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ABSTRACT: Although designing and developing a mathematical model is extremely important in the mathematics 

but finding solution for designing model is essential as well. Thus one cannot propose a model without offering its 

solutions. In the mathematical modeling, there are many models based on nonlinear partial differential equations. In 

such models, there is no general method for solving any problem. However, numerical methods, approximate methods 

or analytical methods are available for some problems. It is clear that among the methods for solving a model based on 

partial differential equations, analytical methods are preferred, but for all problems, it is not possible to provide an 

exact solution. In this case, some methods can provide a class of solutions. In such methods, techniques that lead to 

more solutions are more important, but the use of different methods can provide a wide class of solutions. For this 

reason, various methods are used to find the possible solution of nonlinear partial differential equations. One of these 

methods is the  '/1 G expansion method. Since one of the well-known equations with wide application in genetics 

and gene mutation is the Fisher Kolmogorov-Petrovskii-Piskunov (Fisher KPP) equation, we applied 

 '/1 G expansion method, for finding exact traveling wave solutions which are based on the solutions of Bernoulli 

ordinary differential equation. 

 

 

                           INTRODUCTION 

In the biological sciences, mathematical models are 

important to develop various hypotheses about 

biological processes. It provides a powerful tool for 

analyzing biological problems. On the other hand, 

mathematical models allow developing and testing 

hypotheses which can lead to a better understanding of 

the biological process. Fisher Kolmogorov–Petrovsky–

Piskunov (Fisher KPP) equation is the partial 

differential equation which imposes relations between 

the various partial derivatives of a multivariable 

function. The Fisher KPP model has been applied in 

many biological fields such as spatial spreading of 

*Corresponding author: gachpazan@um.ac.ir (M. Gachpazan) 

DOI: 10.22034/jchr.2021.1919624.1243 



M. Gholami Baladezaei et al / Journal of Chemical Health Risks 12(3) (2022) 397-408 

398 

 

invasive species in the environment, the spatial 

spreading of invasive cell populations, modelling of 

wound healing, tissue engineering, tumor growth and 

cancer treatment [1]. A mutation is a change in a DNA 

sequence of the genome of an organism, virus or 

extrachromosomal DNA. Mutations result either during 

DNA replication or from exposure to ultraviolet light, 

X-rays, particle radiation or to environmental reactive 

chemicals. Because mutations are random changes, they 

are expected to be mostly harmful, but some may be 

beneficial in certain environments. In general, mutation 

is the main source of genetic variation, which provides 

the raw material for evolution by natural selection [2]. 

Fisher proposed his model for the spreading of a gene 

throughout a population. Since 1937, this model has 

been continuously growing.  

Suppose ),( txu is the proportion of people in a 

population at a point x  and time t  who have the 

favorite gene. Fisher introduced the following equation 

  0,1 



auau

t

u
 

where a  is a parameter [3, 4]. He supposes that the 

offspring of a person at x  with favorite genes would not 

remain in the same region but would be randomly 

scattered in the x  neighborhood. Therefore, he used the 

heat diffusion equation to modify the equation and 

introduced the following equation 

 .1
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In the same year, independently from Fisher, other 

scientists (Kolmogorov, Petrovskii, and Piskunov 

(KPP)) were investigated the favorite gene diffusion. 

Their model was presented form 

)1(),(
2

2

uf
x

u
D

t

u










 

which ),( txu  is the frequency of the favorite gene in 

point x and time .t  For the function ),(uf several 

assumptions were considered [4, 5]. 

 An equation in the form (1), where ,0D  is called the 

Fisher Kolmogorov-Petrovskii-Piskunov (Fisher 

KPP).[6]. 

Since there is no general method for solving nonlinear 

partial differential equations, so different numerical 

techniques and different analytical methods are 

considered to solve such equations. Methods such as, 

Sub-ODE [7,8], Tanh-expansion [9],  GG /' -expansion 

[10-12],  '/1 G -expansion [13] can solve a class of 

equations.  

Numerical methods are also used whenever there are no 

analytical and existing methods. In this case, the volume 

of calculations is very important.   

Recently, some exact solution methods, such as the Sub-

ODE method, have been developed base on auxiliary 

differential equations. In this method, ordinary 

differential equations with lower order and known as 

Riccati and Bernoulli, and so on are used as auxiliary 

differential equations [7, 8, 12 and 14]. By applying this 

method, exact solutions are found. 

Different types of numerical, approximate or analytical 

methods have been used to solve the Fisher KPP 

equation but  '/1 G -expansion method has not been 

used to find the solutions so far [3, 6, 8, 15 and 16].  

Hence, in this article we use  '/1 G -expansion method 

to find exact traveling wave solutions of the Fisher KPP 

equation. 

This article is organized in this form. In section 2, we 

introduce the problem, in section 3 we explain  '/1 G -

expansion method for solving nonlinear partial 

differential equations, in section 4 we apply this method 

for finding solutions to the Fisher KPP equation and the 

conclusion is given at the end. 
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 Problem statement 

We assume ),( txu  is a function of two variables x  

and  .,0 t  We consider the equation  

)2(32 uuuDuu xxt       

where  ,,D and   are constants [3,16]. This equation 

can combination with the initial condition to form 

.,)0,( 0  xuxu  One of the important forms of the 

equation is the following, which we will find the 

solutions with using  '/1 G -expansion method. 

)3()(ufDuu xxt   

where ),1()(  uuSuf  that S and D are real 

constants.  

The  '/1 G -expansion method 

Suppose that p  is a polynomial of ),( txu and its 

derivation of different order as follows: 

  )4(.0,...,,,,, ttxtxxtx uuuuuup  

With transform ),( wtxc   we will have  
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So, differential equation (4) is converted to ordinary 

differential equation to form  

)6(.0,...)",',( uuuH  

Lets G be solution Bernoulli differential equation 

)7(0,0'"  GG  

that   and   are constant numbers. Solutions of above 

equation  

.)( dceG  




  

That c  and d  are constant numbers. Then 

    
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Now, if suppose that solutions of fisher KPP can be 

written to form a power series of 
'

1

G
, as follows  

 
 

)8(
'

1
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










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n

i

i

i
G

au


  

That niai ,...,2,1,0,  are parameters that could be 

determined and n  is given of balance more nonlinear 

terms and more order derivation in (6). 

With substitution (8) in (6) and sort to various powers of  

'

1

G
, and vanish coefficient relater , a system of 

algebraic differential obtain. By solve this system, 

coefficients niai ,...,2,1,0,   will have find [10].  

Computation results 

We consider Fisher KPP equation as follows  

)9()1(  uSuDuu xxt  

With )( wtxc  we follows ordinary differential 

equation will have 

)10()1("2  uSuuDccw  

By suppose that equation (10) have a solution to form 

(7), balancing terms of "u  and  2u , 
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We have  .22 nn   Therefore .2n  So, 
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With substitution (11) in (10) and sort statement in 

respect to a different power of 
 '

1

G
 and vanish 

coefficients, an algebraic system of equations is the 

result.  
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To solve algebraic system equations, the coefficients 

2,1,0, iai  are will obtain. Other than the two solutions 

0),( txu and ,1),( txu  the other solutions are as 

follows. 

The first solution: 
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 is an exact traveling wave solution of the Fisher KPP 

equation. Where ,,,. SD  and 1c  are constant 

numbers. 

Figure 1, for 1,3,6,1  SD  and ,21 c  

),(1 txu  is plotted. 
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Figure 1. Plot of  ),(1 txu  with .2,1,3,6,1 1  cSD   

 

The second solution 
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is an exact traveling wave solution of the Fisher KPP 

equation. Where ,,,, SD and 1c  are constant 

numbers. 

Figure 2, for ,1,3,6,1  SD and ,21 c  

),(2 txu is plotted.
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Figure 2. Plot of  ),(2 txu  with .2,1,3,6,1 1  cSD   
 

The third solution 
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is an exact traveling wave solution of the Fisher KPP 

equation. Where ,,,, SD and 1c  are constant 

numbers. 

Figure 3, for ,1,3,6,1  SD and ,21 c  

),(3 txu  is plotted. 
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Figure 3. Plot of  ),(3 txu  with .2,1,3,6,1 1  cSD   
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Where ,,,, SD and 1c  are constant numbers. This 

solution, for ,1,3,6,1  SD and ,21 c   is 

plotted in Figure 4. 
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Where ,,,, SD and 1c  are constant numbers. This 

solution, for ,1,3,6,1  SD and ,21 c   

 is plotted in Figure 5.  
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Figure 4. Plot of ),(4 txu  with .2,1,3,6,1 1  cSD   
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Figure 5. Plot of  ),(5 txu  with .2,1,3,6,1 1  cSD   
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Where ,,,, SD and 1c  are constant numbers. This 

solution, for ,1,3,6,1  SD and ,21 c  is 

plotted in Figure 6.  

In reference [17], the Fisher KPP with initial condition  

 

 













)13(

1

1
)0,(

)1(

2x

xxt

e

xu

uuuu

 

with use of homotopy method is solved and approximate 

solution  
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obtained. This series converge to exact solution in the 

form  
.

1

1
),(

25txe

txu


  

Figure 6. Plot of  ),(6 txu  with .2,1,3,6,1 1  cSD   
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,1,1  SD  the following solutions are obtained: 
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Where  , and 1c  are parameters. According to the 

initial condition of problem, two solutions with 

36,
6

1
,1 1  c and ,36,

6

1
,1 1  c    will 

be obtained. 
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Two above two solutions are shown in Figures 7 and 8. 

These two solutions are different from the approximate 

solution with the homotopy method and also the exact 

solution in reference [17]. Therefore we found new 

solutions to the Fisher KPP initial value problems (13). 

 

All the results of this section are presented using Maple 

software 

CONCLUSIONS 

Difference in genotypes is responsible for biodiversity, 

adaptation, differences in dispersal rates and growth 

rates of individuals. Mutation, as a powerful mechanism 

for genotypes alternations, may favor certain genotypes 

and enhance their survival or even spatial spreading into 

areas which are occupied by other wild genotypes. 

Fisher KPP equation is used for studying gene mutation 

and genes spreading between populations. In this article, 

the  '/1 G -expansion method has been successfully 

used to find traveling wave solutions of the Fisher KPP 

partial differential equation for gene diffusion in a 

population. 

In the  '/1 G -expansion method, because the solutions 

of the second-order differential equation in the form (7) 

are used, obtained solutions have five parameters that 

show a wide class of solutions obtained. By using this 

method, not only exact solutions will obtain but also 

calculation volumes will be decreased.  

 

 

Figure 7. Plot of ),(1,1 txu  
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Figure 8. Plot of ),(1,2 txu   
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