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ABSTRACT 
Synchronization of chaotic and Lu system has been done using the active sliding mode control strategy. 

Regarding the synchronization task as a control problem, fractional order mathematics is used to express the 

system and active sliding mode for synchronization. It has been shown that, not only the performance of the 

proposed method is satisfying with an acceptable level of control signal, but also a rather simple stability analysis 

is performed. The latter is usually a complicated task for nonlinear chaotic systems. 
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1. INTRODUCTION  

 

Chaos synchronization is an important topic in the 

nonlinear science. Generally speaking, the 

synchronization phenomenon has the following 

feature: the trajectories of two systems (master and 

slave systems) are identical notwithstanding 

starting from different initial conditions. However, 

slight errors of initial conditions, for chaos 

dynamical systems, will lead to completely 

different trajectories. Therefore, how to control 

two chaos systems to be synchronized has 

received a great deal of interest in the past 

decades. 

RACTIONAL calculus is a 300-year-old topic, but 

its applications to physics and engineering are just 

a recent focus of interest. Many systems are 

known to display fractional-order dynamics, such 

as viscoelastic systems [1], electrode-electrolyte 

polarization, and electromagnetic waves [2]. Most 

recently, many researchers begin to investigate the 

chaotic dynamics of fractional-order systems. In 

Ref.[3], it has been shown that Chua’s system of 

2.7 order can produce a chaotic attractor. Ref.[4] 

pointed out that chaos can exist in the 2.4 order 

Rossler system and hyper chaos can also exist in 

the fractional-order Rossler system with order as 

low as 3.8. Ref.[5] studied the chaotic behaviors of 

2.7-order unified chaotic system. Moreover, in the 

last decade it has been found that chaotic attractors 

indeed exist in fractional-order systems [6-10]. 

. The question of stability is very important 

especially in control theory. In the ¯eld of 

fractional order control systems, there are many 

challenging and unsolved problems related to 

stability theory such as robust stability, bounded 

input - bounded output stability, internal stability, 
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root-locus, robust controllability, robust 

observability, etc.  

Synchronization in chaotic dynamic systems 

has attracted increasing attention of scientists from 

various research fields for its advantages in 

practical application].A wide variety of methods 

have been proposed for synchronization of chaotic 

systems, including linear feedback control [11], 

sliding mode control [12],adaptive control [13] 

and so on. Most of the methods mentioned above 

are used to guarantee the asymptotic stability of 

chaotic systems. Among the fractional order 

controllers, the fractional order active sliding 

mode control h (FOASMC) has been dealt more 

than others. In this paper, we introduce a 

fractional-order systems chaotic     . To control 

and synchronization of chaotic fractional-order 

system a active sliding mode controller (ASMC) is 

proposed. This novel control law makes the 

system states asymptotically stable, simulation 

result show that the presented control method can 

easily eliminate chaos and stabilize the market. 

The rest of the paper is organized as follows. 

 

2. FRACTIONAL-ORDER DERIVATIVE 

AND ITS APPROXIMATION 

A. Definition 

The differ integral operator, represented by 

   
 

  is a combined differentiation-integration 

operator commonly used in fractional calculus 

and general calculus operator, including 

fractional-order and integer is defined as: 
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There are several definitions of fractional 

derivatives [14]. The best-known one is the 

Riemann-Liouvile definition, which is given by 
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Where n is an integer such that      

 , ( ) is the Gamma function. The geometric 

and physical interpretation of the fractional 

derivatives was given as follows 

 ( )

 ∫          
 

 

                                                 ( )        

The Laplace transform of the Riemann-

Liouville fractional derivative is 
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 ∑  ,
       ( )
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Where, L means Laplace transform, and s is a 

complex variable. Upon considering the initial 

conditions to zero, this formula reduces to 

 {
   ( )

   
}

    * ( )+                                                              ( )

 

The Caputo fractional derivative of order   of a 

continuous function         is defined as 

follows 
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Thus, the fractional integral operator of order   

can be represented by the transfer function 

 ( )  
 

  
 in the frequency domain. 

The standard definition of fractional-order 

calculus does not allow direct implementation 

of the fractional operators in time-domain 

simulations. An efficient method to circumvent 

this problem is to approximate fractional 

operators by using standard integer-order 

operators. In Ref.[15], an effective algorithm is 

developed to approximate fractional-order 

transfer functions, which has been adopted in 

[16] and has sufficient accuracy for time-

domain implementations. In Table 1 of Ref 

[17], approximations for    ⁄  with   from 0.1 

to 0.9 in step 0.1 were given with errors of 

approximately 2 dB. We will use the       ⁄  

approximation formula [16] in the following 

simulation examples. 

 

    

 
                        

                                
    ( )

 

In the simulation of this paper, we use 

approximation method to solve the fractional-

order differential equations. 

3. DESIGNING THE FRACTIONAL-

ORRDER ACTIVE SLIDING MODE 

CONTROL AND ANALYSIS 

 

To design the active sliding mode controller, 

we have procedure a combination of the active 

controller and the sliding mode controller. 

 

B. Active sliding mode controller design 

Let us, consider a chaotic fractional-order 

description of the system as follows 

   
 

          (  )       

                                   ( ) 

 

Where   ( )  (        )
  are real state 

vector,     
   denotes the linear part of the 

system dynamics and     
    is nonlinear part 

of the system. Eq.(1) denotes the master system. 

Let    (           )
   be the any initial 

conditions in the chaos attractor of fractional-

orders system (8). 

Now the controller  ( )     is added the 

slave system.  

Thus: 

   
 

          (  )   ( )       

                     ( ) 

 

That             imply the same roles as 

             for the master 

system.Synchronization of the systems means 

finding a control signal  ( )     that makes state 

of the slave system to evolves as the states of the 

master system. 

 

Now we define errors dynamics as follows 
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Thus: 
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That:                                   

Now we assump: 

 (     )    (  )    (  )   

(  
   )                                                                              (  ) 

The aim is to design the controller  ( )      

such that: 

 

   
   

  ( )  

                                                             (  ) 

Then use with the active control design 

procedure[19,20] 

U(t) change as following: 

 ( )

  ( )

  (     )                                                      (  ) 

     Eq.(14) describe the newly defined control 

input H(t). 

Where H(t) is: 

 

 ( )

   ( )                                                                          (  ) 

Where      is a constant gain vector and 

 ( )    is the control input that satisfies in: 

 ( )

  {
  ( )     ( )   
  ( )     ( )   

                                                 (  ) 

 Where    ( ) is a switching surface that 

describes the   desired dynamics. The resultant 

error is then written by: 

   
 

 

   

    ( )                                                            (  ) 

C. Constructing a sliding surface 

Constructing a sliding surface which represents 

a desired system dynamics and the sliding surface 

described as follows 

 

 ( )

                                                                                   (  ) 

 

Where       is a constant vector. An equivalent 

control is found when  ̇( )   which is 

anecessary condition for the state trajectory to 

stay on the switching surface  ( )   Hence, the 

controlled systemsatisfies the following 

conditions in the steady state: 

 

  ( )                 ̇( )

                                                 (  ) 

 

Based on equation (17) to (19), It could be 

deduced: 

 

 ̇( )  .     
 

(     ( )/

                                   (  ) 

 

Thus, 
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     A solution of  Eq.21. is: 

 

   ( )

  (  )     ( )                                                   (  ) 

 

D. Sliding mode control of fractional order 

system 

We consider the constant plus proportional rate 

reaching 

law will be considered [18]. Accordingly the 

reaching law is obtained as: 

 

   
 

 

        ( )

                                                (  ) 

 

That sgn(0) represents the sign function. The      

are gains that the sliding conditions Eq.(19) is 

satisfied. From Eqs. (17), (18) have: 

 

   
 

      
 

 

  ,  

   ( )-                         (  ) 

 

From Eqs. (23) and (24), find control effort can be 

defined as:  

 

 ( )   (  )  , (    ) 

     ( )-                (  ) 

E. Stability 

     First, we represent stability theorems from the 

fractional calculus. 

Theorem.1 (Matignon [19]). The following 

system: 

 

   
 

          ( )                               

 

Where                         is 

asymptotically stable iff  |   (   )  |      ⁄  

According to Theorem 1 , as long as all 

eigenvalues of ,   (  ) (    )-    (      

     )  satisfy the conditions  |    (  )|  

   ⁄   the system is asymptotically stable. 

 
 

Fig.1. Stability region of linear fractional-order 

system wih   

 

4. NUMERICAL SIMULATIONS 

F. Synchronization between two fractional-order 

chen systems 

The Lu system was introduced by Chen and 

Ueta in 1999 [20]. 

 

{

   
 

   (   )
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For this system matrix A is 
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]                                                           (  ) 

 

In this section, we consider using (ASMC) 

technique to obtain synchronization. This 

controller guarantees the synchronization two 

fractional orders Lu systems with The following 

initial conditions: 

 

(           )  (     ) 

      

(           )  (       )  

 

Consider two fractional order Lu systems as 

master and slave systems respectively: 

 

             {

   
   
     (     )

   
   
             

   
   
           

      (  ) 

 

            {

   
   
     (     )

   
   
             

   
   
           

      (  ) 

 

Parameters of the controller are chosen as 

  ,            - ,   ,      -   

   and       . This selection of parameters 

results in 

eigenvalues ,        -  

,                    -which 

located in a stable region(|   (  )|)  
  

 ⁄   Fig. 

shows the effectiveness of the proposed controller 

to synchronize two fractional-order modeled 

systems. It should be noted that control u(t) , has 

been activated at      The simulation results are 

shown in Fig.2. 

 

 

 

 
Fig.2.(a) 
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  Fig.2.(b) 

 

 
Fig.2.(c) 
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Fig.2.(d) 

 

Fig.1. Results of simulaton. 

 

 

5. CONCLUATION 

 

This paper we have studied numerical methods 

in fractional calculus. Then, we have represented 

the active sliding mode control to synchronize. 

The control parameters (         )  the master 

and slave systems are synchronized. Numerical 

simulations show the efficiency of the proposed 

controller to synchronize chaotic fractional-order. 
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