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Abstract 

This research proposes an advanced multimodal framework for emotion recognition by synergistically 
integrating facial video analysis with imaging photoplethysmography (iPPG) signals. Utilizing the DEAP 
dataset, which provides synchronized facial video and physiological recordings, the study extracts facial 
features via wavelet transform and fractal dimension analysis, complemented by time-frequency domain features 
derived from iPPG signals. To enhance classification performance and computational efficiency, a deep Long 
Short-Term Memory (LSTM) network optimized through the Moore-Penrose pseudoinverse matrix (MPM-
LSTM) is employed. Experimental evaluations demonstrate that the proposed approach achieves an overall 
accuracy of 87.6% across nine discrete emotional states, outperforming unimodal models and underscoring the 
potential of integrating facial and physiological modalities for robust affective computing applications. 
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1.Introduction 

Emotion recognition plays a vital role in 
improving human-computer interaction 
(HCI), contributing to applications such as 
touch-based robot communication [1], 
assistive interfaces for autism [2], emotion-
sensitive social media platforms [3], 
intelligent gaming environments [4], 
biometric security systems [5], wearable 
technology [6], and socially interactive 
robots [7]. As a critical aspect of cognitive 
and behavioral functioning, emotions 
influence perception, decision-making, 
learning, and communication [8], 
especially among individuals with 

neurodevelopmental conditions like autism 
spectrum disorder (ASD) [9]. 

Multiple physiological and behavioral 
modalities have been employed to detect 
emotions, including facial expressions 
[10], speech signals [11], 
electroencephalography (EEG) [12], 
electrocardiography (ECG) [13], and 
functional magnetic resonance imaging 
(fMRI) [14]. Among these, facial 
expression analysis is one of the most 
widely used non-invasive techniques [15]. 
However, while facial expressions reflect 
affective states, they may not fully capture 
the internal physiological processes 
influenced by the autonomic nervous 
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system (ANS), which often require 
additional physiological markers [16]. 

Imaging photoplethysmography (IPPG), 
a contactless and low-cost optical 
technique, has recently garnered attention 
for its potential in emotion recognition. By 
analyzing subtle changes in skin color 
caused by blood volume pulsations, IPPG 
enables estimation of physiological signals 
such as heart rate, blood pressure, and 
oxygen saturation [17], [18]. These 
parameters are modulated by ANS 
responses and can serve as reliable 
indicators of emotional changes [19], [20]. 

Nonetheless, IPPG is subject to 
limitations such as sensitivity to ambient 
lighting, skin pigmentation, and motion 
artifacts [21], [22]. To enhance 
performance and reliability, recent 
approaches focus on multimodal fusion—
integrating facial expression features with 
IPPG signals—to capture both behavioral 
and physiological components of emotion 
[23]. This strategy leverages the strengths 
of each modality, allowing one to 
compensate for the shortcomings of the 
other [24]. 

In multimodal systems, facial features 
can be extracted using classical approaches 
such as Histogram of Oriented Gradients 
(HOG) or more advanced deep learning 
models like Convolutional Neural 
Networks (CNNs) [25]. These methods 
enable robust detection of subtle facial 
movements and muscle activations 
associated with various emotional states. 
Meanwhile, IPPG signals can be analyzed 
using time-domain, frequency-domain, and 
non-linear methods, such as Fourier 
transforms, Wavelet transforms, entropy 
measures, and fractal modeling, to extract 

emotion-related signal characteristics [17], 
[19], [20]. 

Despite growing interest, existing studies 
often rely on handcrafted features or 
conventional classifiers with limited 
adaptability to real-world settings. 
Therefore, there remains a need for more 
intelligent, flexible systems that can model 
complex, nonlinear, and temporal 
dynamics inherent in emotional responses. 

In this paper, we introduce a multimodal 
emotion recognition framework that 
integrates facial expression features and 
IPPG signals extracted from video data. 
Our method utilizes wavelet transforms 
and fractal-based features for signal 
characterization, combined with a novel 
deep learning architecture: the MPM-
LSTM (Moore–Penrose-based Long Short-
Term Memory). This model is designed to 
enhance classification accuracy while 
reducing overfitting and computational 
load. 

The proposed system aims to provide an 
accurate, non-invasive, and practical 
solution for real-time emotion detection, 
with potential applications in mental health 
assessment, assistive technologies, and 
interactive systems. 

2.Materials and Methods 

2.1. Dataset Description 

This study utilizes the DEAP dataset 
(Database for Emotion Analysis using 
Physiological Signals), a publicly available 
multimodal database for emotion 
recognition research [26]. The dataset 
comprises video recordings of 32 
participants who were exposed to 40 one-
minute music video clips specifically 
designed to elicit a wide range of 
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emotional responses. The videos were 
captured using a frontal-facing camera in a 
controlled laboratory environment, 
recording participants’ facial expressions 
and upper body movements at a resolution 
of 720×576 pixels and a frame rate of 25 
Hz. These videos are stored in AVI format 
using the MJPEG codec. Alongside the 
video data, synchronized physiological 
signals such as EEG, galvanic skin 
response (GSR), respiration, and blood 
volume pulse (BVP) are also provided. 
This multimodal setup allows the 
extraction of behavioral cues from the 
video frames, such as facial expressions 
and head movements, which can then be 
correlated with physiological signals and 
self-reported emotional ratings (arousal, 
valence, dominance) to improve the 
accuracy of emotion recognition models. 
The initial step involves feeding the facial 
image data into the system, where a deep 
Long Short-Term Memory (LSTM) neural 
network is employed for temporal 
modeling. Feature extraction and face 
reconstruction are performed using two 
complementary methods: wavelet 
transform and fractal modeling. These 
methods aim to represent critical facial 
features — including the nose, lips, mouth, 
eyebrows, eyes, forehead, and chin — in a 
way that captures their spatial and textural 
information relevant to emotional 
expression [27, 28]. The wavelet transform 
identifies key regions and spatial features, 
while the fractal model leverages operators 
such as self-similarity, stationarity, and 
non-integer dimensionality to reduce 
feature dimensionality and highlight the 
most informative components for emotion 
classification. 

2.2. Feature Extraction and Selection 

The image segmentation process is 
grounded in the fractal modal, which 
utilizes two principal properties: self-
similarity and stationarity, complemented 
by the operator of fractional (non-integer) 
dimension. Concurrently, wavelet 
transforms are applied to reconstruct the 
facial images at an initial stage. The 
acquired data is processed and analyzed in 
MATLAB, where the signals undergo 
normalization and curve fitting. 
The first step in feature extraction involves 
calculating the mean image, ψ, as shown in 
Equation (1): 

𝜓 =
1

𝑀
෍ 𝛤௜

ெ

௜ୀଵ

 (1) 
 

Here, M represents the total number of 
images, and Γi denotes the flattened N×N 
pixel vector of each image. These 
eigenfaces define a lower-dimensional face 
space into which images are projected to 
reduce redundancy while preserving 
critical facial information for emotion 
recognition. Subsequently, difference 
matrices are computed by subtracting the 
mean face from each image (Equation (2)): 

𝜙௜ = Γ௜ − Ψ                     
𝑖 = 1,2, … ,𝑀 

(2) 

The covariance matrix C is then 
calculated as in Equation (3): 

C = A^T A  (3) 

Where matrix A is constructed from the 
difference vectors ϕi. Projecting images 
into this eigenspace facilitates 
dimensionality reduction prior to 
classification.  Classification is conducted 
by measuring Euclidean distances between 
eigenface weights, serving as inputs to a 
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deep LSTM network that performs 
temporal fusion with 
photoplethysmography (PPG) features 
extracted from facial image pixel 
intensities. 

A unique aspect of this approach is the 
use of the Moore-Penrose pseudo-inverse 
matrix within the LSTM network, referred 
to as MPM-LSTM, which offers 
computational efficiency and avoids 
iterative weight update operations typical 
of conventional deep learning models. This 
allows the model to achieve high accuracy 
and fast training times. MPM-LSTM also 
enables robust face recognition from 
incomplete or fragmented images, as the 
fractal-based feature extraction highlights 
essential attributes like brightness and edge 
information while reducing noise [29]. 
The network architecture consists of the 
following layers: 
- Input layer: accepts combined facial and 
physiological features. 

- Hidden layers: include two convolutional 
layers with 3×3×3 filters for spatial-
temporal feature extraction, followed by a 
random pooling layer to reduce data 
dimensionality and computational load. 
Nonlinear activation functions such as 
sigmoid and sinusoidal functions alternate 
to enhance network flexibility and learning 
capability. 
- Output layer: utilizes Moore-Penrose 
pseudo-inverse matrix for regularization to 
reduce overfitting and optimize 
classification accuracy. 

Finally, emotional states are inferred 
from the fused facial and physiological 
data using the LSTM network, which is 
trained and tested using a 70:30 split of the 
dataset. The training process runs for 1000 
epochs with a learning rate of 0.001, 
employing convolutional filters of size 
3×3×3 and uniform layer weights. 

 

 
Fig. 1. Training and validation accuracy over epochs 
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3. Results 

This section presents the outcomes of the 
proposed multimodal emotion recognition 
framework, which integrates facial video 
features and imaging 
photoplethysmography (IPPG) signals 
from the DEAP dataset. The deep MPM-
LSTM model was evaluated using 
extracted features such as fractal 
dimension, wavelet coefficients, and 
Poincare maps. 

3.1. Classification Performance 

The model was trained and validated 
using a 70/30 train-test split. Over 1000 

epochs, training accuracy increased 
steadily while validation error decreased, 
indicating strong convergence behavior. 
Fig.1 shows the training vs. validation 
accuracy curve. 

 
The model achieved an overall 

classification accuracy of 87.6%, 
outperforming unimodal approaches and 
several existing multimodal frameworks 
(see Table 1). The confusion matrix (Fig.2) 
illustrates the model’s performance across 
nine emotion classes. 

 

Fig. 2. Confusion matrix for nine emotion classes 
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3.2. Comparative Analysis 

Table 1 summarizes the comparative 
performance of the proposed method 
against related works. Our approach 
maintains high accuracy while being 
computationally efficient due to the use of 
MPM-LSTM and fractal feature reduction. 

3.3. Emotion Distribution Analysis 

To analyze prediction performance across 
different emotions, we mapped the 

classified emotions to valence-arousal 
space. The distribution of correctly 
classified samples across nine emotional 
states is presented in Fig.3. Emotions like 
"happy" and "neutral" showed the highest 
precision, while "annoyed" and "disgusted" 
had more frequent misclassifications, 
likely due to facial similarity and motion 
artifacts. 

 

 
Fig. 3. Distribution of emotion prediction accuracy across categories 

 
3.4. Regression and Feature Correlation 

The regression analysis between 
predicted emotional states and ground truth 
valence/arousal scores showed an R² of 
0.82, indicating a strong correlation. Fig.4 

shows the regression plot with a near-
linear trend, and Fig.5 displays the power 
spectral density used to derive heart rate 
variability features from the IPPG signal. 
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Fig. 4. Regression between predicted and actual emotional scores 

 

 
Fig. 5. Power Spectral Density of the heart rate signal (IPPG) 
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Table 1. Comparison of classification accuracy with previous studies 

Study Dataset Modalities Classifier Accuracy 
(%) 

Notes 

This Study DEAP Facial + IPPG MPM-LSTM 87.6 High accuracy, non-
invasive, fast 

Kumar & Li 
(2023) [30] 

DEAP Facial + rPPG Custom model 84.2 Good fusion, manual 
feature selection 

Ali & Hughes 
(2023) [31] 

DEAP Facial + 
ECG/PPG 

Transformer 89.4 High cost, 
computationally intensive 

Kwon et al. 
(2021) [32] 

Custom PPG (wearable) 
+ EDA 

Hybrid 91.1 Device-dependent, less 
scalable 

Yu et al. (2019) 
[33] 

UBFC Facial video 
(rPPG) 

Deep Network 82.3 No emotion labeling 

 

4. Conclusion 

This study proposed a novel and efficient 
multimodal emotion recognition 
framework by integrating facial expression 
analysis and imaging 
photoplethysmography (IPPG) signals 
using the DEAP dataset. By leveraging 
advanced feature extraction techniques—
including fractal dimension modeling, 
wavelet transform analysis, and Poincare 
map dynamics—and combining them with 
a robust classification mechanism based on 
a Moore-Penrose pseudo-inverse LSTM 
(MPM-LSTM), the system achieved a 
classification accuracy of 87.6%, 
exceeding the performance of most 
unimodal systems and comparable 
multimodal baselines. 

Unlike prior studies relying on wearable 
sensors or resource-intensive deep 
Transformer architectures, the presented 
method offers a computationally 
lightweight and fully non-contact solution, 
making it suitable for real-time and 

scalable emotion monitoring in human-
computer interaction, mental health 
diagnostics, and affective computing 
applications. Furthermore, the band-pass 
filtering (0.5–4 Hz) proved effective in 
mitigating motion artifacts within IPPG 
signals, although a marginal accuracy loss 
(~5%) due to dynamic noise remains an 
open challenge. 

The regression analysis also confirmed a 
strong correlation (R² = 0.82) between 
predicted and actual emotional scores in 
valence-arousal space, reinforcing the 
reliability of the system. The confusion 
matrix and class-wise accuracy distribution 
showed the system’s ability to distinguish 
subtle emotional differences, although 
emotions such as “annoyed” and 
“disgusted” demonstrated higher 
misclassification rates—likely due to facial 
expression similarity and dataset 
imbalance. 

In conclusion, this research demonstrates 
that a fractal-enhanced multimodal 
approach supported by MPM-LSTM can 
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significantly enhance emotion recognition 
systems' performance while maintaining 
efficiency and non-invasiveness. Future 
work will focus on: 
 Further reducing model complexity for 

low-power edge deployment, 
 Expanding validation across 

uncontrolled, real-world environments, 
 Incorporating explainable AI (XAI) 

techniques for better interpretability, 
 Addressing cross-cultural variations in 

emotional expression, 
 Integrating temporal modeling for 

continuous emotion tracking. 
By advancing beyond traditional emotion 

classification pipelines, this framework 
lays the groundwork for a new generation 
of accessible, high-performance emotion 
recognition technologies in digital health, 
education, robotics, and smart 
environments. 
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