طراحی تقویت کننده یک طبقه توان بالا و فرکانس بالا در کلاس F با دو ترانزیستور موازیGaN برای کاربردهای 2.5GHz
محورهای موضوعی : مهندسی الکترونیکباقر ذبیحی 1 * , پیمان علیپرست 2 , ناصر نصیرزاده 3
1 - موسسه آموزش عالی سراج، تبریز، ایران
2 - پژوهشگاه هوافضا، تهران، ایران
3 - موسسه آموزش عالی سراج، تبریز، ایران
کلید واژه: تقویتکننده توان بالا فرکانس بالا, مدارهای مجتمع مایکروویو یکپارچه, پروسه گالیم نیتراید,
چکیده مقاله :
در این مقاله یک تقویتکننده توان فرکانس بالا در کلاس F مبتنی بر تکنولوژی مدار مجتمع مایکروویو یکپارچه(MMIC)طراحی شده است. برای این طرح از پروسه گالیم نیترات با قابلیت تحرک الکترون بالا با فناوری طول گیت 150 نانومتر استفاده شده است. فرکانس مرکزی تقویتکننده 2/5 گیگا هرتز است. بیشترین گین توان تقویتکننده مورد نظر تقریبا برابر با dB12/76 است و در یک طبقه طراحی شده است. در فرکانس مورد نظر بیشترین توان خروجی تقویت کننده توان حدود dBm39/196 در توان ورودی dBm30 است. در بیشترین توان خروجی ، PAE حدود 41/25% است که بیشترین مقدار خود را دارد. مساحت نهایی مدار برای جاسازی بر روی تراشه 25/903 میلیمتر در19/346 میلیمتر است. بیشترین مقدارAM/PM و AM/AM به ترتیب برابر dB/deg2/38 و dB/dB1/66 است. برای تقویتکننده اعوجاج تداخلی هارمونیک سوم (IMD3) حدود dBc-20 در فرکانس مرکزی است. برای طراحی این تقویتکننده از تحلیل Loadpull نرم افزار ADS برای بدست آوردن توان خروجی مناسب استفاده شده است.
In this article, high frequency power amplifier is designed based on monolithic microwave integrated circuit (MMIC) technology. For this design the process of GaN transistors with high electron mobility has been used and its length gate technology is 150nm central frequency of the amplifier is 2.5GHz. the maximum gain of the amplifier is approximately equal to 12.76dB and is designed in one stage. At this frequency, the maximum output power of the amplifier is about 39.196 dBm in 30dBm input. In the maximum output power, PAE is about 41.25% that this is maximum amount of PAE .The final area of the circuit for embedding on the chip is 25.903mm by 19.346mm.the maximum values of AM/PM and AM/AM are 2.38deg/db and 1.66dB/dB respectively. For the 3-rd intermodulation distortion (IMD3) is about -20 dBc at the center of frequency. To design this amplifier, Loadpull analysis of ADS software was used to obtain the appropriate output power.
[1] D. Kalim, A. Fatemi and R. Negra, "Dual-band 1.7 GHz / 2.5 GHz class-E power amplifier in 130 nm CMOS technology," 10th IEEE International NEWCAS Conference, 2012, pp. 473-476, doi: 10.1109/NEWCAS.2012.6329059.
[2] M. Chen, C. Shih, W. Chang and C. Lien, "A 2.5GHz CMOS power amplifier for WiMAX application," The 2010 International Conference on Green Circuits and Systems, 2010, pp. 691-694, doi: 10.1109/ICGCS.2010.5542974.
[3] Y. S. Noh and I. B. Yom, "Highly Integrated C-Band GaN High Power Amplifier MMIC for Phased Array Applications," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 6, pp. 406-408, June 2015, doi: 10.1109/LMWC.2015.2421316.
[4] A. Rezaee, "Design of C-Band Solid State Power Amplifier in Satellite Communication Subsystem(SSPA)," Journal of Information and Communication Technology in Policing," vol. 2,no.6, pp. 67-79,2021,doi: 10.22034/PITC.2021.209190.1070(in persian).
[5] N. Deltimple, M. L. Carneiro, E. Kerhervé, P. H. P. Carvalho and D. Belot, "Integrated Doherty RF CMOS Power Amplifier design for average efficiency enhancement," IEEE International Wireless Symposium (IWS 2015), 2015, pp. 1-4, doi: 10.1109/IEEE-IWS.2015.7164638.
[6] A. Jindal, U. Goyal, K. Rawat, A. Basu, M. Mishra and S. K. Koul, "1.5-2.5 GHz Measurement Based Power Amplifier Using SSPL GaN HEMT Device," IEEE MTT-S International Microwave and RF Conference (IMARC), 2019, pp. 1-4, doi: 10.1109/IMaRC45935.2019.9118682.
[7] P. Aflaki, R. Negra and F. M. Ghannouchi, "Design and implementation of an inverse class-F power amplifier with 79 % efficiency by using a switch-based active device model," IEEE Radio and Wireless Symposium, 2008, pp. 423-426, doi: 10.1109/RWS.2008.4463519.
[8] A. Sheikhi and A. Sajadi, " Design, Simulation and Fabrication of Broadband Class-E Power Amplifier Using Double-Reactance Compensation Technique and Second and Third Harmonic Control Circuits," Journal of Iranian Association of Electrical and Electronics Engineers, vol. 18,no.4, pp. 9-17, 2021, doi:10.52547/jiaeee.18.4.9 (in persian).
[9] D. Kang, J. Choi, D. Kim, D. Yu, K. Min and B. Kim, "30.3% PAE HBT Doherty power amplifier for 2.5∼2.7 GHz mobile WiMAX," 2010 IEEE MTT-S International Microwave Symposium, 2010, pp. 796-799, doi: 10.1109/MWSYM.2010.5517709.
[10] Paolo Colantonio, Franco Giannini, and Ernesto Limiti., High Efficiency RF and Microwave Solid state power amplifier., 2009 John Wiley & Sons Ltd
[11] Y. Y. Woo, Y. Yang and B. Kim, "Analysis and experiments for high-efficiency class-F and inverse class-F power amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 5, pp. 1969-1974, May 2006, doi: 10.1109/TMTT.2006.872805.
[12] B. Razavi ” RF microelectronics”2nd-ed, Prentice Hall, ISBN: 978-013-713473-1, 2011.
[13] P. Aliparast, S. Aliparast, “design of soild state high power amplifier for leo satellite communication system.” In sustainable Aviation, pp.95-103. Spring, charm,2016.
[14] H. Li, D. Zhu and D. Liu, "Simulation and design of Ku band power amplifier based on GaN HEMT," 2014 IEEE International Conference on Communiction Problem-solving, 2014, pp. 202-204, doi: 10.1109/ICCPS.2014.7062253.
[15] O. Jardel et al., "A 30W, 46% PAE S-band GaN HEMT MMIC power amplifier for Radar applications," European Microwave Integrated Circuit Conference, 2012, pp. 639-642doi: 10.23919/EuMC.2012.6459166.
[16] J. Kühn. “AlGaN/GaN-HEMT power amplifiers with optimized power-added efficiency for X-band applications,” Vol .62. kit Scintific publishing,2011.
[17] F. Raab, "Idealized operation of the class E tuned power amplifier," in IEEE Transactions on Circuits and Systems, vol. 24, no. 12, pp. 725-735, December 1977, doi: 10.1109/TCS.1977.1084296.
[18] Yong-Sub Lee, Kye-Ik Jeon and Yoon-Ha Jeong, "A 2.14 GHz class-E LDMOS power amplifier," Asia-Pacific Microwave Conference, 2006, pp. 1015-1018, doi: 10.1109/APMC.2006.4429582.
[19] A. H. Jarndal,“Large Signal Modeling of GaN Device for High Power Amplifier Design,”Kassel university press GmbH, 2006.
[20] F. Giannini, and E. Limiti,“High Efficiency RF and Microwave Solid State Power Amplifiers,” Wily, ISBN: 978-0-470-51300-2, 2009.
[21] Gonzalez, Gullermo. “Microwave Transistor Amplifiers Analysis and Design’’ 2nded, Prentice Hall, ISBN: 0-13-254335-4, 1996.
[22] D. Barataud et al., "Measurement and control of current/voltage waveforms of microwave transistors using a harmonic load-pull system for the optimum design of high efficiency power amplifiers," in IEEE Transactions on Instrumentation and Measurement, vol. 48, no. 4, pp. 835-842, Aug. 1999, doi: 10.1109/19.779185.
[23] D..M. Pozar” Microwave Engineering” , 4nd-ed , Willy, ISBN: 978-0-470-63155-3, 2011.
[24] M. Albulet” RF Power Amplifiers” NOBLE, ISBN: 1-884932-12-6, 2001.
[25] Kühn, Jutta. AlGaN/GaN-HEMT power amplifiers with optimized power-added efficiency for X-band applications. Vol .62. kit Scintific publishing,2011
[26] A. Abdelbar, A. M. El-Tager and H. S. El-Hennawy, "Radio frequency power amplifier for green communications based on 10W GaN HEMT," 35th National Radio Science Conference (NRSC), 2018, pp. 352-360, doi: 10.1109/NRSC.2018.8354395.
[27] R. Raja, R. Theegala and B. Venkataramani, “A class-E power amplifier with high efficiency and high power-gain for wireless sensor network.” Microsyst Technol , vol.23, pp.4179–4193, 2017, doi:10.1007/s00542-016-3022-0.
[28] N. Khalid, T. Abbas and M. Bin Ihsan, "Power amplifier design using GaN HEMT in class-AB mode for LTE communication band," International Wireless Communications and Mobile Computing Conference (IWCMC), 2015, pp. 685-689, doi: 10.1109/IWCMC.2015.7289166.
[29] S. Bensmida, O. Hammi and F. M. Ghannouchi, "High efficiency digitally linearized GaN based power amplifier for 3G applications," IEEE Radio and Wireless Symposium, 2008, pp. 419-422, doi: 10.1109/RWS.2008.4463518.
_||_[1] D. Kalim, A. Fatemi and R. Negra, "Dual-band 1.7 GHz / 2.5 GHz class-E power amplifier in 130 nm CMOS technology," 10th IEEE International NEWCAS Conference, 2012, pp. 473-476, doi: 10.1109/NEWCAS.2012.6329059.
[2] M. Chen, C. Shih, W. Chang and C. Lien, "A 2.5GHz CMOS power amplifier for WiMAX application," The 2010 International Conference on Green Circuits and Systems, 2010, pp. 691-694, doi: 10.1109/ICGCS.2010.5542974.
[3] Y. S. Noh and I. B. Yom, "Highly Integrated C-Band GaN High Power Amplifier MMIC for Phased Array Applications," in IEEE Microwave and Wireless Components Letters, vol. 25, no. 6, pp. 406-408, June 2015, doi: 10.1109/LMWC.2015.2421316.
[4] A. Rezaee, "Design of C-Band Solid State Power Amplifier in Satellite Communication Subsystem(SSPA)," Journal of Information and Communication Technology in Policing," vol. 2,no.6, pp. 67-79,2021,doi: 10.22034/PITC.2021.209190.1070(in persian).
[5] N. Deltimple, M. L. Carneiro, E. Kerhervé, P. H. P. Carvalho and D. Belot, "Integrated Doherty RF CMOS Power Amplifier design for average efficiency enhancement," IEEE International Wireless Symposium (IWS 2015), 2015, pp. 1-4, doi: 10.1109/IEEE-IWS.2015.7164638.
[6] A. Jindal, U. Goyal, K. Rawat, A. Basu, M. Mishra and S. K. Koul, "1.5-2.5 GHz Measurement Based Power Amplifier Using SSPL GaN HEMT Device," IEEE MTT-S International Microwave and RF Conference (IMARC), 2019, pp. 1-4, doi: 10.1109/IMaRC45935.2019.9118682.
[7] P. Aflaki, R. Negra and F. M. Ghannouchi, "Design and implementation of an inverse class-F power amplifier with 79 % efficiency by using a switch-based active device model," IEEE Radio and Wireless Symposium, 2008, pp. 423-426, doi: 10.1109/RWS.2008.4463519.
[8] A. Sheikhi and A. Sajadi, " Design, Simulation and Fabrication of Broadband Class-E Power Amplifier Using Double-Reactance Compensation Technique and Second and Third Harmonic Control Circuits," Journal of Iranian Association of Electrical and Electronics Engineers, vol. 18,no.4, pp. 9-17, 2021, doi:10.52547/jiaeee.18.4.9 (in persian).
[9] D. Kang, J. Choi, D. Kim, D. Yu, K. Min and B. Kim, "30.3% PAE HBT Doherty power amplifier for 2.5∼2.7 GHz mobile WiMAX," 2010 IEEE MTT-S International Microwave Symposium, 2010, pp. 796-799, doi: 10.1109/MWSYM.2010.5517709.
[10] Paolo Colantonio, Franco Giannini, and Ernesto Limiti., High Efficiency RF and Microwave Solid state power amplifier., 2009 John Wiley & Sons Ltd
[11] Y. Y. Woo, Y. Yang and B. Kim, "Analysis and experiments for high-efficiency class-F and inverse class-F power amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 5, pp. 1969-1974, May 2006, doi: 10.1109/TMTT.2006.872805.
[12] B. Razavi ” RF microelectronics”2nd-ed, Prentice Hall, ISBN: 978-013-713473-1, 2011.
[13] P. Aliparast, S. Aliparast, “design of soild state high power amplifier for leo satellite communication system.” In sustainable Aviation, pp.95-103. Spring, charm,2016.
[14] H. Li, D. Zhu and D. Liu, "Simulation and design of Ku band power amplifier based on GaN HEMT," 2014 IEEE International Conference on Communiction Problem-solving, 2014, pp. 202-204, doi: 10.1109/ICCPS.2014.7062253.
[15] O. Jardel et al., "A 30W, 46% PAE S-band GaN HEMT MMIC power amplifier for Radar applications," European Microwave Integrated Circuit Conference, 2012, pp. 639-642doi: 10.23919/EuMC.2012.6459166.
[16] J. Kühn. “AlGaN/GaN-HEMT power amplifiers with optimized power-added efficiency for X-band applications,” Vol .62. kit Scintific publishing,2011.
[17] F. Raab, "Idealized operation of the class E tuned power amplifier," in IEEE Transactions on Circuits and Systems, vol. 24, no. 12, pp. 725-735, December 1977, doi: 10.1109/TCS.1977.1084296.
[18] Yong-Sub Lee, Kye-Ik Jeon and Yoon-Ha Jeong, "A 2.14 GHz class-E LDMOS power amplifier," Asia-Pacific Microwave Conference, 2006, pp. 1015-1018, doi: 10.1109/APMC.2006.4429582.
[19] A. H. Jarndal,“Large Signal Modeling of GaN Device for High Power Amplifier Design,”Kassel university press GmbH, 2006.
[20] F. Giannini, and E. Limiti,“High Efficiency RF and Microwave Solid State Power Amplifiers,” Wily, ISBN: 978-0-470-51300-2, 2009.
[21] Gonzalez, Gullermo. “Microwave Transistor Amplifiers Analysis and Design’’ 2nded, Prentice Hall, ISBN: 0-13-254335-4, 1996.
[22] D. Barataud et al., "Measurement and control of current/voltage waveforms of microwave transistors using a harmonic load-pull system for the optimum design of high efficiency power amplifiers," in IEEE Transactions on Instrumentation and Measurement, vol. 48, no. 4, pp. 835-842, Aug. 1999, doi: 10.1109/19.779185.
[23] D..M. Pozar” Microwave Engineering” , 4nd-ed , Willy, ISBN: 978-0-470-63155-3, 2011.
[24] M. Albulet” RF Power Amplifiers” NOBLE, ISBN: 1-884932-12-6, 2001.
[25] Kühn, Jutta. AlGaN/GaN-HEMT power amplifiers with optimized power-added efficiency for X-band applications. Vol .62. kit Scintific publishing,2011
[26] A. Abdelbar, A. M. El-Tager and H. S. El-Hennawy, "Radio frequency power amplifier for green communications based on 10W GaN HEMT," 35th National Radio Science Conference (NRSC), 2018, pp. 352-360, doi: 10.1109/NRSC.2018.8354395.
[27] R. Raja, R. Theegala and B. Venkataramani, “A class-E power amplifier with high efficiency and high power-gain for wireless sensor network.” Microsyst Technol , vol.23, pp.4179–4193, 2017, doi:10.1007/s00542-016-3022-0.
[28] N. Khalid, T. Abbas and M. Bin Ihsan, "Power amplifier design using GaN HEMT in class-AB mode for LTE communication band," International Wireless Communications and Mobile Computing Conference (IWCMC), 2015, pp. 685-689, doi: 10.1109/IWCMC.2015.7289166.
[29] S. Bensmida, O. Hammi and F. M. Ghannouchi, "High efficiency digitally linearized GaN based power amplifier for 3G applications," IEEE Radio and Wireless Symposium, 2008, pp. 419-422, doi: 10.1109/RWS.2008.4463518.