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Abstract: Phishing attacks represent a significant cybersecurity threat, targeting internet users to steal confidential
information. This research presents a hybrid deep learning model that employs data preprocessing, data balancing via
SMOTE, and dimensionality reduction via PCA. The primary innovation of this model lies in its integrated approach,
combining advanced techniques for data balancing, dimensionality reduction, and feature selection. This integration
successfully addresses common challenges associated with imbalanced datasets and enhances overall model accuracy. he
utilized dataset comprises key website features. Following data preprocessing, feature selection, and dimensionality
reduction, several models—including Decision Tree, k-Nearest Neighbors, and Random Forest—were implemented. To
mitigate class imbalance, techniques such as the Synthetic Minority Over-sampling Technique (SMOTE), Adaptive
Synthetic Sampling (ADASYN), and Random Over-sampling were applied. Furthermore, feature selection methods
based on Information Gain and dimensionality reduction were used to optimize model efficiency. Experimental results
demonstrate that the proposed hybrid models achieve high accuracy in detecting phishing websites. Notably, the proposed
Recurrent Neural Network (RNN) model attained 99% accuracy in identifying phishing websites using cross-validation,
outperforming traditional methods.
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Extended Abstract

1- Introduction

Due to the rapid growth of the internet and online
transactions, phishing attacks have become a significant
cybersecurity threat. These attacks deceive users into
revealing sensitive information by impersonating
legitimate websites. Traditional methods like blacklists
and manual rules have become ineffective against the
increasing sophistication and volume of these attacks.
Therefore, there is a pressing need for intelligent,
automated models that can accurately identify phishing
websites. This research addresses this challenge by
proposing a hybrid framework that combines machine
learning, deep learning, and ensemble learning to detect
phishing websites more effectively. The framework
tackles key challenges such as imbalanced datasets and the
high dimensionality of website features, which are
common in this field.

This study introduces several innovations to enhance
phishing detection. First, it addresses the data imbalance
problem by employing oversampling techniques like
SMOTE and ADASYN, combined with Principal
Component Analysis (PCA) for dimensionality reduction.
This approach improves classification model performance
while reducing computational complexity. Second, the
research optimizes a Recurrent Neural Network (RNN)
model, which achieves a remarkable accuracy of 99%—
outperforming other models such as Decision Trees, SVM,
and Random Forests. The combination of these advanced
data preprocessing and modeling techniques provides a
robust and efficient solution for accurately identifying and
mitigating phishing threats in an evolving online
landscape.

2- Methodology

The proposed phishing detection method employs a nine-
step process to enhance model accuracy and
interpretability. Initially, the system preprocesses the
Phishing Website Dataset, which includes numerical and
binary features, by cleaning and scaling the data and
removing irrelevant features through correlation analysis.
To address the class imbalance—where legitimate
websites far outnumber phishing ones—the dataset is
balanced using three techniques: SMOTE, ADASYN, and
RandomOverSampler. The paper reports a significant
improvement in class distribution, with
RandomOverSampler achieving a perfect balance. Feature
selection is then performed using Information Gain, Gain
Ratio, and Principal Component Analysis (PCA) to
identify the most critical features. The data is then split
into training and test sets, with an 80/20 ratio, using
stratified sampling to maintain class proportions. This
comprehensive data preparation ensures a robust
foundation for the subsequent modeling phases.

The core of the research involves implementing and
comparing various machine learning and deep learning

models. Specifically, the study uses Ensemble Learning
and Machine Learning models like Support Vector
Machine, Decision Tree, Random Forest, and XGBoost,
alongside Deep Learning models such as LSTM, GRU,
and RNN. These models are meticulously optimized, with
the RNN model specifically fine-tuned by increasing
neurons and reducing the learning rate to achieve a high
accuracy of 99%. The performance of all models is
evaluated using 10-Fold Cross-Validation to prevent
overfitting and ensure reliable, generalizable results.
Finally, the SHAP method is applied to interpret the deep
learning models, moving beyond the "black box" nature of
these complex algorithms. By calculating the contribution
of each feature to the model's predictions, SHAP helps
identify which attributes, such as SSLfinal State or
URL of Anchor, are most influential in classifying a
website as phishing. This interpretability adds
transparency and trust, which is crucial in cybersecurity.

3- Results and discussion

The analysis compares the performance of several
machine learning, ensemble learning, and deep learning
models for phishing detection. The “Recurrent Neural
Network (RNN)” emerged as the top performer, achieving
an impressive accuracy of 99.01%, with XGBoost and
Random Forest also showing strong results. In contrast,
models like Decision Tree and AdaBoost had weaker
performance. To ensure the reliability of these findings, a
“10-fold cross-validation” was conducted, which
confirmed the RNN's stability with an average accuracy of
“98.74% + 0.32%”, and its superior performance over
LSTM and GRU models. The results highlight that the
deep learning approach, particularly the RNN, is highly
effective for this task, outperforming traditional machine
learning methods in both accuracy and stability.

The “SHAP” analysis revealed that features such as
having IP_Address, Shortining_Service, and
URL Length were the strongest indicators for classifying
a website as phishing. Conversely, features like a valid
SSLfinal State and Domain registeration_length were
the most influential in classifying a website as legitimate.
This interpretability provides valuable insights into how
the model works, thereby increasing trust in its
predictions.

4- Conclusion

This study proposes a hybrid approach to detect phishing
attacks.The methodology included crucial preprocessing
steps such as SMOTE and ADASYN for data balancing,
and Information Gain and PCA for feature selection. The
analysis of various models, including SVM, Random
Forest, LSTM, and RNN, revealed that the RNN model
achieved the highest accuracy at 99%, outperforming all
other models. The research confirmed that deep learning
models are more effective for this task, though they face
challenges like high computational costs and reduced
interpretability compared to traditional machine learning
methods.
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