 

gain insights from all resources and to recognize PS 

influence on human health.   

MATERIALS AND METHODS 

Computational tools 

For the computational study, two tools were used that 

including (i) PreADMET (http://preadmet.bmdrc.org/) a 

web-based application for predicting ADME 

(Absorption, Distribution, Metabolism and Excretion) 

and toxicological data [7] and (ii) Comparative 

Toxicogenomics Database (CTD; http://ctd.mdibl.org/) is 

another valuable resource which includes more than 30.5 

million toxicogenomic connections relating 

chemicals/drugs, genes/proteins, diseases, Gene 

Ontology (GO) annotations and gene interaction modules 

[8].  

PreADMET  

ADME prediction 

Under ADME menu tab, the mol file format of PS was 

uploaded using ―Open‖ option that converts into the 

chemical structure of PS. The given input was submitted 

for the prediction the resulting ADME data were 

exported in PDF format. 

Toxicological prediction 

In Toxicity menu tab, the mol file of PS was uploaded 

using ―Open‖ option that converts into the chemical 

structure of PS. The given input was submitted for the 

prediction the resulting toxicological data were exported 

in PDF format. 

Comparative Toxicogenomics Database (CTD) 

Data Curation Process 

In CTD simple search can be done using keyword query 

method by giving MeSH (Medical Subject Headings) 

name, synonym, MESH accession ID, CAS Registry 

Number or using the ―name:‖ prefix. Here by giving 

―name: Potassium Sorbate‖ in the keyword Search for 

curation in CTD.  

Gene Interaction  

CTD manually curate the genes that interacting with PS, 

which were reported in available scientific literature.  
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Disease analysis 

 In CTD to analysis the direct disease relationship by the 

following two sources: curation of PS–disease and 

gene/protein–disease relationships from the literature and 

inferred data by integration of gene–disease relationships 

from the Online Mendelian Inheritance in Man (OMIM; 

http://www.ncbi.nlm.nih.gov/omim) database. 

Gene Ontology (GO) 

 GO terms of PS-interacting gene based on the curated 

interaction gene data was analysed. GO annotations that 

provide information about their associated biological 

processes, molecular functions, and cellular components 

of the gene/protein interact with PS. 

PS genes to genes association with disease and 

chemical 

 To compare Curated and inferred genes to genes 

association with specified diseases MyGeneVenn tool 

was used. The comparison between Curated and inferred 

genes to genes association with Endocrine system 

disease (ESD), Bisphenol A (BPA) and Estradiol (E2) 

using Venn diagram. 

RESULTS 

PreADMET analysis of PS 

The ADME property is significant parameter in order to 

evaluate the action of mechanism of chemicals. ADMET 

predications can assist us in ensuring that our chemical 

evaluation is unbiased and accurate. Substantial progress 

has been made in the domain of structure-based in silico 

modelling of ADME characteristics in recent years [9]. 

With reference to this, attempt made to analyse 

absorption, distribution, metabolism, excretion and 

toxicity (ADMET) property prediction of PS using Pre 

ADMET server. The obtained results for ADME of PS 

listed in Table 1 and toxicological prediction for PS was 

tabulated in Table 2. 

Table 1. Toxicity Prediction of PS from PreADMET 

Toxicity Values 

Acute algae toxicity  (mg L
-1

) 0.297792 

Ames  test Mutagen 

Carcinogenicity(Mouse) Out of range 

Carcinogenicity(Rat) Out of range 

Acute daphnia toxicity (mg L
-1

) 0.974548 

hERG  inhibition Medium risk 

Acute fish toxicity (medaka) (mg L
-1

) 1.03716 

Acute fish toxicity (minnow) (mg L
-1

) 1.70179 

TA100  10RLI Positive 

TA100  NA Positive 

TA1535  10RLI Negative 

TA1535  NA Negative 

CTD 

The datasets retrieved from CTD capable to discover the 

relationships and to produce novel, testable hypotheses 

about chemical-gene-disease pathways and predictive 

inferences that are statistically ranked [10]. This curated 

data set for PS was analysed to demonstrate the 

possibility of CTD and to emphasize its prospective 

applications for understanding the mechanisms of 

chemical actions and potential links to human diseases. 

Potassium sorbate-gene interaction 

Manually curated data for PS–gene interactions contains 

interacting gene, the explanation about the interaction 

(increases, decreases, and affects (degree unspecified)), 

the number of references and organisms in which the 

interaction was reported. PS–gene and protein 

interactions of 10 were retrieved from CTD and tabulated 

in Table 3. 

 



K. Shanmuga Priya et al / Journal of Chemical Health Risks 11 (2021) 197-205 

 

200 
 

Table 3. Potassium Sorbate–Gene interactions. 

S.No. Interacting genes Names of genes 

1 CYP2E1 Cytochrome P450 family 2 subfamily E member 1 

2 EPHX1 Epoxide hydrolase 1 

3 FOSL1 FOS like 1, AP-1 transcription factor subunit 

4 GSTM1 Glutathione S-transferase mu 1 

5 GSTT1 Glutathione S-transferase theta 1 

6 NQO1 NAD(P)H quinone dehydrogenase 1 

7 ORM1 Orosomucoid 1 

8 PHEX 
Phosphate regulating endopeptidase homolog X-

linked 

9 RAD51AP1 RAD51 associated protein 1 

10 VEGFA Vascular endothelial growth factor A 

Disease analysis 

The curated data of PS–disease and gene/protein–disease 

relationships shows the following diseases are associated 

with PS which includes Pathology (process), Immune 

system disease, Skin disease, Genetic disease (inborn) 

and Occupational disease of 20% score based on the 

literature evidences. Urogenital disease (female), 

Urogenital disease (male), Metabolic disease, Digestive 

system disease and Endocrine system disease. Notably, 

Cancer with 57 inferred association of 21.1% inferred 

score, Urogenital disease (female) with 17 inferred 

association of 6.3% inferred score, Endocrine system 

disease with 9 inferred association of 3.3% inferred score 

and Pregnancy complication with 1 inferred association 

of 0.4% inferred score (Figure 1). 

 

 

 

 

 

 

 

 

 

Figure 1. Potassium sorbate–curated and inferred disease association 
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Gene Ontology for PS 

GeneOntology (GO) terms are enriched significantly 

among genes/proteins that interact with PS with a 

corrected p-value <0.01 (Table 4). The significance of 

enrichment was calculated by the hypergeometric 

distribution and adjusted for multiple testing using the 

Bonferroni method [11]. 

Table 2. Gene Ontology (GO) annotations of potassium sorbate–interacting genes\proteins. 

GO term Corrected P-value Annotated genes 

Biological processes 

Response to toxic substance 4.00E-07 6 

Xenobiotic metabolic process 1.08E-05 4 

Cellular response to xenobiotic stimulus 4.68E-05 4 

Response to stimulus 1.26E-04 10 

Response to xenobiotic stimulus 3.10E-04 4 

Response to chemical 4.86E-04 8 

Cellular response to stimulus 7.16E-04 9 

Cellular response to chemical stimulus 9.54E-04 7 

Response to nitrogen compound 0.00162 5 

Long-chain fatty acid metabolic process 0.00197 3 

Cellular detoxification 0.00245 3 

Detoxification 0.00272 3 

Response to inorganic substance 0.00419 4 

Response to stress 0.00469 7 

Cellular Components 

Cytoplasmic part 0.00949 9 

 

PS genes to genes association with disease and chemicals 

From 10 genes interacting with PS was curated from 

CTD. The curated genes were compared with curated 

and inferred genes to genes diseases association. In the 

comparison of PS curated genes (10 genes) with ESD for 

curated association (1,188 genes) and inferred 

association (43,592 genes). It was clear for curated 

association and inferred association found 4 genes and 10 

genes interacting with PS associated with ESD 

respectively (Figure 2A & B). 

 The interacting genes of PS (10) were compared with 

curated genes to genes interact with BPA (23,565) and 

E2 (8,672). The results revealed that all 10 genes of PS 

shares interaction with bisphenol A and 9 genes of PS 

interact with estradiol (Figure 3A &B).  

 

Figure 1. Genes Interact with PS that Associate with Disease A) curated genes and B) inferred genes associated with ESD. 
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Figure 2. PS-Gene Interact with Chemicals A) Bisphenol A B) Estradiol.  

                           DISCUSSION 

Currently, computational tools are possibly used in 

prediction or assessing the absorption, distribution, 

metabolism, excretion and toxicity (ADMET) of 

chemicals PreADMET is one such tool. ADMET 

outcomes obtained from PreADMET in Table 1 shows 

that PS has ability to cross the blood-brain barrier (BBB). 

Metals, pesticides, herbicides and bacterial toxins studied 

for BBB penetration likely to evoke neurotoxicity [12]. 

The evidence from animal studies expose that the level 

of damage and dysfunction to BBB induced by chemical 

toxicity varies on immature brain as they are delicate 

than the adult brain [13]. This seems substantially for PS 

induced toxicity and influence to the etiology of central 

nervous system diseases. The human colon carcinoma 

cell line (Caco-2) for prediction of intestinal permeability 

leads to absorption [14]. The finding from this study 

showing PS has permeability in Caco-2; this prediction 

confirms the oral absorption in humans. 

Inhibition of any isoform of Cytochrome P (CYP) directs 

to the failing of chemical metabolism and intensification 

of toxicity. PreADMET results revealed that PS strongly 

inhibits CYP2C19 and CYP2C9 enzymes this suggests 

the enhanced plasma concentrations might end up in 

harmful impact. In case of CYP2D6 and CYP3A4 

enzymes are recognized for the involving in metabolism 

and oxidation of xenobiotics respectively but PS had not 

exhibits inhibitory effect. PS established weak action on 

CYP2D6 and CYP3A4 substrates [15]. HIA result of PS 

has 94.62% absorption and predicted measures 

established high intestinal absorption efficiency of PS. 

Madin–Darby Canine Kidney cells (MDCK) prediction 

allows studying cell membrane permeation and 

interaction of chemical with the membrane. The cell 

permeability less than 25 is considered as low diffusion, 

PreADMET prediction for PS is 4.89nm/sec. and this 

suggests it has less MDCK cell permeability. P-

glycoprotein (P-gp) server as an efflux transporter of 

xenobiotic from the cells and found in blood brain 

barrier, blood placenta-barrier, gastrointestinal tract, 

kidney, liver etc. It plays major role in ADME process 

that prevent the accumulation of toxic, carcinogenic 

chemicals and thus inhibit carcinogenesis [16]. 

Predication results shows that PS inhibits P-gp thereby it 

can perceive PS interfere with detoxification process. 

Plasma protein binding (PPB) is percentage of chemical 

bound to the plasma protein. PS has 64.34% of PPB  and 

a study by [17] has been hypothesised that elevated 

plasma protein binding not implies that chemical is more 

toxic but it is linked with high toxicity tendency for the 

reason that of its relationship with lipophilicity property. 

The chemical diffusion into and absorption through the 

skin is essential to predicting toxicological effects and its 

related health hazardous are typically underestimated 

[18]. The prediction of the rate of skin permeability of 

PS is -3.52 cm/hour. The reference logP values for skin 

permeability of chemicals ranging from -3 to +6, 

establish an effective absorption via the skin [19]. The 

chemical compound’s physical-chemical factors 

associated with its lipophilicity nature were estimated 

with SKlogD, SKlogP and SKlogS values. 

According PreADMET prediction results for toxicity of 

PS were summarised in Tables 2 and 3 The prediction of 
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acute toxicity in algae, daphnia, medaka and minnow fish 

revealed aquatic and environmental toxicity induced by 

PS. The study conducted by [20] to identify the toxic 

effect of PS to Dunaliella tertiolecta and had obvious 

toxicity effects on these algae. The records of PS from 

Databook of Preservatives [21] mention aquatic toxicity 

study on daphnia for 96-h LC50 750 mg L-1. The above 

studies evident for aquatic toxicity of PS in different 

study models and these findings well agreed with 

prediction. The Ames test is Salmonella typhimurium 

reverse mutation assay and prediction declares PS as 

mutagenic agent. Alongside positive mutagenic activity 

results for TA100 10RLI and TA100 NA strains and 

negative mutagenic activity results for TA1535 10RLI 

and TA1535 NA strains. The prediction results for Ames 

test were well agreed with the investigation by [22] 

disclosed the Ames test results that 4,5-oxohexenoate an 

oxidation product of PS was mutagenic nature. 

Biocurators like CTD never manipulate, standardize, or 

normalize data curated based on the query from 

publications. The data integrated in CTD includes (1) 

published literature on PS; (2) curating genes that 

interacting with the chemical; (3) a hierarchical 

vocabulary of organisms; (4) a hierarchical vocabulary of 

chemicals; and (5) the Gene Ontology (GO; hierarchical 

vocabulary of biological processes, cellular components, 

and molecular functions). In the process of integrated 

cross-references, CTD as well consolidate approach for 

further data associated with molecular and toxicology, 

including microarray data and articles related to 

environmental chemicals impact on health from the 

popular press [23].  

 By integration of gene–disease relationships from the 

Online Mendelian Inheritance in Man database the 

diseases are inferred. Many of these genes/proteins have 

Gene Ontology (GO) annotations, which furnish 

information regarding their related biological processes, 

and cellular components [24]. To offer insight into the 

three domains of GO: biological process infers that the 

changes at the level of cell or organism which are 

mediated by gene products and cellular component 

provide details about the location of the gene products in 

the part of cell or its extracellular environment all of 

these actions may be influenced by PS.  

Curated gene–disease and chemical associations are 

found by both CTD and OMIM curation. This helps to 

determine the genes associated with diseases along with 

the genes interacted with PS that extracted from 

previously proven results retrieved from the literature. 

Inferred gene–disease associations are recognized via 

CTD–curated chemical–gene interactions [25]. PS is 

associated with Endocrine System Diseases this is 

because of curated interaction with few genes hence 

exhibits the association. BPA is renowned endocrine 

disruption chemical (EDC) and explored for its 

endocrine disruption potency that interfere with the 

function of endocrine systems. The trans-generational 

effect, infertility and reproductive pathologies were 

witnessed due to the exposure of BPA [26]. E2 is 

dominant estrogen hormone found in human that 

activates with estrogen receptor-α (ERα) and many other 

signalling pathways [27]. Many studies confirmed BPA 

mimic like estrogen  interact with ERα identified as 

reproductive, developmental and systemic toxicant also 

increase breast cancer risk and reproductive health 

related diseases [28, 29]. As PS shares interaction genes 

with BPA and E2 and this could be considered as a 

prominent evidence for EDCs potency of PS.  

Although studies of individual genes are valuable for 

understanding function in a toxicological context, it is 

well accepted that genes and their proteins do not 

function in isolation, but rather as components of larger 

networks [30]. Similarly, chemicals affect larger 

networks and not just individual genes or proteins. The 

richest sources of information about chemical 

interactions are biomedical literature and high-

throughput technologies such as microarrays [31]. 

The predication study by PreADMET and CTD results 

provides great insights on PS toxicity and gene-disease 

association. EDC potency of PS not been reported before 

and this findings would lead for extending the 

investigation to seek further knowledge on the same. 

CONCLUSIONS 

The etiology of most chronic diseases engaged with 

interactions between Chemical exposure and genes that 

alters vital physiological processes. This hypothesis was 

agreed by the numerous diseases caused by reversible 

actions or unnecessary exposures and the comparatively 
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rare number of diseases credited to single gene 

mutations. In silico and information-centred tools for via 

in advance risk assessment prediction aid leading to 

proper designing the experimental in the near future. 

In summary, ADMET results from PreADMET that 

provides the information needed to establish assessment 

of PS to identify and predict a variety of toxicities 

outcomes. It is concluded, that computational 

toxicogenomics approach offers both a better 

understanding of the potential risks of chemical exposure 

to humans and a direction for future toxicological 

investigation for validation of PS–gene interactions and 

PS influenced diseases. In light of these data, extracted 

information from the computational approach on various 

toxicological endpoints and experimental attempts 

needed for further clarification on this aspect. 
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