
Journal of Chemical Health Risks 
 

 Journal of Chemical Health Risks (2016) 6(1), 49–67 
 

∗ Corresponding author: m_nekoei1356@yahoo.com (M. Nekoei). 

 

 

ORIGINAL ARTICLE 
 
 

Novel QSPR Study on the Melting Points of a Broad 

Set of Drug-Like Compounds Using the Genetic 

Algorithm Feature Selection Approach Combined 

With Multiple Linear Regression and Support Vector 

Machine 

Alireza Jalali, Mehdi Nekoei
*
, Majid Mohammadhosseini

 

Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran 

  

 (Received: 2 October 2015     Accepted: 8 December 2015) 

 

KEYWORDS 

  
Melting point; 

 QSPR; 

 Genetic algorithm 

(GA); 

 Support vector 

machine; 

 Multiple linear 

regression; 

Molecular descriptors  

ABSTRACT: A robust and reliable quantitative structure-property relationship (QSPR) study was 

established to forecast the melting points (MPs)  of a diverse and long set including 250 drug-like 

compounds. Based on the calculated descriptors by Dragon software package, to detect 

homogeneities and to split the whole dataset into training and test sets, a principal component 

analysis (PCA) approach was used. Accordingly, there was no outlier in the constructed cluster. 

Afterwards, the genetic algorithm (GA) feature selection strategy was used to select the most 

impressive descriptors resulting in the best-fitted models. In addition, multiple linear regression 

(MLR) and support vector machine (SVM) were used to develop linear and non-linear models 

correlating the molecular descriptors and the melting points. The validation of the obtained models 

was confirmed applying cross validation, chance correlation along with statistical features 

associated with external test set. Our computational study exactly showed a determination 

coefficient and of 0.853 and a root mean square error (RMSE) of 11.082, which are better than 

those MLR model (R
2
=0.712, RMSE 15.042%) accounting for higher capability of SVM-based 

model in prediction of the theoretical values related to melting points. In fact, using the GA 

approach resulted in selection of powerful descriptors having useful information concerning 

effective variables on MPs, which can be utilized in further designing of drug-like compounds with 

desired melting points. 
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INTRODUCTION 

The term melting point (M.P.) for a distinct substance 

implies its conversion from its study the status into 

liquid. In a variety of investigations, this term serves a 

key role specifically for  

i) Fast measurement of the purity of the materials  

ii) The identity of matters 

iii) Predicting other related characteristics such as 

solubility in water, boiling points (BP), etc.[1, 2]. In 

turn, solubility is a very important character in drug 

design and in an assessment of the effective toxicity of 

chemicals and materials [3].  

In fact, there is a close and strong relationship between 

the melting point of the compound and its solubility. 

Taking into account this point, proper modeling the 

solubility of a chemical substance prior to its synthesis 

is of prime importance [2-4].  

Furthermore, sufficient solubility for transportation of a 

compound to active sites present in an organism is 

unavoidable. Due to a mutual relationship between the 

melting point and the solubility, a comprehensive 

attention should be paid in such sorts of studies. It is 

evident that for compounds having low solubility in 

water, one cannot expect appreciable toxicity in an 

aqueous medium. It also seems logical that chemical 

structure of a compound has a crucial impact in its 

corresponding melting point. To predict the MPs of 

chemical compounds, common strategies are 

quantitative structure-property relationship (QSPR), 

group contribution as well as property-property 

relationship (PPR). Comprehensive reviews concerning 

the subject explicitly show that in the majority of these 

studies hydrocarbons and their homologous compounds 

are the main subject of respective attempts. 

This is due to the difficulty of the melting point 

prediction for various organic compounds, since the  

 

 

 

 

numerous factors affecting and controlling M.P. are not 

easy to quantify [5]. 

Quantitative structure-property relationship (QSPR) 

models are capable of relating the property of interest, 

with a set of molecular descriptors. These descriptors 

encode the chemical information and are related to 

certain physicochemical properties of the molecule [6]. 

In such studies, numerous physical properties of 

molecular systems have been successfully modeled, 

including enthalpy of vaporization, aqueous solubility, 

melting points and electrical conductivity of ionic 

liquids and half-wave potentials [7-14]. 

In linear QSPR modeling approaches, some 

methodologies like multiple linear regression (MLR), 

partial least squares (PLS) are frequently used. 

However, for nonlinear models diverse types of artificial 

neural networks (ANN) are being employed [9, 10]. In 

the case of complex and nonlinear systems, linear 

models face a big challenge. It should be noted that the 

main drawbacks of ANN-based models are overtraining, 

the way of training, optimization of the network, 

overfitting and insufficient reproducibility in the 

obtained results. Due to these reasons, a more accurate 

and informative modeling technique is desirably needed, 

which can be effectively used in QSPR-based analyses. 

The support vector machine (SVM) is fairly a new and a 

very promising classification and regression method 

developed by Vapnik [18]. The SVM approach 

automatically controls the flexibility of the resulting 

classifier on the training data. Accordingly, by the 

design of the algorithm, the deteriorating effect of the 

input dimensionality on the generalization ability is 

largely suppressed. Regarding the remarkable 

generalization performance of the SVM approach, it has 

gained much attention and extensive application in a 

variety of QSPR simulations [19-23].  
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The main purpose of this study was to search for 

efficient methods to build accurate quantitative 

relationship between the molecular structures and the 

melting points by using GA-MLR and GA-SVM 

techniques. 

MATERIAL AND METHODS 

Hardware and software characteristics of the computer 

To perform our computations, an advanced Pentium IV 

computer (CPU at 3.06 GHz) having Windows 7.0 as 

operating system was used. Optimization of these 

structures was carried out using HyperChem software 

and processing of the descriptors was performed using 

Dragon 2.1 software. The linear modeling was done 

with SPSS software while the advanced calculations 

were conducted by MATLAB (Version 12, Math 

Works, Inc.). 

Data set, structure optimization and molecular 

descriptors generation 

The data set of the melting points of 250 drug-like 

compounds was taken from the values reported by 

Eddington et al. (Table1) [24]. At first, after drawing of 

all the chemical structures (250 drug -like compounds), 

the optimization of their geometry was performed using 

the AM1 algorithm. Regarding this fact that the 

numerical values of the molecule or descriptors depend 

on some general characteristics like bond length, angles, 

bound energy and …, the optimization step is of prime 

importance. To start the modeling process, we used the 

Dragon software to calculate the molecular descriptors. 

Consequently, 1481 molecular descriptors, from 18 

different types of theoretical descriptor, were calculated 

for each molecule. Molecular descriptors include 

general characteristics of a chemical compound. These 

variables could be considered as results of rational and 

mathematical-based processing being performed on each 

molecule. The success of each modeling is strongly 

depends on the most effective descriptors correlating 

with the activity or property of the studied compounds. 

Table1. The data set, - experimental and predicted values of melting points of a diverse set of drug-like  

compounds using GA-MLR and GA-SVM strategies for the training and test sets 

Pred. 

SVM 
c
 

Pred. 

MLR 
b
 

Exp.
a
 Compound name No 

136.98 131.45 130 6,6-Dimethyl-2-oxo-4-phenethylamino-cyclohex-3-enecarboxylic acid methyl ester 1 

151.43 139.93 152 4-Benzylamino-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid tert-butyl ester 2 

173.01 165.31 173 4-(4-Chloro-benzylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 3 

163.53 151.11 169 4-(4-Chloro-benzylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 4 

164.93 155.26 182 4-(4-Chloro-benzylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid tert-butyl ester 5 

160.01 158.25 160 6-Methyl-4-(4-methyl-benzylamino)-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 6 

145.27 142.47 134 6-Methyl-4-(4-methyl-benzylamino)-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 7 

155.55 159.86 171 6-Methyl-2-oxo-4-phenethylamino-cyclohex-3-enecarboxylic acid phenethyl-amide 8
d 

197.51 186.18 204 4-(4-Cyano-benzylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 9
d 

183.99 173.09 184 4-(4-Cyano-benzylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 10
d 

129.42 141.99 125 3-Benzylamino-cyclohex-2-enone 11 

137.51 143.33 137.5 3-Benzylamino-5-methyl-cyclohex-2-enone 12 

138.25 157.73 124 3-Benzylamino-5,5-dimethyl-cyclohex-2-enone 13 

169.99 166.47 170 3-(4-Chloro-benzylamino)-cyclohex-2-enone 14
d 

169.73 167.13 186 3-(4-Chloro-benzylamino)-5-methyl-cyclohex-2-enone 15 

163.72 177.78 159 3-(4-Chloro-benzylamino)-5,5-dimethyl-cyclohex-2-enone 16 

139.43 142.83 153 3-(4-Methyl-benzylamino)-cyclohex-2-enone 17 

51 



A. Jalali et al / Journal of Chemical Health Risks 6(1) (2016) 49–67 

 

2 
 

166.99 158.22 173 4-(4-Chloro-benzylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 18 

145.99 147.69 146 5-Methyl-3-(4-methyl-benzylamino)-cyclohex-2-enone 19 

150.54 155.44 139 5,5-Dimethyl-3-(4-methyl-benzylamino)-cyclohex-2-enone 20 

158.99 149.90 159 3-(4-Methoxy-benzylamino)-5,5-dimethyl-cyclohex-2-enone 21 

214.99 208.57 215 4-[(5,5-Dimethyl-3-oxo-cyclohex-1-enylamino)-methyl]-benzonitrile 22 

179.41 175.13 178 4-Benzoylamino-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 23 

149.68 146.40 160 6-Methyl-4-(4-methyl-benzylamino)-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 24 

196.34 188.53 200 4-(4-Chloro-benzoylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 25
d 

173.56 174.46 160 4-(4-Chloro-benzoylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 26
d 

163.94 169.78 157 6-Methyl-4-(4-methyl-benzoylamino)-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 27 

147.58 158.00 136 6-Methyl-4-(4-methyl-benzoylamino)-2-oxo-cyclohex-3-enecarboxylic acid tert-butyl ester 28 

165.99 166.30 166 4-(4-Methoxy-benzoylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 29 

145.85 158.41 142 4-(4-Methoxy-benzoylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid tert-butyl ester 30
d 

214.96 206.45 231 4-[(4-Methoxycarbonyl-5-methyl-3-oxo-cyclohex-1-enylamino)-methyl]-benzoic acid 31 

217.11 210.62 233 4-(4-Cyano-benzoylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 32
d 

198.30 196.77 187 4-(4-Cyano-benzoylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 33 

204.69 201.36 212 4-(4-Cyano-benzoylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid tert-butyl ester 34 

172.01 167.86 172 N-(3-Oxo-cyclohex-1-enyl)-benzamide 35
d 

188.82 184.89 196 4-Chloro-N-(3-oxo-cyclohex-1-enyl)-benzamide 36 

184.58 186.08 170 4-Chloro-N-(5-methyl-3-oxo-cyclohex-1-enyl)-benzamide 37 

196.01 198.79 196 4-Chloro-N-(5,5-dimethyl-3-oxo-cyclohex-1-enyl)-benzamide 38 

139.26 158.55 124 3-Benzylamino-5,5-dimethyl-cyclohex-2-enone 39 

172.92 167.48 174 4-Methyl-N-(5-methyl-3-oxo-cyclohex-1-enyl)-benzamide 40 

182.99 183.21 183 N-(5,5-Dimethyl-3-oxo-cyclohex-1-enyl)-4-methyl-benzamide 41 

167.16 156.87 171 4-Methoxy-N-(3-oxo-cyclohex-1-enyl)-benzamide 42 

166.01 162.15 166 4-Methoxy-N-(5-methyl-3-oxo-cyclohex-1-enyl)-benzamide 43 

206.99 212.82 207 4-Cyano-N-(3-oxo-cyclohex-1-enyl)-benzamide 44 

218.99 211.98 219 4-Cyano-N-(5-methyl-3-oxo-cyclohex-1-enyl)-benzamide 45 

226.52 219.86 238 4-Cyano-N-(5,5-dimethyl-3-oxo-cyclohex-1-enyl)-benzamide 46 

160.81 166.56 192 4-(4-Bromo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid tert-butyl ester 47 

167.52 178.56 158 6-Methyl-2-oxo-4-(4-trifluoromethoxy-phenylamino)-cyclohex-3-enecarboxylic acid methyl ester 48 

162.01 167.05 162 6-Methyl-2-oxo-4-(4-trifluoromethoxy-phenylamino)-cyclohex-3-enecarboxylic acid ethyl ester 49 

168.01 179.44 168 6-Methyl-2-oxo-4-(4-trifluoromethoxy-phenylamino)-cyclohex-3-enecarboxylic acid tert-butyl ester 50 

175.98 174.17 193 4-(4-Iodo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 51 

159.46 159.84 160.5 4-(4-Iodo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 52 

206.76 212.51 230 4-(4-Ethoxycarbonyl-5-methyl-3-oxo-cyclohex-1-enylamino)-benzoic acid 53
d 

177.66 179.74 160 4-(4-Hydroxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 54 

179.56 192.77 164 4-(4-Amino-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 55 

175.86 177.19 187 4-(4-Amino-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 56 

173.99 161.33 174 4-(4-Fluoro-benzylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 57 

159.26 168.07 180 4-(4-Methoxycarbonyl-5-methyl-3-oxo-cyclohex-1-enylamino)-benzoic acid ethyl ester 58 

198.37 188.45 210 4-(4-Cyano-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 59
d 

189.99 182.38 190 4-(4-Cyano-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 60 

154.78 148.10 177 4-(4-Methoxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 61 

Table 1. Continued 
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139.67 144.39 137 4-(3-Chloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 62 

167.86 172.05 159 4-(3-Bromo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 63 

148.36 154.49 135 4-(3-Bromo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 64
d 

150.99 143.15 151 6-Methyl-2-oxo-4-(3-trifluoromethoxy-phenylamino)-cyclohex-3-enecarboxylic acid ethyl ester 65 

163.01 169.29 163 4-(3-Iodo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 66 

144.79 150.38 120 4-(3-Iodo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 67
d 

187.86 198.56 201 3-(4-Ethoxycarbonyl-5-methyl-3-oxo-cyclohex-1-enylamino)-benzoic acid 68 

187.43 186.49 188 4-(3-Hydroxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 69 

165.01 176.41 165 4-(3-Hydroxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 70 

164.99 168.33 165 4-(3-Cyano-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 71
d 

124.35 127.84 111 4-(3-Methoxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 72 

166.49 173.56 166.5 6-Methyl-4-(3-nitro-phenylamino)-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 73 

155.01 166.28 155 6-Methyl-4-(3-nitro-phenylamino)-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 74 

141.89 138.65 146 4-(3-Ethyl-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 75 

132.01 145.53 132 6,6-Dimethyl-4-morpholin-4-yl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 76
d 

141.01 140.80 141 6-Methyl-2-oxo-4-phenylamino-cyclohex-3-enecarboxylic acid methyl ester 77 

117.04 121.03 116 4-(3-Ethyl-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 78 

150.99 148.26 151 4-(3-Fluoro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 79 

142.36 142.82 152 4-(2-Chloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 80
d 

150.99 152.88 151 4-(2-Amino-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 81 

155.15 153.28 157 4-(2-Bromo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 82 

152.06 154.77 148 4-(2-Iodo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 83 

172.23 179.22 164 4-(2-Hydroxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 84 

165.01 180.89 165 4-(2-Carbamoyl-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 85 

163.57 156.48 167 6-Methyl-2-oxo-4-(N'-phenyl-hydrazino)-cyclohex-3-enecarboxylic acid methyl ester 86 

161.10 167.70 155 4-(2-Cyano-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 87
d 

147.22 134.78 159 4-(2-Methoxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 88 

154.01 150.31 154 6-Methyl-4-(2-nitro-phenylamino)-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 89 

137.00 127.85 138 6-Methyl-2-oxo-4-o-tolylamino-cyclohex-3-enecarboxylic acid methyl ester 90 

149.21 136.30 166 6-Methyl-2-oxo-4-(2-trifluoromethyl-phenylamino)-cyclohex-3-enecarboxylic acid methyl ester 91 

152.26 155.40 132 4-(2-Fluoro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 92
d 

118.53 125.45 110 4-(2-Methoxy-5-methyl-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 93
d 

150.45 150.94 153.5 4-(4-Ethyl-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 94
d 

144.92 152.80 133 4-(3-Chloro-4-methoxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 95
d 

147.47 155.00 138 4-(2-Chloro-5-methoxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 96 

179.62 178.69 153 4-(2,4-Dichloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 97 

154.15 158.15 153 4-(2,4-Dichloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 98 

152.88 155.36 160 4-(2,5-Dichloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 99 

170.99 171.51 171 4-(3,4-Dichloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 100 

164.81 163.78 205 4-(2,6-Dichloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 101
d 

184.17 184.63 212 4-(3,5-Dichloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 102
d 

161.50 159.88 191 4-(3,5-Dichloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 103 

191.23 196.68 205 6-Methyl-2-oxo-4-(2,3,4-trichloro-phenylamino)-cyclohex-3-enecarboxylic acid methyl ester 104 

165.01 176.40 165 6-Methyl-2-oxo-4-(2,3,4-trichloro-phenylamino)-cyclohex-3-enecarboxylic acid ethyl ester 105 

Table 1. Continued 
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189.58 195.55 200 6-Methyl-2-oxo-4-(2,3,5-trichloro-phenylamino)-cyclohex-3-enecarboxylic acid methyl ester 106 

186.35 210.26 181 6-Methyl-2-oxo-4-(3,4,5-trichloro-phenylamino)-cyclohex-3-enecarboxylic acid methyl ester 107 

148.01 149.79 148 6-Methyl-2-oxo-4-(N'-phenyl-hydrazino)-cyclohex-3-enecarboxylic acid ethyl ester 108 

152.52 148.31 174 4-(5-Chloro-pyridin-2-ylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 109 

134.97 129.52 141 4-Cyclohexylamino-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 110
d 

153.43 155.21 161 4-(4-Chloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 111 

151.45 157.30 151 4-(4-Bromo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 112 

160.49 160.49 160.5 4-(4-Iodo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 113 

155.48 155.00 150 4-(4-Fluoro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 114 

180.75 179.20 184.5 6-Methyl-2-oxo-4-(4-trifluoromethyl-phenylamino)-cyclohex-3-enecarboxylic acid ethyl ester 115 

183.14 177.16 190 4-(4-Cyano-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 116 

173.01 179.27 173 6-Methyl-4-(4-nitro-phenylamino)-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 117 

135.17 145.58 134.5 6-Methyl-2-oxo-4-p-tolylamino-cyclohex-3-enecarboxylic acid ethyl ester 118
d 

135.37 129.11 155 6-Methyl-2-oxo-4-phenylamino-cyclohex-3-enecarboxylic acid ethyl ester 119 

186.01 189.71 186 6-Methyl-4-(4-nitro-phenylamino)-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 120 

137.01 144.42 137 4-(3-Chloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 121 

138.02 148.02 135 4-(3-Bromo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 122 

148.19 151.07 138 4-(3-Fluoro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 123 

164.01 171.20 164 6-Methyl-2-oxo-4-(3-trifluoromethyl-phenylamino)-cyclohex-3-enecarboxylic acid ethyl ester 124
d 

165.01 173.51 165 4-(3-Cyano-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 125 

156.96 177.36 155 6-Methyl-4-(3-nitro-phenylamino)-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 126
d 

136.24 141.64 125 6-Methyl-2-oxo-4-m-tolylamino-cyclohex-3-enecarboxylic acid ethyl ester 127 

128.79 130.43 110 4-(3-Methoxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 128 

145.19 139.66 160.5 4-(2-Methoxy-5-methyl-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 129
d 

197.99 192.06 198 3-(4-Chloro-phenylamino)-5-methyl-cyclohex-2-enone 130 

199.71 196.98 213 3-(4-Bromo-phenylamino)-5-methyl-cyclohex-2-enone 131 

189.25 187.23 182 3-(4-Fluoro-phenylamino)-5-methyl-cyclohex-2-enone 132 

197.20 202.69 205 5-Methyl-3-(4-trifluoromethyl-phenylamino)-cyclohex-2-enone 133 

174.01 186.64 174 5-Methyl-3-(4-trifluoromethoxy-phenylamino)-cyclohex-2-enone 134 

223.01 213.27 234 4-(5-Methyl-3-oxo-cyclohex-1-enylamino)-benzonitrile 135
d 

207.99 205.60 208 5-Methyl-3-(4-nitro-phenylamino)-cyclohex-2-enone 136 

173.82 167.18 194 5-Methyl-3-p-tolylamino-cyclohex-2-enone 137 

158.01 160.42 158 5-Methyl-3-phenylamino-cyclohex-2-enone 138 

176.99 179.31 177 3-(3-Chloro-phenylamino)-5-methyl-cyclohex-2-enone 139 

178.05 185.13 172 3-(3-Bromo-phenylamino)-5-methyl-cyclohex-2-enone 140
d 

170.67 173.72 163 3-(3-Fluoro-phenylamino)-5-methyl-cyclohex-2-enone 141 

179.01 184.72 179 5-Methyl-3-(3-trifluoromethyl-phenylamino)-cyclohex-2-enone 142 

157.26 157.43 156 5-Methyl-3-(3-trifluoromethoxy-phenylamino)-cyclohex-2-enone 143 

193.29 201.91 175.5 3-(5-Methyl-3-oxo-cyclohex-1-enylamino)-benzonitrile 144 

219.76 213.44 226 4-(4-Methoxycarbonyl-5-methyl-3-oxo-cyclohex-1-enylamino)-benzoic acid 145 

127.31 138.18 125 6-Methyl-4-morpholin-4-yl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 146
d 

199.49 185.10 199.5 4-(4-Hydroxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 147 

183.23 182.77 178 4-(4-Chloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 148 

154.01 147.48 154 4-Benzylamino-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 149 
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153.51 156.17 153.5 4-(4-Ethyl-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 150 

145.82 141.25 116 6-Methyl-2-oxo-4-phenethylamino-cyclohex-3-enecarboxylic acid methyl ester 151 

157.12 140.73 163 6-Methyl-2-oxo-4-(3-phenyl-propylamino)-cyclohex-3-enecarboxylic acid methyl ester 152 

182.77 179.91 161 4-(4-Fluoro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 153 

187.99 186.96 188 4-(4-Bromo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 154 

170.29 195.81 169 6-Methyl-2-oxo-4-(4-trifluoromethyl-phenylamino)-cyclohex-3-enecarboxylic acid methyl ester 155 

159.67 150.10 168 6,6-Dimethyl-2-oxo-4-phenylamino-cyclohex-3-enecarboxylic acid methyl ester 156
d 

177.40 177.80 141 4-(4-Chloro-phenylamino)-6,6-dimethyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 157 

161.01 159.78 161 4-(4-Chloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 158 

162.05 164.25 151 4-(4-Bromo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 159 

132.77 126.70 138 6-Methyl-2-oxo-4-pyrrolidin-1-yl-cyclohex-3-enecarboxylic acid methyl ester 160 

142.70 146.64 134.5 6-Methyl-2-oxo-4-p-tolylamino-cyclohex-3-enecarboxylic acid ethyl ester 161 

143.71 138.94 148.5 4-(4-Ethyl-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 162 

173.01 177.69 173 6-Methyl-4-(4-nitro-phenylamino)-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 163 

136.99 137.71 137 4-(2,5-Dimethoxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 164 

148.32 150.22 165.5 4-(4-tert-Butyl-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 165 

167.81 181.30 184.5 6-Methyl-2-oxo-4-(4-trifluoromethyl-phenylamino)-cyclohex-3-enecarboxylic acid ethyl ester 166 

154.01 170.85 154 4-(2-Benzoyl-4-chloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 167 

183.01 200.32 183 4-(4-Fluoro-benzylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid 4-fluoro-benzylamide 168 

137.94 157.44 124 3-Benzylamino-5,5-dimethyl-cyclohex-2-enone 169 

180.99 182.59 181 5,5-Dimethyl-3-phenylamino-cyclohex-2-enone 170 

207.99 215.29 208 3-(4-Chloro-phenylamino)-5,5-dimethyl-cyclohex-2-enone 171
d 

209.84 224.61 242 5,5-Dimethyl-3-(4-nitro-phenylamino)-cyclohex-2-enone 172 

194.06 192.86 203 5,5-Dimethyl-3-p-tolylamino-cyclohex-2-enone 173 

183.81 171.81 201 3-(4-Ethyl-phenylamino)-5,5-dimethyl-cyclohex-2-enone 174
d 

188.99 182.41 189 3-(4-Methoxy-phenylamino)-5,5-dimethyl-cyclohex-2-enone 175 

211.49 225.09 211.5 3-(4-Amino-phenylamino)-5,5-dimethyl-cyclohex-2-enone 176 

180.13 180.59 206 3-(4-tert-Butyl-phenylamino)-5,5-dimethyl-cyclohex-2-enone 177 

190.17 189.42 198 3-(4-Chloro-phenylamino)-5-methyl-cyclohex-2-enone 178 

189.99 183.11 190 3-(4-Chloro-phenylamino)-cyclohex-2-enone 179
d 

129.34 141.86 125 3-Benzylamino-cyclohex-2-enone 180
d 

174.86 170.44 185 3-(4-tert-Butyl-phenylamino)-cyclohex-2-enone 181
d 

138.99 135.30 139 3-Benzylamino-cyclopent-2-enone 182 

136.01 134.22 136 3-Phenethylamino-cyclohex-2-enone 183 

146.56 138.44 154 4-Benzylamino-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 184 

153.24 158.91 171 6-Methyl-2-oxo-4-phenethylamino-cyclohex-3-enecarboxylic acid phenethyl-amide 185
d 

172.99 165.12 173 4-(4-Chloro-benzylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 186 

174.01 165.37 174 4-(4-Fluoro-benzylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 187 

166.99 159.84 167 6-Methyl-2-oxo-4-(N'-phenyl-hydrazino)-cyclohex-3-enecarboxylic acid methyl ester 188 

159.43 164.45 144 6-Methyl-2-oxo-4-p-tolylamino-cyclohex-3-enecarboxylic acid methyl ester 189 

185.99 191.20 186 6-Methyl-4-(4-nitro-phenylamino)-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 190 

160.49 148.91 160.5 4-(2-Methoxy-5-methyl-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 191 

146.06 145.40 134 4-(2,5-Dimethoxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 192 

146.38 144.06 138 4-Benzylamino-6,6-dimethyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 193 

Table 1. Continued 

55 



A. Jalali et al / Journal of Chemical Health Risks 6(1) (2016) 49–67 

 

6 
 

125.01 124.52 125 4-(4-Bromo-phenylamino)-pent-3-en-2-one 194
d 

143.30 132.71 144 4-(4-Nitro-phenylamino)-pent-3-en-2-one 195 

118.01 112.32 118 4-(4-Methoxy-phenylamino)-pent-3-en-2-one 196 

136.04 120.38 138 4-Phenethylamino-pent-3-en-2-one 197
d 

110.52 107.23 109 4-(4-Ethyl-phenylamino)-pent-3-en-2-one 198 

117.83 122.70 100 4-p-Tolylamino-pent-3-en-2-one 199 

144.10 138.38 134 4-Benzylamino-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 200 

145.31 141.03 123 6-Methyl-4-(4-methyl-benzylamino)-2-oxo-cyclohex-3-enecarboxylic acid tert-butyl ester 201
d 

152.05 150.87 168.5 4-(4-Methoxy-benzylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 202 

141.97 137.64 154 4-(4-Methoxy-benzylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 203 

173.52 167.32 172 4-(4-Cyano-benzylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid tert-butyl ester 204 

137.87 133.33 159 3-(4-Methoxy-benzylamino)-cyclohex-2-enone 205 

149.68 145.16 160 3-(4-Methoxy-benzylamino)-5-methyl-cyclohex-2-enone 206
d 

160.20 159.92 161 4-Benzoylamino-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 207 

190.77 163.12 193 4-Benzoylamino-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid tert-butyl ester 208 

171.28 172.27 166 4-(4-Chloro-benzoylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid tert-butyl ester 209
d 

178.53 171.88 153 N-(5,5-Dimethyl-3-oxo-cyclohex-1-enyl)-4-methoxy-benzamide 210 

175.99 181.84 174 6-Methyl-4-(4-nitro-benzylamino)-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 211 

158.12 165.17 186 4-(4-Iodo-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid tert-butyl ester 212 

220.83 204.99 228 4-(4-Carbamoyl-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 213 

196.11 223.94 210 6-Methyl-2-oxo-4-(4-sulfamoyl-phenylamino)-cyclohex-3-enecarboxylic acid methyl ester 214 

138.99 167.44 137 4-(3-Chloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 215 

159.79 155.84 173 6-Methyl-2-oxo-4-(3-trifluoromethoxy-phenylamino)-cyclohex-3-enecarboxylic acid methyl ester 216 

189.13 203.81 200 4-(3-Carbamoyl-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 217 

142.81 141.52 165 6-Methyl-2-oxo-4-m-tolylamino-cyclohex-3-enecarboxylic acid methyl ester 218 

128.15 130.37 125 6-Methyl-2-oxo-4-m-tolylamino-cyclohex-3-enecarboxylic acid ethyl ester 219 

170.62 169.33 167 6-Methyl-2-oxo-4-(3-trifluoromethyl-phenylamino)-cyclohex-3-enecarboxylic acid methyl ester 220 

162.62 159.43 164 6-Methyl-2-oxo-4-(3-trifluoromethyl-phenylamino)-cyclohex-3-enecarboxylic acid ethyl ester 221
d 

142.59 143.16 138 4-(3-Fluoro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 222 

149.14 148.91 157 4-(2-Chloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 223 

177.74 181.90 197 6-Methyl-2-oxo-4-(2-sulfamoyl-phenylamino)-cyclohex-3-enecarboxylic acid methyl ester 224 

165.74 168.52 175 4-(3-Chloro-4-methoxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 225 

175.11 172.54 190 4-(2,5-Dichloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 226
d 

187.45 190.22 160 4-(3,4-Dichloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 227 

168.44 166.04 178 4-(4-Chloro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 228 

164.17 175.75 183 6-Methyl-2-oxo-4-(2,3,5-trichloro-phenylamino)-cyclohex-3-enecarboxylic acid ethyl ester 229 

150.61 152.18 144 6-Methyl-2-oxo-4-p-tolylamino-cyclohex-3-enecarboxylic acid methyl ester 230
d 

166.60 165.97 162 6-Methyl-2-oxo-4-(4-trifluoromethoxy-phenylamino)-cyclohex-3-enecarboxylic acid ethyl ester 231
d 

146.81 139.39 151 6-Methyl-2-oxo-4-(3-trifluoromethoxy-phenylamino)-cyclohex-3-enecarboxylic acid ethyl ester 232 

138.11 135.94 134 4-(2,5-Dimethoxy-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 233 

179.10 187.57 185 3-(3-Iodo-phenylamino)-5-methyl-cyclohex-2-enone 234 

176.10 192.08 187 5-Methyl-3-(3-nitro-phenylamino)-cyclohex-2-enone 235 

155.85 151.37 147 5-Methyl-3-m-tolylamino-cyclohex-2-enone 236 

150.42 143.61 140 3-(3-Methoxy-phenylamino)-5-methyl-cyclohex-2-enone 237 
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181.83 183.08 181 5,5-Dimethyl-3-phenylamino-cyclohex-2-enone 238 

205.17 193.74 206 4-(5-Chloro-pyridin-2-ylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 239 

161.96 168.67 170 4-(4-tert-Butyl-phenylamino)-6,6-dimethyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 240 

169.83 160.46 150 4-(4-Fluoro-phenylamino)-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 241
d 

157.96 131.33 155 6-Methyl-2-oxo-4-phenylamino-cyclohex-3-enecarboxylic acid ethyl ester 242 

154.01 170.85 134.5 4-Benzylamino-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid ethyl ester 243 

230.75 225.01 240.5 5,5-Dimethyl-3-(4-trifluoromethyl-phenylamino)-cyclohex-2-enone 244 

181.84 200.87 203 3-(4-Trifluoromethyl-phenylamino)-cyclohex-2-enone 245
d 

156.97 153.19 138 4-Benzylamino-6,6-dimethyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 246 

146.60 135.63 130 6,6-Dimethyl-2-oxo-4-phenethylamino-cyclohex-3-enecarboxylic acid methyl ester 247 

130.34 126.53 113 4-(4-Chloro-phenylamino)-pent-3-en-2-one 248 

119.85 113.16 107 4-Benzylamino-pent-3-en-2-one 249
d 

154.49 147.90 154 4-Benzylamino-6-methyl-2-oxo-cyclohex-3-enecarboxylic acid methyl ester 250 

a
 Experimental melting point of each drug-like compound 

b
 Predicted melting point of each drug-like compound using GA-MLR approach 

c
 Predicted melting point of each drug-like compound using GA-SVM approach 

d
 Test set 

 

Data pretreatment 

The calculated descriptors were first analyzed for the 

existence of constant or near-constant variables in the 

preliminary step, and those detected were removed. In 

addition, to reduce redundancy in the descriptor data 

matrix, correlation of the descriptors with each other and 

with the melting points of the molecules was examined 

and the collinear descriptors (i.e. r> 0.9) were detected. 

Among the collinear descriptors, that with the highest 

correlation with melting point was retained while the 

others were removed from the data matrix. Then, the 

remaining descriptors were collected in an n×m data 

matrix (D), where n=250 and m=348 are the numbers of 

the compounds and the descriptors, respectively. 

Genetic algorithm 

The GA feature selection approach as a stochastic 

method is capable of solving a variety of optimization 

problems, which are defined through fitness criteria. The 

basis of this strategy goes back to the evolution 

hypothesis given by Darwin. Furthermore, genetic 

functions encompassing crossover and mutation are very 

important in this algorithm. As usual, simulation of the  

 

population evolution is among the most significant 

preliminary steps [25-34]. We have recently reported all  

the detailed information concerning the general 

performance of the GA approach [35].  

Support vector machine (SVM) 

Support vector machine is a novel type of machine 

learning method, and is gaining popularity due to many 

attractive features as well as promising empirical 

performance. The main advantage of SVM is that it 

adopts the structure risk minimization (SRM) principle, 

which has been shown to be superior to the traditional 

empirical risk minimization (ERM) principle, employed 

by conventional neural networks. SRM minimizes an 

upper bound of the generalization error on Vapnik-

Chernoverkis (VC) dimension, as opposed to ERM that 

minimizes the training error [36, 37]. For the case of 

regression approximation, suppose there are a given set 

of data points are you (xi is the input vector, di the 

desired value, and n is the total number of data patterns) 

drawn independently and identically from an unknown 

function, SVMs approximate the function with three 

distinct characteristics: (i) SVMs estimate the regression 
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in a set of linear functions, (ii) SVMs define the 

regression estimation as the problem of risk 

minimization with respect to the ε-insensitive loss 

function, and (iii) SVMs minimize the risk based on the 

SRM principle whereby elements of the structure are 

defined by the inequality 
2

2

1
  constant. The 

linear function is formulated in the high dimensional 

feature space, with the form of function (eq. 1). 

bxwxfy  )()(   (eq. 1)   

Where )(x  is the high dimensional feature space, 

which is non-linearly mapped from the input space x. 

The aforementioned characteristics (ii and iii) are 

reflected in the minimization of the regularized risk 

function (eq. 2) of SVMs, by which the coefficients w 

and b are estimated. The goal of this risk function is to 

find a function that has at most ε deviation from the 

actual values in all the training data points and at the 

same time is as flat as possible. 
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 is the so-called 

empirical error (risk), which is measured by the ε-

insensitive loss function (eq. 3). This loss function 

provides the advantage of using sparse data points to 

represent the designed function (1). The second term

2

2

1
 , on the other hand, is called the regularized 

term. ε implies for called the tube size of SVMs, and C 

is the regularization constant determining the trade-off 

between the empirical error and the regularized term. 

Introduction of the positive slack variables , 
*  leads 

to eq. (4) with the following constrained function: 

Minimize 
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Where i represents the data sequence, with i=1 being the 

most recent observation and i=1 being the earliest 

observation. Finally, by introducing Lagrange 

multipliers and exploiting the optimality constraints, 

decision function (eq. 5) takes the following form: 
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Where
i

a , 
*

i

a are the introduced Lagrange multipliers? 

So far, by exploiting the Karush–Kuhn–Tucker (KKT) 

conditions, only a number of coefficients among 
i

a  and 

*

i

a  will be non-zero and the data points associated with 

them could be referred to support vectors. In this 

equation, K refers to kernel function, including linear, 

polynomial, splines, and radial basis function. In support 

vector regression, the Gaussian radial basis function 

(RBF) (eq. 6) is commonly used, which has the 

following form: 

  )exp(,
2

jiji xxxxk     (eq. 6) 

RESULTS AND DISCUSSION 

Regression analysis 

Principal components analysis (PCA) was performed 

with the calculated structure descriptors for the whole 

data set to detect the homogeneities in the data set and to 

show spatial location of samples to assist separation of 

the data into training and test sets. The PCA results 
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show that two principal components (PC1 and PC2) 

describe 52.04% of the overall variables, as follows: 

PC1 = 34.61%, PC2 = 17.43%. Because almost all 

variables can be accounted for by the first two PCs, their 

score plot is a reliable representation of the spatial 

distribution of the points for the data set. The plot of 

PC1 against PC2 (Figure 1) displays the distribution of 

compounds over the first two principal components 

space. 

 

Figure 1. Principal components analysis of the training and test sets 

According the results of PCA, all the data were divided 

into a training set of 200 compounds to develop the 

models and a test set of 50 compounds to evaluate the 

models based on two rules: 

1. The range of the activity values of both the training 

set and the test set should be covered from the lowest to 

the highest; 

2. The points corresponding to the training set in the 

PCA plot should not be out of the main clusters. 

The two training and tests sets are listed in Table 1. For 

the selection of the most important descriptors, genetic 

algorithm variable subset selection method was used 

combined with MLR approach.  

The GA-MLR analysis led to the derivation of one 

model possessing eight descriptors. The descriptors 

obtained are shown in Table 2. Since co-linearity 

between the variables degrades the performance of the 

MLR-based QSAR models, before a multi-parametric 

analysis was undertaken, the correlation between each 

pair of the variables used in this study was examined. 

The correlation matrix itself exhibits how the used 

descriptors were mutually correlated (Table 3). From 

Table 3, it could be seen that the correlation coefficient 

value of each pair of molecular descriptors was at the 

most 0.679, confirming that the selected descriptors 

behave independently.  

In addition, in order to check the inter-correlation of 

descriptors, variation inflation factor (VIF) analysis was 

performed. The VIF value is calculated from 1/1- r
2
, 

where r
2
 is the multiple correlation coefficient of one 

descriptor’s effect regressed on the remaining molecular 

descriptors. If VIF equals to 1.0, no inter-correlation 

exists for each variable; if VIF falls into the range of 

1.0- 5.0, the related model is acceptable; and if VIF is 

larger than 10.0, the related model is unstable and an 

exhaustive re-check is necessary [38]. The VIF values of 

the selected descriptors are shown in Table 2. As can be 

seen from this table, the majority of the variables have 

VIF values less than 5, indicating that the obtained 

model has obvious statistical significance. 

To examine the relative importance as well as the 

contribution of each descriptor in the model, the value 
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of the mean effect (MFj) was calculated for each 

descriptor. This calculation was performed with the 

equation below: 
 





m

j

n

i ijj

ni

i ijj

j

d

d
MF




1                          (eq. 7)                              

Table 2: The list of the selected descriptors by the GA-MLR technique 

Descriptor Chemical meaning MF 
a
 VIF 

b
 

Constant Intercept - - 

Mv Mean atomic van der Waals volume (scaled on Carbon atom) -0.165 1.301 

E1s 1st component accessibility directional WHIM index/weighted by atomic electrotopological states. -0.011 1.168 

HGM Geometric mean on the leverage magnitude 0.019 3.401 

HATS4u Leverage-weighted autocorrelation of lag 4/unweighted -0.040 2.528 

RTe+ R maximal index/weighted by atomic Sanderson electronegativities -0.016 1.605 

WPSA-3 WPSA-3 Weighted PPSA (PPSA3*TMSA/1000) [Zefirovs PC] -0.020 5.078 

HDCA-2 HA dependent HDCA-2 [Quantum-Chemical PC] -0.014 1.822 

MREC Max resonance energy for a C-H bond 1.247 1.063 

 

Table 3: Correlation matrix for the eight selected descriptors using bivariate correlation approach 

 Mv E1s HGM HATS4u RTe+ WPSA-3 HDCA-2 MREC 

Mv 1        

E1s 0.182 1       

HGM 0.355 0.039 1      

HATS4u 0.115 0.011 0.679 1     

RTe+ 0.146 0.274 0.299 0.261 1    

WPSA-3 -0.245 -0.027 -0.614 -0.625 -0.316 1   

HDCA-2 0.146 -0.020 -0.081 0.015 0.289 0.312 1  

MREC 0.053 -0.048 0.129 -0.005 0.052 -0.069 0.122 1 

[ 

MFj represents the mean effect for the considered 

descriptor j, βj is the coefficient of the descriptor j, dij 

stands for the value of the target descriptors for each 

molecule and, eventually, m is the descriptors number in 

the model [39]. The MFj value indicates the relative 

importance of a descriptor, compared with the other 

descriptors in the model. The mean effect values for 

selected descriptors as well as their chemical meaning 

are shown in Table 2. As can be seen the MREC 

descriptor has a highest mean effect value, and 

subsequently it exerts the most impact on the 

constructed model. 

The selected variables are Mv, E1s, HGM, HATS4u, 

RTe, WPSA-3, HDCA-2 and MREC. With the selected 

eight molecular descriptors, we have built a reliable 

linear model using the training set data that it is 

described by the following equation: 

Mp= 2063.77 (±552.08) + 502.45 (±62.82) Mv - 42.86 

(±7.68) E1s - 5.70 (±2.27) HGM +147.75 (±14.32) 

HATS4u + 242.61 (±53.28) RTe+7.55 (±2.20) WPSA-

3 +17.25 (±3.29) HDCA-2 - 213.38 (±49.39) MREC 

(8) 

The built model was used to predict the test set data. 

The prediction results are given in Table 1 and shown in 

Figure 2. The square correlation coefficient R
2 

was 
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obtained to be 0.712 for the training set and 0.713 for 

the test set with root mean square error (RMSE) of 

15.042 and 14.919, respectively.  

 

Figure 2. The predicted M.P. values by the GA-MLR modeling vs. the experimental M.P.s 

Figure 3 shows the residual plot when using the GA-

MLR approach. As shown in this Figure, the normal 

scattering of the points on two sides of the X-axis 

confirms that there is no systematic error in this 

modeling strategy. 

 

Figure 3. Plot of the residuals against the experimental values of the melting points by GA-MLR 

SVM model development 

From the obtained results by the multiple linear 

regressions (MLR), it can be seen that the linear model 

was not sufficiently accurate. Therefore, a non-linear  

model was built by SVM-based genetic algorithm 

approach (GA-SVM) on the same subset of descriptors.  

 

LOO cross-validation method implied in SVM was used 

to build the model by the training set compounds. 

Performance of SVM for regression depends on the 

combination of several factors. They are kernel function 

type, capacity parameter C, ε of ε-insensitive loss 

function and its corresponding parameters. 
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Firstly, the kernel function should be decided, which 

determines the sample distribution in the mapping 

space. The radial basis function (RBF) is commonly 

used in many studies because of its good general 

performance and few parameters to be adjusted. The 

corresponding parameters, i.e.  of the kernel function 

greatly affect the number of support vectors, which has 

a close relation with the performance of the SVM and 

training time. Too many support vectors could produce 

overfitting which increase the time of the training step. 

In addition,  controls the amplitude of the RBF function 

and, therefore, controls the generalization ability of 

SVM. The plot of RMSE versus  on the LOO cross-

validation is shown in Fig. 4. As can be seen from the 

figure, the optimal   was 0.7. 

Parameter ε-insensitive prevents the entire training set 

meeting boundary conditions and so allows for the 

possibility of sparsity in the dual formulation’s solution. 

The optimal value for ε depends on the type of noise 

present in the data, which is usually unknown. The 

RMSE of LOO cross-validation on different epsilon is 

recorded in Fig. 5 and the optimal value was found to be 

0.01. The last parameter C was a regularization 

parameter that controlled the tradeoff between 

maximizing the margin and minimizing the training 

error. The plot of RMSE versus C value is shown in 

Fig.6 with values  = 0.7 and ε = 0.01. Accordingly, the 

optimal value of C was 11. 

 

Figure 4: The trends of RMSE vs. the term gamma for the training set 

 

Figure 5. The plot of RMSE as a function of epsilon for the training set 
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Figure 6. Variation of RMSE vs a capacity parameter C. for the training set 

 

Therefore, the best choices for, ε and C were 0.7, 0.01 

and 11. For the optimal model, the cross-validated 

coefficients were 0.577 and 0.578 for Q
2
LOO and Q

2
LGO, 

respectively. It gave RMSE of 11.082 for the training 

set, 13.332 for the test set, and the corresponding 

correlation coefficients (R
2
) were 0.853 and 0.737, 

respectively.The calculated M.P. values obtained from 

SVM predictive model are listed in Table 1. Figure 7 

shows the predicted versus experimental values of M.P. 

for the training and test sets using the GA-SVM method. 

 

 

 

Figure7. The predicted M.P. values by the GA-SVM modeling vs. the experimental M.P. values 

Finally, we have plotted the trends of variation in the 

residuals as a function of experimental melting points 

(Figure 8). Similarly, to the GA-MLR approach, in this  

model, it was not observed any systematic error within 

the modeling process. 
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Figure 8. Plot of the residuals against the experimental values of the melting points by GA-SVM 

Comparison of the MLR and SVM results  

Table 4 presents the statistical parameters of the results 

obtained from the two studied models for the same set 

of compounds. The RMSE of SVM model for the 

training and test data sets were lower than those of 

models proposed by the GA-MLR method. Moreover, 

the correlation coefficient (R
2
) given by the GA-SVM 

was higher than that of GA-MLR method. In addition,  

 

the results of F-test were obtained as shown in Table 4. 

From the Table, it can be seen that SVM model gives 

higher F values, so this model gives the most 

satisfactory results, compared with the results obtained 

from MLR method. Consequently, this SVM approach 

currently constitutes the most accurate method for 

prediction of the melting points of a variety of organic 

and/or drug-like compounds. 

Table 4. Statistical parameters of the results obtained from the GA-MLR and GA-SVM models 

The technique used 
Training set Test set 

R
2
 RMSE F R

2
 RMSE F 

GA-MLR 0.712 15.042 59.061 0.713 14.919 13.770 

GA-SVM 0.853 11.082 106.691 0.737 13.332 14.031 

 

CONCLUSIONS 

In this study, a new QSPR model was developed for 

predicting the melting point compounds, from a wide 

pool of the molecular structure. The GA approach was 

used to select the main relevant descriptors and to build 

a linear model, namely the GA-MLR method. The GA-

SVM method was used to construct a non-linear QSPR  

 

model based on the same selected parameters. 

Regarding the statistical parameters of the constructed 

models, we can conclude that the GA-SVM model 

produced more satisfactory results than the MLR model 

confirming its good predictive ability. It was easy to 

notice that there was a good prospect for the SVM 

application in the QSPR modeling. This model could 
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accurately predict the M.P. of those components that did 

not exist in the modeling procedure.  
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