ارتباطات دستگاه به دستگاه زیر-لایه در شبکههای سلولی موج-میلیمتری: تخصیص کانال، انتخاب نوع ارسال و کنترل توان برای سناریوهای با اطلاعات جانبی کانال کامل و محدود
محورهای موضوعی : مهندسی مخابرات
1 - گروه مهندسی برق، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران
کلید واژه: نسل پنجم شبکههای سلولی, موج میلیمتری, تخصیص منابع, ارتباطات دستگاه به دستگاه زیر-لایه, رله تمام-دوطرفه,
چکیده مقاله :
در این مقاله، ارتباطات دستگاه به دستگاه زیر-لایه در باند فرکانسی موج-میلیمتری مورد بررسی قرار گرفته است که در آن میتوان از رلههای نیمه-دوطرفه / تمام-دوطرفه برای بهبود کیفیت ارسال و افزایش محدوده پوشش کمک گرفت. هدف اصلی ما انتخاب توام مود ارسالی کاربران D2D، تخصیص منابع سلولی به کاربران D2D و کنترل توان کاربران به منظور بیشینه کردن مجموع نرخ دیتای شبکهی سلولی و کاربران D2D است. در تحلیلهای انجام گرفته بر روی ویژگیهای اصلی مخابرات موج-میلیمتری شامل پهنای باند بزرگتر، امکان استفاده از آنتنهای آرایهای جهتدار، و سایهافکنی و افت توان بیشتر متمرکز شدهایم. از آنجا که مسالهی بهینهسازی یک مسالهی برنامهریزی غیرخطی مختلط است، دو الگوریتم ابتکاری برای حل این مساله پیشنهاد دادهایم که در یکی از آنها از فرض در دسترس بودن کامل اطلاعات جانبی کانال و در دیگری از فرض محدودیت در دسترسی به این اطلاعات استفاده شده است. نتایج شبیهسازی نشان دهندهی برتری استفاده از رلههای تمام-دوطرفه در مقایسه با استفاده از رلههای نیمه-دوطرفه و ارتباط مستقیم کاربران بهویژه در لینکهای دید غیر مستقیم -که مکانیزم اصلی انتشار در شبکههای موج-میلیمتری است- است. به عنوان مثال، استفاده از رلههای تمام-دوطرفه میتواند نرخ دیتای مجموع را تا 1.5 برابر در مقایسه با رلههای نیمه-دوطرفه افزایش دهد. همچنین داشتن قابلیت انتخاب بین ارتباط مستقیم یا استفاده از رله (نیمه-دوطرفه / تمام-دوطرفه) میتواند به بهبود عملکرد سیستم - بهویژه هنگامیکه میزان خود-تداخلی باقیمانده رلههای تمام-دوطرفه بزرگ است - کمک کند. الگوریتم CSI محدود در مقایسه با CSI کامل دارای پیچیدگی پیادهسازی به مراتب پایینتری است. علاوه براین، هنگامیکه تعداد منابع در دسترس در مقایسه با تعداد کاربران D2D خیلی بیشتر است (حداقل 6 برابر)، فاصلهی عملکردی بین الگوریتم CSI کامل و CSI محدود از بین میرود.
In this paper, we study relay-assisted underlay D2D communication operating at millimeter-wave (mmWave) band in which half-duplex/full-duplex relays may assist D2D users to improve transmission quality. Our aim is to jointly select D2D transmission mode, assign cellular resource blocks to D2D users and control the powers of users in order to maximize the aggregate data rate of the D2D users and cellular network. We focus on the main features of mmWave communication including larger bandwidth, directive antenna arrays at BS and users, and more severe path loss and shadowing. As the optimization problem is mixed-integer-non-linear programming, two heuristic algorithms are proposed, assuming full Channel Side Information (CSI) and limited CSI at Base Station, respectively. Simulation results show the superiority of utilizing FD relays over HD relays and direct transmission, especially for non-line-of-sight links, which is the dominant propagation mechanism in mmWave band. The limited CSI algorithm has considerably lower complexity. Moreover, when the number of resource blocks far exceeds the number of D2D users, the gap between full CSI and limited CSI algorithms vanishes.
[1] A.Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1801–1819, 2014, doi: 10.1109/COMST.2014.2319555.
[2] J. Liu, N. Kato, J. Ma, and N. Kadowaki, “Device-to-device communication in lte-advanced networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 1923–1940, 2014, doi: 10.1109/COMST.2014.2375934.
[3] P. Mach, Z. Becvar, and T. Vanek, “In-band device-to-device communication in ofdma cellular networks: A survey and challenges,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 1885–1922, 2015, doi: 10.1109/COMST.2015.2447036.
[4] H. A. U. Mustafa, M. A. Imran, M. Z. Shakir, A. Imran, and R. Tafazolli, “Separation framework: An enabler for cooperative and d2d communication for future 5g networks,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 419–445, 2015, doi: 10.1109/COMST.2015.2459596.
[5] H. ElSawy, E. Hossain, and M.-S. Alouini, “Analytical modeling of mode selection and power control for underlay d2d communication in cellular networks,” IEEE Transactions on Communications, vol. 62, no. 11, pp. 4147–4161, 2014, doi: 10.1109/TCOMM.2014.2363849.
[6] N. Lee, X. Lin, J. G. Andrews, and R. W. Heath, “Power control ford2d underlaid cellular networks: Modeling, algorithms, and analysis,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 1, pp. 1–13, 2014, doi: 10.1109/JSAC.2014.2369612.
[7] P. Sun, K. G. Shin, H. Zhang, and L. He, “Transmit power control for d2d-underlaid cellular networks based on statistical features,” IEEE Transactions on Vehicular Technology, vol. 66, no. 5, pp. 4110–4119, 2016, doiI: 10.1109/TVT.2016.2620523.
[8] Y. J. Chun, S. L. Cotton, H. S. Dhillon, A. Ghrayeb, and M. O. Hasna, “A stochastic geometric analysis of device-to-device communications operating over generalized fading channels,” IEEE Transactions on Wireless Communications, vol. 16, no. 7, pp. 4151–4165, 2017, doi: 10.1109/TWC.2017.2689759.
[9] X. Li, R. Shankaran, M. A. Orgun, G. Fang, and Y. Xu, “Resource allocation for underlay d2d communication with proportional fairness,” IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6244– 6258, 2018, doi: 10.1109/TVT.2018.2817613.
[10] A. Abdallah, M. M. Mansour, and A. Chehab, “Power control and channel allocation for d2d underlaid cellular networks,” IEEE Transactions on Communications, vol. 66, no. 7, pp. 3217–3234, 2018, doi: 10.1109/TCOMM.2018.2812731.
[11] R. I. Ansari, C. Chrysostomou, S. A. Hassan, M. Guizani, S. Mumtaz, J. Rodriguez, and J. J. Rodrigues, “5g d2d networks: Techniques, challenges, and future prospects,” IEEE Systems Journal, vol. 12, no. 4, pp. 3970–3984, 2017, doi: 10.1109/JSYST.2017.2773633.
[12] A. Al-Hourani, S. Kandeepan, and E. Hossain, “Relay-assisted deviceto-device communication: A stochastic analysis of energy saving,” IEEE Transactions on Mobile Computing, vol. 15, no. 12, pp. 3129–3141, 2016, doi: 10.1109/TMC.2016.2519343.
[13] G. Liu, F. R. Yu, H. Ji, V. C. Leung, and X. Li, “In-band full-duplex relaying: A survey, research issues and challenges,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 500–524, 2015, doi: 10.1109/COMST.2015.2394324.
[14] G. Zhang, K. Yang, P. Liu, and J. Wei, “Power allocation for fullduplex relaying-based d2d communication underlaying cellular networks,” IEEE Transactions on Vehicular Technology, vol. 64, no. 10, pp. 4911–4916, 2014, doi: 10.1109/TVT.2014.2373053.
[15] A. Memarinejad, M. Mohammadi, and M. B. Tavakoli, “Outage Performance Analysis of Multi-Antenna FullDuplex NOMA Cellular Systems,” Journal of Communication Engineering (JCE), vol. 12, no. 45, pp. 2–18, 2022 (in persian).
[16] T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design,” IEEE transactions on Communications, vol. 63, no. 9, pp. 3029–3056, 2015, doi: 10.1109/TCOMM.2015.2434384.
[17] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5g cellular communications: Theoretical feasibility and prototype results,” IEEE communications magazine, vol. 52, no. 2, pp. 106–113, 2014, doi: 10.1109/MCOM.2014.6736750.
[18] A. N. Uwaechia and N. M. Mahyuddin, “A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges,” IEEE Access, vol. 8, pp. 62 367–62 414, 2020, doi: 10.1109/ACCESS.2020.2984204.
[19] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave mimo systems,” IEEE Transactions on wireless communications, vol. 13, no. 3, pp. 1499–1513, 2014, doi: 10.1109/TWC.2014.011714.130846.
[20] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5g cellular communications: Theoretical feasibility and prototype results,” IEEE communications magazine, vol. 52, no. 2, pp. 106–113,2014, doi: 10.1109/MCOM.2014.6736750.
[21] Y. Niu, C. Gao, Y. Li, L. Su, D. Jin, and A. V. Vasilakos, “Exploiting device-to-device communications in joint scheduling of access and backhaul for mmwave small cells,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 10, pp. 2052–2069, 2015, doi: 10.1109/JSAC.2015.2435273.
[22] J. Qiao, X. S. Shen, J. W. Mark, Q. Shen, Y. He, and L. Lei, “Enabling device-to-device communications in millimeter-wave 5g cellular networks,” IEEE Communications Magazine, vol. 53, no. 1, pp. 209– 215, 2015, doi: 10.1109/MCOM.2015.7010536.
[23] S. Ali and A. Ahmad, “Resource allocation, interference management, and mode selection in device-to-device communication: a survey,” Transactions on Emerging Telecommunications Technologies, vol. 28, no. 7, p. e3148, 2017, doi: 10.1002/ett.3148.
[24] F. A. Orakzai, M. Iqbal, M. Naeem, and A. Ahmad, “Energy efficient joint radio resource management in d2d assisted cellular communication,” Telecommunication Systems, vol. 69, no. 4, pp. 505–517, 2018, doi:10.1007/s11235-018-0451-3.
[25] Z. Guizani and N. Hamdi, “mmwave e-band d2d communications for 5g-underlay networks: Effect of power allocation on d2d and cellular users throughputs,” in IEEE Symposium on Computers and Communication (ISCC), 2016, pp. 114–118, doi: 10.1109/ISCC.2016.7543724.
[26] K. Vanganuru, S. Ferrante, and G. Sternberg, “System capacity and coverage of a cellular network with d2d mobile relays,” in MILCOM IEEE Military Communications Conference, 2012, pp. 1–6, doi: 10.1109/MILCOM.2012.6415659.
[27] X. Lin and J. G. Andrews, “Connectivity of millimeter wave networks with multi-hop relaying,” IEEE Wireless Communications Letters, vol. 4, no. 2, pp. 209–212, 2015, doi: 10.1109/LWC.2015.2397884.
[28] N. Wei, X. Lin, and Z. Zhang, “Optimal relay probing in millimeterwave cellular systems with device-to-device relaying,” IEEE Transactions on Vehicular Technology, vol. 65, no. 12, pp. 10 218–10 222, 2016, doi: 10.1109/TVT.2016.2552239.
[29] S. Wu, R. Atat, N. Mastronarde, and L. Liu, “Coverage analysis of d2d relay-assisted millimeter-wave cellular networks,” in IEEE wireless communications and networking conference (WCNC), 2017, pp. 1–6, doi: 10.1109/WCNC.2017.7925803.
[30] B. Ma, H. Shah-Mansouri, and V. W. Wong, “Full-duplex relaying for d2d communication in millimeter wave-based 5g networks,” IEEE Transactions on Wireless Communications, vol. 17, no. 7, pp. 4417– 4431, 2018, doi: 10.1109/TWC.2018.2825318.
[31] A. Abdelreheem, A. S. Mubarak, O. A. Omer, H. Esmaiel, and U. S. Mohamed, “Improved d2d millimeter wave communications for 5g networks using deep learning,” in IEEE 2nd International Conference on Computer and Information Sciences (ICCIS), 2020, pp. 1–5, doi: 10.1109/ICCIS49240.2020.9257634.
[32] T. D. Hoang, L. B. Le, and T. Le-Ngoc, “Joint mode selection and resource allocation for relay-based d2d communications,” IEEE Communications Letters, vol. 21, no. 2, pp. 398–401, 2016, doi: 10.1109/LCOMM.2016.2617863.
[33] M. Liu, L. Zhang, and P. R. Gautam, “Joint relay selection and resource allocation for relay-assisted d2d underlay communications,” in IEEE 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), 2019, pp. 1–6, doi: 10.1109/WPMC48795.2019.9096172.
[34] D. Feng, L. Lu, Y. Yuan-Wu, G. Y. Li, G. Feng, and S. Li, “Device-todevice communications underlaying cellular networks,” IEEE Transactions on communications, vol. 61, no. 8, pp. 3541–3551, 2013, 10.1109/TCOMM.2013.071013.120787.
[35] C. Motz, T. Paireder, H. Pretl, and M. Huemer, “A survey on selfinterference cancellation in mobile lte-a/5g fdd transceivers,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 3, pp. 823–829, 2021, doi: 10.1109/TCSII.2021.3051101.
[36] C. D. Nwankwo, L. Zhang, A. Quddus, M. A. Imran, and R. Tafazolli, “A survey of self-interference management techniques for single frequency full duplex systems,” IEEE Access, vol. 6, pp. 30 242–30 268, 2017, doi: 10.1109/ACCESS.2017.2774143.
[37] T. Bai and R. W. Heath, “Coverage and rate analysis for millimeter-wave cellular networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 2, pp. 1100–1114, 2014, doi: 10.1109/TWC.2014.2364267.
[38] T. Bai, R. Vaze, and R. W. Heath, “Analysis of blockage effects on urban cellular networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 9, pp. 5070–5083, 2014, doi: 10.1109/TWC.2014.2331971.
[39] G. R. MacCartney, J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5g millimeter wave propagation channels in urban microcells,” in IEEE global communications conference (GLOBECOM)., 2013, pp. 3948–3953, doi: 10.1109/GLOCOM.2013.6831690.
[40] T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback selfinterference in full-duplex mimo relays,” IEEE transactions on signal processing, vol. 59, no. 12, pp. 5983–5993, 2011, doi: 0.1109/TSP.2011.2164910.
[41] W. Dinkelbach, “On nonlinear fractional programming,” Management science, vol. 13, no. 7, pp. 492–498, 1967.
[42] K. Shen and W. Yu, “Fractional programming for communication systems—part i: Power control and beamforming,” IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2616–2630, 2018, doi: 10.1109/TSP.2018.2812733.
_||_
[1] A.Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device communication in cellular networks,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1801–1819, 2014, doi: 10.1109/COMST.2014.2319555.
[2] J. Liu, N. Kato, J. Ma, and N. Kadowaki, “Device-to-device communication in lte-advanced networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 1923–1940, 2014, doi: 10.1109/COMST.2014.2375934.
[3] P. Mach, Z. Becvar, and T. Vanek, “In-band device-to-device communication in ofdma cellular networks: A survey and challenges,” IEEE Communications Surveys & Tutorials, vol. 17, no. 4, pp. 1885–1922, 2015, doi: 10.1109/COMST.2015.2447036.
[4] H. A. U. Mustafa, M. A. Imran, M. Z. Shakir, A. Imran, and R. Tafazolli, “Separation framework: An enabler for cooperative and d2d communication for future 5g networks,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 419–445, 2015, doi: 10.1109/COMST.2015.2459596.
[5] H. ElSawy, E. Hossain, and M.-S. Alouini, “Analytical modeling of mode selection and power control for underlay d2d communication in cellular networks,” IEEE Transactions on Communications, vol. 62, no. 11, pp. 4147–4161, 2014, doi: 10.1109/TCOMM.2014.2363849.
[6] N. Lee, X. Lin, J. G. Andrews, and R. W. Heath, “Power control ford2d underlaid cellular networks: Modeling, algorithms, and analysis,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 1, pp. 1–13, 2014, doi: 10.1109/JSAC.2014.2369612.
[7] P. Sun, K. G. Shin, H. Zhang, and L. He, “Transmit power control for d2d-underlaid cellular networks based on statistical features,” IEEE Transactions on Vehicular Technology, vol. 66, no. 5, pp. 4110–4119, 2016, doiI: 10.1109/TVT.2016.2620523.
[8] Y. J. Chun, S. L. Cotton, H. S. Dhillon, A. Ghrayeb, and M. O. Hasna, “A stochastic geometric analysis of device-to-device communications operating over generalized fading channels,” IEEE Transactions on Wireless Communications, vol. 16, no. 7, pp. 4151–4165, 2017, doi: 10.1109/TWC.2017.2689759.
[9] X. Li, R. Shankaran, M. A. Orgun, G. Fang, and Y. Xu, “Resource allocation for underlay d2d communication with proportional fairness,” IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6244– 6258, 2018, doi: 10.1109/TVT.2018.2817613.
[10] A. Abdallah, M. M. Mansour, and A. Chehab, “Power control and channel allocation for d2d underlaid cellular networks,” IEEE Transactions on Communications, vol. 66, no. 7, pp. 3217–3234, 2018, doi: 10.1109/TCOMM.2018.2812731.
[11] R. I. Ansari, C. Chrysostomou, S. A. Hassan, M. Guizani, S. Mumtaz, J. Rodriguez, and J. J. Rodrigues, “5g d2d networks: Techniques, challenges, and future prospects,” IEEE Systems Journal, vol. 12, no. 4, pp. 3970–3984, 2017, doi: 10.1109/JSYST.2017.2773633.
[12] A. Al-Hourani, S. Kandeepan, and E. Hossain, “Relay-assisted deviceto-device communication: A stochastic analysis of energy saving,” IEEE Transactions on Mobile Computing, vol. 15, no. 12, pp. 3129–3141, 2016, doi: 10.1109/TMC.2016.2519343.
[13] G. Liu, F. R. Yu, H. Ji, V. C. Leung, and X. Li, “In-band full-duplex relaying: A survey, research issues and challenges,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 500–524, 2015, doi: 10.1109/COMST.2015.2394324.
[14] G. Zhang, K. Yang, P. Liu, and J. Wei, “Power allocation for fullduplex relaying-based d2d communication underlaying cellular networks,” IEEE Transactions on Vehicular Technology, vol. 64, no. 10, pp. 4911–4916, 2014, doi: 10.1109/TVT.2014.2373053.
[15] A. Memarinejad, M. Mohammadi, and M. B. Tavakoli, “Outage Performance Analysis of Multi-Antenna FullDuplex NOMA Cellular Systems,” Journal of Communication Engineering (JCE), vol. 12, no. 45, pp. 2–18, 2022 (in persian).
[16] T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design,” IEEE transactions on Communications, vol. 63, no. 9, pp. 3029–3056, 2015, doi: 10.1109/TCOMM.2015.2434384.
[17] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5g cellular communications: Theoretical feasibility and prototype results,” IEEE communications magazine, vol. 52, no. 2, pp. 106–113, 2014, doi: 10.1109/MCOM.2014.6736750.
[18] A. N. Uwaechia and N. M. Mahyuddin, “A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges,” IEEE Access, vol. 8, pp. 62 367–62 414, 2020, doi: 10.1109/ACCESS.2020.2984204.
[19] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave mimo systems,” IEEE Transactions on wireless communications, vol. 13, no. 3, pp. 1499–1513, 2014, doi: 10.1109/TWC.2014.011714.130846.
[20] W. Roh, J.-Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5g cellular communications: Theoretical feasibility and prototype results,” IEEE communications magazine, vol. 52, no. 2, pp. 106–113,2014, doi: 10.1109/MCOM.2014.6736750.
[21] Y. Niu, C. Gao, Y. Li, L. Su, D. Jin, and A. V. Vasilakos, “Exploiting device-to-device communications in joint scheduling of access and backhaul for mmwave small cells,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 10, pp. 2052–2069, 2015, doi: 10.1109/JSAC.2015.2435273.
[22] J. Qiao, X. S. Shen, J. W. Mark, Q. Shen, Y. He, and L. Lei, “Enabling device-to-device communications in millimeter-wave 5g cellular networks,” IEEE Communications Magazine, vol. 53, no. 1, pp. 209– 215, 2015, doi: 10.1109/MCOM.2015.7010536.
[23] S. Ali and A. Ahmad, “Resource allocation, interference management, and mode selection in device-to-device communication: a survey,” Transactions on Emerging Telecommunications Technologies, vol. 28, no. 7, p. e3148, 2017, doi: 10.1002/ett.3148.
[24] F. A. Orakzai, M. Iqbal, M. Naeem, and A. Ahmad, “Energy efficient joint radio resource management in d2d assisted cellular communication,” Telecommunication Systems, vol. 69, no. 4, pp. 505–517, 2018, doi:10.1007/s11235-018-0451-3.
[25] Z. Guizani and N. Hamdi, “mmwave e-band d2d communications for 5g-underlay networks: Effect of power allocation on d2d and cellular users throughputs,” in IEEE Symposium on Computers and Communication (ISCC), 2016, pp. 114–118, doi: 10.1109/ISCC.2016.7543724.
[26] K. Vanganuru, S. Ferrante, and G. Sternberg, “System capacity and coverage of a cellular network with d2d mobile relays,” in MILCOM IEEE Military Communications Conference, 2012, pp. 1–6, doi: 10.1109/MILCOM.2012.6415659.
[27] X. Lin and J. G. Andrews, “Connectivity of millimeter wave networks with multi-hop relaying,” IEEE Wireless Communications Letters, vol. 4, no. 2, pp. 209–212, 2015, doi: 10.1109/LWC.2015.2397884.
[28] N. Wei, X. Lin, and Z. Zhang, “Optimal relay probing in millimeterwave cellular systems with device-to-device relaying,” IEEE Transactions on Vehicular Technology, vol. 65, no. 12, pp. 10 218–10 222, 2016, doi: 10.1109/TVT.2016.2552239.
[29] S. Wu, R. Atat, N. Mastronarde, and L. Liu, “Coverage analysis of d2d relay-assisted millimeter-wave cellular networks,” in IEEE wireless communications and networking conference (WCNC), 2017, pp. 1–6, doi: 10.1109/WCNC.2017.7925803.
[30] B. Ma, H. Shah-Mansouri, and V. W. Wong, “Full-duplex relaying for d2d communication in millimeter wave-based 5g networks,” IEEE Transactions on Wireless Communications, vol. 17, no. 7, pp. 4417– 4431, 2018, doi: 10.1109/TWC.2018.2825318.
[31] A. Abdelreheem, A. S. Mubarak, O. A. Omer, H. Esmaiel, and U. S. Mohamed, “Improved d2d millimeter wave communications for 5g networks using deep learning,” in IEEE 2nd International Conference on Computer and Information Sciences (ICCIS), 2020, pp. 1–5, doi: 10.1109/ICCIS49240.2020.9257634.
[32] T. D. Hoang, L. B. Le, and T. Le-Ngoc, “Joint mode selection and resource allocation for relay-based d2d communications,” IEEE Communications Letters, vol. 21, no. 2, pp. 398–401, 2016, doi: 10.1109/LCOMM.2016.2617863.
[33] M. Liu, L. Zhang, and P. R. Gautam, “Joint relay selection and resource allocation for relay-assisted d2d underlay communications,” in IEEE 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), 2019, pp. 1–6, doi: 10.1109/WPMC48795.2019.9096172.
[34] D. Feng, L. Lu, Y. Yuan-Wu, G. Y. Li, G. Feng, and S. Li, “Device-todevice communications underlaying cellular networks,” IEEE Transactions on communications, vol. 61, no. 8, pp. 3541–3551, 2013, 10.1109/TCOMM.2013.071013.120787.
[35] C. Motz, T. Paireder, H. Pretl, and M. Huemer, “A survey on selfinterference cancellation in mobile lte-a/5g fdd transceivers,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 3, pp. 823–829, 2021, doi: 10.1109/TCSII.2021.3051101.
[36] C. D. Nwankwo, L. Zhang, A. Quddus, M. A. Imran, and R. Tafazolli, “A survey of self-interference management techniques for single frequency full duplex systems,” IEEE Access, vol. 6, pp. 30 242–30 268, 2017, doi: 10.1109/ACCESS.2017.2774143.
[37] T. Bai and R. W. Heath, “Coverage and rate analysis for millimeter-wave cellular networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 2, pp. 1100–1114, 2014, doi: 10.1109/TWC.2014.2364267.
[38] T. Bai, R. Vaze, and R. W. Heath, “Analysis of blockage effects on urban cellular networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 9, pp. 5070–5083, 2014, doi: 10.1109/TWC.2014.2331971.
[39] G. R. MacCartney, J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5g millimeter wave propagation channels in urban microcells,” in IEEE global communications conference (GLOBECOM)., 2013, pp. 3948–3953, doi: 10.1109/GLOCOM.2013.6831690.
[40] T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback selfinterference in full-duplex mimo relays,” IEEE transactions on signal processing, vol. 59, no. 12, pp. 5983–5993, 2011, doi: 0.1109/TSP.2011.2164910.
[41] W. Dinkelbach, “On nonlinear fractional programming,” Management science, vol. 13, no. 7, pp. 492–498, 1967.
[42] K. Shen and W. Yu, “Fractional programming for communication systems—part i: Power control and beamforming,” IEEE Transactions on Signal Processing, vol. 66, no. 10, pp. 2616–2630, 2018, doi: 10.1109/TSP.2018.2812733.