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Abstract  

Today, robots and unmanned aerial vehicles are being used extensively in modern societies. Due 
to a wide range of applications, it has attracted much attention among scientists over the past 
decades. This paper deals with the problem of the stability of a four-rotor flying robot called 
quadrotor, which is an under-actuated system, in the presence of operator or sensor failures. The 
dynamical model of quadrotor is expressed in terms of different physical phenomena by the 
Newton-Euler method. Subsequently, a back stepping control approach has been developed, 
considering actuator and sensor failures. The stability analysis based on the Lyapanov method 
shows that the designed control strategy maintains the stability of quadrotor closed loop dynamics 
even in the presence of failures. The simulations of the control system indicate that the proposed 
control strategy is capable of maintaining performance and maintains system stability in the event 
of a failure of the operator or sensor. 

Keywords: robot, quadrotor, under-actuated, back-stepping Controller, actuator and sensor failure. 

 
1. Introduction 

Today unmanned flying objects are utilized 
in spy aircrafts [1], search and rescue 
operations in dangerous and exotic areas [2], 
fire rescue operations [3], controlling power 
plants and nuclear reactors [4], mapping [5], 
border patrol functions [6], visiting oil and 
gas transportation lines [1], navy operations 
[7], and controlling urban traffic [1], due to 
the lack of use a human force as a pilot. 
Vertical flyers are more popular because of 
their floating capability in the air and also 
high maneuvering capabilities. Vertical 
flying vehicles are divided into some 
categories as: normal helicopters, coaxial 
helicopters, and different rotators with 

different structures. From among them, 
quadrotors or quadcopters are deemed highly 
important due to their simple structures and 
lack of need to complicated mechanical 
connection points and they can be forced to 
have any desired movement through 
changing propeller rotation.  

In 1907 Berguit Brother and Professor 
Charles Richet created a vertical flying 
aircraft of Gyroplane [8]. Ettine Oemichen 
was another engineer who thought of an 
aircraft with rotating wings in 1920 [2 PRD]. 
In year 1921, Dr. Georgede Bothezat and Ivan 
Jerome signed a contract to develop one of 
these aircrafts for aerial force of the United 
States [9]. Since the construction and 
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development of sensors and designing control 
systems were not possible in that era, it was 
practically impossible to design automated 
aircraft.  

Unmanned aircrafts are favored more 
because of their simpler structures, 
reasonable costs, doing more specialized 
operations, lower noises, and lack of being 
recognized by radars in spy operations. But 
the most important advantage of such 
aircrafts is that they can carry out difficult and 
dangerous operations without endangering 
the life of a human being as a pilot. The major 
advantage of using quadrotors compared to 
other aircrafts with fixed wings is that they 
have a high capability in flights in low 
heights, closed environments and at times 
there is a need for high maneuver capability 
compared to fixed wing aircrafts. The 
capability of vertical flight enables them to 
take off and land in any location. Therefore, 
quadrotors are designed and produced in 
different sizes and with different facilities. 

In reference [10], Altung and et al tried to 
extract dynamic equations of quadrotors for 
the first time using Newton-Euler method. In 
reference [11], Bouabdallah and et al 
designed OS4 micro-quadrotor including 
dynamic design, dynamic modeling, and 
angels' measurement and control.  

Pounds and et al were studying on a design 
of a 4 rotors helicopter in National University 
of Australia which ended in designing an 
aircraft called XII-4FlyerMark [52]. 
Mokhtari and et al merged a resistant linear 
feedback with a linear GH∞ control to control 
a nonlinear quadrotor. 

Huffman and et al [14], were trying to 
resolve some problems that could create 

chaos in floating flight system aircrafts. In 
[15], the adaptive sliding mode controller was 
developed for the consistency of the behavior 
and to trace the route. In reference [16] a 
quadrotor under stimulation of a parametric 
indefiniteness has been investigated.  A back-
stepping controller has been used to design a 
nonlinear controller. In [17] an integration of 
the two methods of nonlinear back-stepping 
and sliding mode control has been benefited 
to control the quadrotor. In [18], the hybrid 
back-stepping and Frenet-Serret theory for 
the consistency of the quadrotor state have 
been utilized. A new neural-comparative 
controller has been designed to achieve 
consistency of the quadrotor and to fight 
against the chaos [19]. 

In [20], tolerant fault estimation design has 
been proposed to control the quadrotor. First 
the comparative Tao observer has been used 
to estimate the actuators' faults of different 
states of the quadrotor and to calculate the set 
of fault residuals. Reference [21] deals with 
designing a self-reforming controller based 
on sliding mode comparative control method 
for the quadrotor with actuators' fault. A fault 
tolerant controller [22] based on temporary 
efficiency index has been introduced to 
control the quadrotor with actuators' fault. 
Reference [23] has dealt with designing, 
analysis, and implementation of a fault 
tolerant resistant comparative controller to 
control the state and height of the quadrotor 
without requiring the use of a fault 
recognition mechanism. In reference [24], a 
sliding mode comparative fuzzy controller 
has been proposed to adjust the great faults of 
the actuators and to hold the quadrotors 
consistent. 
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In this research, first a quadrotor modeling 
has been done using a Newton-Euler method. 
Then, a resistant control method based on a 
back-stepping has been proposed to control 
and stabilize quadrotor flights in the presence 
of actuators' and sensors' faults. 

2. Quadrotor modeling 

Quadrotors could neutralize the forces of the 
moments created through utilizing 4 motors 
and isolated blades and reverse binary 
rotations of these motors and also supply the 
required pressure difference to create trust 
forces [25].   

Every propeller creates a force and a 
moment proportionate with the square root of 
its velocity. The direction of the produced 
forces is upwards and the direction of 
moments is counter propeller rotations. 
Figure 1 represents a simple structure of a 
quadrotor. The quadrotor body is like a cross 
whose useful load (sensors, controllers, 
central processor, camera, ...) lies in its 
center. A motor and an electric motor with a 
direct flow without step-backing have been 
installed on any ending which has a light 
propeller mounted on it. The controlling input 
is done solely through changing the motors' 
rotary distance. The couples of cross 
propellers are installed across from each other 
on an arm and rotates counter to the other one. 

 

 
Fig.1. The simple quadrotor structure 

Quadrotor has 6 degree of freedom and to 
control these 6 degrees of freedom, 4 input 
controls (a 4 motors controller) have been 
installed and thus the system is under the 
stimulation. Therefore, some are not 
independent of each other and in some cases 
several movements occur concurrently. For 
example, when the quadrotor moves forwards 
(movement along axis x), the aircraft rotates 
along with axis y (pitch). 

To compose dynamic equations we can not 
consider all parameters involved in a 
phenomenon, because natural systems and 
specifically the flight systems are 
complicated and different factors affect their 
dynamicity and movements. Therefore, to 
simplify the process, we do not consider some 
of the parameters. For the quadrotor and to 
resolve the problems related, we will consider 
the followings: 
- The quadrotor system is rigid. 
- Its geometrical and mass structure is 

symmetrical. 
- The mass center and the local 

coordinates' center are congruent and are 
located in the center of the object. 

- The upward force and the resistant force 
of the rotation of the propellers are 
proportionate with the square angle 
velocity. 

To calculate the dynamic and cinematic 
equations, first the two reference coordinates 
are introduced. The body coordinates (local) 
rigidly stock onto the object and the absolute 
coordinates (global or inertia) are based on 
figure 2 and we have the followings for both 
sets: B(x,y,z) and E(X,Y,Z). 

 
 



Y.Mousalou: Robust Control of a Quadrotor in the Presence of Actuators' Failure 

28 
 

 
Fig.2.The local and absolute coordinates 

determined for the quadrotor 

As we define the following variables, the 
descriptive equations can calculate the results 
as follows: 

ζ = (X, Y, Z) 
Position vector in absolute coordinates 

(inertia) 
𝑉𝑉 = ( 𝑢𝑢, 𝑣𝑣,𝑤𝑤) 

The linear transformation velocity vector 
proportionate to the body 
𝜔𝜔 = (𝑝𝑝, 𝑞𝑞, 𝑟𝑟) 

The rate of Euler angles' changes 
proportionate to the local (body) coordinates 
𝜂𝜂 = (𝜙𝜙, 𝜃𝜃,𝜓𝜓) 

Euler angles proportionate to the absolute 
(inertia) coordinates 

The relationship between velocity vector 
(v,ω) and the derivations of the absolute 
coordinates' vector and Euler angles (ζ̇, η̇) are 
as follows: 

� 𝜁𝜁
̇ = 𝑅𝑅𝑡𝑡𝑣𝑣

�̇�𝜂 = 𝑅𝑅𝑟𝑟𝜔𝜔
 (1) 

 
Where, the matrixes Rt and Rr represent 

linear velocity transformation matrix and 
angle velocity between the two local and 
absolute coordinates' sets, respectively. 
𝑅𝑅𝑡𝑡

= �
𝑐𝑐𝜓𝜓𝑐𝑐𝜃𝜃 𝑐𝑐𝜓𝜓𝑐𝑐𝜃𝜃𝑐𝑐𝜙𝜙 − 𝑐𝑐𝜓𝜓𝑐𝑐𝜙𝜙 𝑐𝑐𝜓𝜓𝑐𝑐𝜃𝜃𝑐𝑐𝜙𝜙 + 𝑐𝑐𝜓𝜓𝑐𝑐𝜙𝜙
𝑐𝑐𝜓𝜓𝑐𝑐𝜙𝜙 𝑐𝑐𝜓𝜓𝑐𝑐𝜃𝜃𝑐𝑐𝜙𝜙 + 𝑐𝑐𝜓𝜓𝑐𝑐𝜙𝜙 𝑐𝑐𝜓𝜓𝑐𝑐𝜃𝜃𝑐𝑐𝜙𝜙 − 𝑐𝑐𝜓𝜓𝑐𝑐𝜙𝜙
−𝑐𝑐𝜃𝜃 𝑐𝑐𝜃𝜃𝑐𝑐𝜙𝜙 𝑐𝑐𝜃𝜃𝑐𝑐𝜙𝜙

� 
(2) 

𝑅𝑅𝑟𝑟 = 𝑇𝑇 = �
1 0 −𝑐𝑐𝜃𝜃
0 𝑐𝑐𝜙𝜙 𝑐𝑐𝜙𝜙𝑐𝑐𝜃𝜃
0 −𝑐𝑐𝜙𝜙 𝑐𝑐𝜙𝜙𝑐𝑐𝜃𝜃

� (3) 

𝑅𝑅𝑡𝑡−1 = 𝑅𝑅𝑡𝑡𝑇𝑇 (4) 

The matrixes (2) and (3) represent the 
trigonometrically equations for sinus and 
cosines. 

The dynamic of the rigid object affected by 
the external forces on the mass center based 
on Newton-Euler formula expressed in body 
set is as follow 

 

�𝑚𝑚 × 𝐼𝐼3×3 03×3
03×3 𝐼𝐼 � ��̇�𝑉

�̇�𝜔
� + �𝜔𝜔 × (𝑚𝑚𝑉𝑉)

𝜔𝜔 × (𝐼𝐼𝜔𝜔) �

= �𝐹𝐹𝜏𝜏� 

(5) 

 
Where, F and τ represent the external forces 

and moments enforced on the aircraft, m 
represents total object mass and ω represents 
the angle velocity between the two sets of 
body 

 
coordinates and absolute coordinates (or 

inertia). In second equation, =

�
𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑧𝑧
−𝐼𝐼𝑥𝑥𝑥𝑥 𝐼𝐼𝑥𝑥𝑥𝑥 −𝐼𝐼𝑥𝑥𝑧𝑧
−𝐼𝐼𝑧𝑧𝑥𝑥 −𝐼𝐼𝑧𝑧𝑥𝑥 𝐼𝐼𝑧𝑧𝑧𝑧

� , is the inertia matrix 

and it is fixed. Considering a symmetrical 
structure for the quadrotor, this matrix can be 
written as the following form. Thus, we will 
have:  

𝐼𝐼 = �
𝐼𝐼𝑥𝑥𝑥𝑥 0 0
0 𝐼𝐼𝑥𝑥𝑥𝑥 0
0 0 𝐼𝐼𝑧𝑧𝑧𝑧

� (6) 

 
To simplify the control rules of Euler angles 

and quadrotor position, we can transfer the 
equations above using equations (2), (3), and 
(7) into the earth coordinates set as follows: 
�̇�𝑅 = 𝑅𝑅𝑅𝑅(𝛺𝛺) (7) 

In equation (7), 𝑅𝑅(𝛺𝛺) refers to: 

𝑅𝑅(𝛺𝛺) = �
0 −𝛺𝛺3 𝛺𝛺2
𝛺𝛺3 0 −𝛺𝛺1
𝛺𝛺2 𝛺𝛺1 0

� 
(8) 
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Thus, the transformation movement 
equations will be achieved as shown in (9) 

 
mξ̈ = 𝐹𝐹𝑓𝑓 + 𝐹𝐹𝑡𝑡 + 𝐹𝐹𝑔𝑔 (9) 
In rotary movement equations, if the 

movement angle is small, the transformation 
matrix T will be equal to unit 1 and the angle 
changes in body coordinates will be equal 
with Euler angles' derivation. This 
approximation along with a good deal of 
precision requires the use of a complete 
model in devising control rules: 

 

�̇�𝜂 ≅ 𝜔𝜔 →→→ �̈�𝜂 ≅ �̇�𝜔 (10) 
 

Therefore, the dynamic equation of the 
rotary system will be as follows: 

 
𝐼𝐼�̇�𝜔 = −𝜔𝜔 × 𝐼𝐼𝜔𝜔 + 𝛤𝛤𝑓𝑓 − 𝛤𝛤𝑎𝑎 − 𝛤𝛤𝑔𝑔 (11) 
 
In equations (9) and (11): 
Ff is the equilibrium point of the forces 

produced by the four rotors: 

𝐹𝐹𝑓𝑓 = �
𝐶𝐶𝜙𝜙𝐶𝐶𝜓𝜓𝑅𝑅𝜃𝜃 + 𝑅𝑅𝜙𝜙𝑅𝑅𝜓𝜓
𝐶𝐶𝜙𝜙𝑅𝑅𝜃𝜃𝑅𝑅𝜓𝜓 + 𝑅𝑅𝜙𝜙𝑅𝑅𝜙𝜙

𝐶𝐶𝜙𝜙𝐶𝐶𝜃𝜃
��𝐹𝐹𝑖𝑖

4

𝑖𝑖=1

 
(12) 

 
𝐹𝐹𝑖𝑖 = 𝑏𝑏𝜔𝜔𝑖𝑖

2 (13) 
 
B is the fixed amount of ascending (trust) 

and ωi  is the angle velocity of the ith rotor. 
𝐹𝐹𝑓𝑓 = [𝐹𝐹𝑡𝑡𝑥𝑥,𝐹𝐹𝑡𝑡𝑥𝑥,𝐹𝐹𝑡𝑡𝑧𝑧]𝑇𝑇 is the equilibrium of the 
pulling forces along with the coordinates of 
(x,y,z): 

𝐹𝐹𝑡𝑡 = �
−𝐾𝐾𝑓𝑓𝑡𝑡𝑥𝑥 0 0

0 −𝐾𝐾𝑓𝑓𝑡𝑡𝑥𝑥 0
0 0 −𝐾𝐾𝑓𝑓𝑡𝑡𝑧𝑧

� 𝜉𝜉̇ 
(14) 

Where, Kftx , Kfty, Kftz are positive pull 
coefficients. 

Fg is the gravity force and is represented as 
follows: 
𝐹𝐹𝑔𝑔 = [0        0   −𝑚𝑚𝑚𝑚]𝑇𝑇 (15) 

𝛤𝛤𝑓𝑓 is found when it is created by the fixed 
frame of the quadrotor body. As: 

 

𝛤𝛤𝑓𝑓 = �
𝑙𝑙(𝐹𝐹3 − 𝐹𝐹1)
𝑙𝑙(𝐹𝐹4 − 𝐹𝐹2)

𝑑𝑑(𝜔𝜔12 − 𝜔𝜔2
2 + 𝜔𝜔3

2 − 𝜔𝜔42
� 

(16) 

 

L refers to the distance between the 
canonical point and propeller rotation center 
and d is the fixed amount of pulling. 
𝛤𝛤𝑎𝑎 is the result of aerodynamic momentum: 
 

𝛤𝛤𝑎𝑎 = �
𝐾𝐾𝑓𝑓𝑎𝑎𝑥𝑥 0 0

0 𝐾𝐾𝑓𝑓𝑎𝑎𝑥𝑥 0
0 0 𝐾𝐾𝑓𝑓𝑎𝑎𝑧𝑧

�𝜔𝜔2 
(17) 

 

Where, Kfax , Kfay, Kfaz are known as 
aerodynamic friction coefficients.  
𝛤𝛤𝑔𝑔 is the resultant of the moments due to 

stereoscopic effects: 
 

𝛤𝛤𝑔𝑔 = �𝜔𝜔 ∧ 𝐽𝐽𝑟𝑟 �
0
0

(−1)𝑖𝑖+1𝜔𝜔𝑖𝑖

�
4

𝑖𝑖=1

 (18) 

 

Jr is the rotor inertia. 
The complete dynamic model dominating 

the quadrotor, considering the parameters 
above, is as follows: 

 

�̈�𝜙 =
1
𝐼𝐼𝑥𝑥𝑥𝑥

[�𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑧𝑧𝑧𝑧��̇�𝜃�̇�𝜓 − 𝐽𝐽𝑟𝑟𝛺𝛺�𝑟𝑟�̇�𝜃 − 𝐾𝐾𝑓𝑓𝑎𝑎𝑥𝑥�̇�𝜙2 + 𝑙𝑙𝑢𝑢2]

�̈�𝜃 =
1
𝐼𝐼𝑥𝑥𝑥𝑥

[(𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥)�̇�𝜙�̇�𝜓 + 𝐽𝐽𝑟𝑟𝛺𝛺�𝑟𝑟�̇�𝜙 − 𝐾𝐾𝑓𝑓𝑎𝑎𝑥𝑥�̇�𝜃2 + 𝑙𝑙𝑢𝑢3]

�̈�𝜓 =
1
𝐼𝐼𝑧𝑧𝑧𝑧

[�𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑥𝑥𝑥𝑥��̇�𝜃�̇�𝜙 − 𝐾𝐾𝑓𝑓𝑎𝑎𝑧𝑧�̇�𝜓2 + 𝑢𝑢4]                 

�̈�𝑥 =
1
𝑚𝑚

[(𝐶𝐶𝜙𝜙𝐶𝐶𝜓𝜓𝑅𝑅𝜃𝜃 + 𝑅𝑅𝜙𝜙𝑅𝑅𝜓𝜓)𝑢𝑢1 − 𝐾𝐾𝑓𝑓𝑡𝑡𝑥𝑥�̇�𝑥]           

�̈�𝑦 =
1
𝑚𝑚

[(𝐶𝐶𝜙𝜙𝑅𝑅𝜃𝜃𝑅𝑅𝜓𝜓 − 𝑅𝑅𝜙𝜙𝐶𝐶𝜓𝜓)𝑢𝑢1 − 𝐾𝐾𝑓𝑓𝑡𝑡𝑥𝑥�̇�𝑦]            

�̈�𝑧 =
1
𝑚𝑚�(𝐶𝐶𝜙𝜙𝐶𝐶𝜃𝜃)𝑢𝑢1 − 𝐾𝐾𝑓𝑓𝑡𝑡𝑧𝑧�̇�𝑧� − 𝑚𝑚                          

 (19) 

Presupposing the sub-equations for 19 we 
can have: 
�
𝑢𝑢𝑥𝑥 = (𝐶𝐶𝜙𝜙𝐶𝐶𝜓𝜓𝑅𝑅𝜃𝜃 + 𝑅𝑅𝜙𝜙𝑅𝑅𝜓𝜓)
 𝑢𝑢𝑥𝑥 = (𝐶𝐶𝜙𝜙𝑅𝑅𝜃𝜃𝑅𝑅𝜓𝜓 − 𝑅𝑅𝜙𝜙𝑅𝑅𝜓𝜓) 

(20) 
 

 
Where, 
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�̈�𝜙 = [�
𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑥𝑥𝑥𝑥

� �̇�𝜃�̇�𝜓 −
𝐽𝐽𝑟𝑟
𝐼𝐼𝑥𝑥𝑥𝑥

𝛺𝛺�𝑟𝑟�̇�𝜃 −
𝐾𝐾𝑓𝑓𝑎𝑎𝑥𝑥
𝐼𝐼𝑥𝑥𝑥𝑥

�̇�𝜙2 +
𝑙𝑙
𝐼𝐼𝑥𝑥𝑥𝑥

𝑢𝑢2]  

�̈�𝜃 = [�
𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑥𝑥𝑥𝑥

� �̇�𝜙�̇�𝜓 +
𝐽𝐽𝑟𝑟
𝐼𝐼𝑥𝑥𝑥𝑥

𝛺𝛺�𝑟𝑟�̇�𝜙 −
𝐾𝐾𝑓𝑓𝑎𝑎𝑥𝑥
𝐼𝐼𝑥𝑥𝑥𝑥

�̇�𝜃2 +
𝑙𝑙
𝐼𝐼𝑥𝑥
𝑢𝑢3]  

�̈�𝜓 = [�
𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑥𝑥𝑥𝑥

𝐼𝐼𝑧𝑧𝑧𝑧
� �̇�𝜃�̇�𝜙 −

𝐾𝐾𝑓𝑓𝑎𝑎𝑧𝑧
𝐼𝐼𝑧𝑧𝑧𝑧

�̇�𝜓2 +
1
𝐼𝐼𝑧𝑧𝑧𝑧

𝑢𝑢4]                     

�̈�𝑥 = [
1
𝑚𝑚
𝑢𝑢𝑥𝑥𝑢𝑢1 −

𝐾𝐾𝑓𝑓𝑡𝑡𝑥𝑥
𝑚𝑚

�̇�𝑥]                                            

�̈�𝑦 = [
1
𝑚𝑚
𝑢𝑢𝑥𝑥𝑢𝑢1 −

𝐾𝐾𝑓𝑓𝑡𝑡𝑥𝑥
𝑚𝑚

�̇�𝑦]                                            

�̈�𝑧 = ��
𝐶𝐶𝜙𝜙𝐶𝐶𝜃𝜃
𝑚𝑚

�𝑢𝑢1 −
𝐾𝐾𝑓𝑓𝑡𝑡𝑧𝑧
𝑚𝑚

�̇�𝑧� − 𝑚𝑚                             

 
(21) 

 

In which u1, u2, u3, and u4 are system control 
signals regarding the angular velocity of the 4 
rotors and are as follows: 

�

𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
𝑢𝑢4

� = �

𝑏𝑏 𝑏𝑏 𝑏𝑏 𝑏𝑏
0 −𝑙𝑙𝑏𝑏 0 𝑙𝑙𝑏𝑏
−𝑙𝑙𝑏𝑏 −𝑏𝑏 −𝑙𝑙𝑏𝑏 𝑏𝑏
𝑑𝑑 −𝑑𝑑 𝑑𝑑 −𝑑𝑑

�

⎣
⎢
⎢
⎢
⎡𝜔𝜔1

2

𝜔𝜔2
2

𝜔𝜔3
2

𝜔𝜔42⎦
⎥
⎥
⎥
⎤
 (22) 

 
𝛺𝛺�𝑟𝑟 = 𝜔𝜔1 − 𝜔𝜔2 + 𝜔𝜔3 − 𝜔𝜔4 (23) 
 

�
𝐽𝐽𝑟𝑟�̇�𝜔𝑖𝑖 = 𝜏𝜏𝑖𝑖 − 𝑄𝑄𝑖𝑖  , 𝑖𝑖𝑖𝑖{1,2,3,4}

𝑄𝑄𝑖𝑖 = 𝑑𝑑𝜔𝜔𝑖𝑖
2  (24) 

 
Qi is the mpment of the produced reactive in 

free air through a drag rotor of ith in τi input 
moments. The control rule for the input 
moment is as follows 

 

𝜏𝜏𝑖𝑖 = 𝑄𝑄𝑖𝑖 + 𝐽𝐽𝑟𝑟�̇�𝜔𝑑𝑑,𝑖𝑖 − 𝑘𝑘𝑖𝑖𝜔𝜔�𝑖𝑖 (25) 
 
𝜏𝜏𝑖𝑖 = 𝑄𝑄𝑖𝑖 + 𝐽𝐽𝑟𝑟�̇�𝜔𝑑𝑑,𝑖𝑖 − 𝑘𝑘𝑖𝑖𝜔𝜔�𝑖𝑖 (26) 
 

𝑉𝑉𝑚𝑚 =
𝑅𝑅𝑎𝑎
𝑘𝑘𝑚𝑚𝑘𝑘𝑔𝑔

𝜏𝜏𝑖𝑖 + 𝑘𝑘𝑚𝑚𝑘𝑘𝑔𝑔𝜔𝜔𝑖𝑖 , 𝑖𝑖𝑖𝑖{1,2,3,4} (27) 

 
Where, kiϵ{1, . . ,4} are 4 positive 

parameters, ω̇d,iϵ{1, . . ,4} is the optimal speeds 
of each of the rotors and we have ω�i = ωi −
ω̇d,i 
ω�̇iه represents index coincidence of ωi and 
ωd,i and tries to lead for the congreuence of 
body frame moments towards the desired 
amounts that will lead to a consistent 
quadrotor status. D.C. motors are controled 

through control voltages. The inductance of 
the motors is low. Ra, km, kg are internal motor 
resistance, fixed motor moment, and gearbox 
coefficient, respectively. Vm is motor voltage 
and JT is inertia.  

Quadrotor control strategy with actuators 
faults 

The complete model achieved through the 
addition of actuator faults and sensr faults in 
the model can be represented as follows: 

 

��̇�𝑥
(𝑡𝑡) = 𝛿𝛿(𝑥𝑥, 𝑡𝑡) + 𝑚𝑚(𝑥𝑥, 𝑡𝑡)�𝑢𝑢(𝑡𝑡) + 𝑓𝑓𝑎𝑎(𝑡𝑡)�

𝑦𝑦(𝑡𝑡) = ℎ(𝑥𝑥, 𝑡𝑡) + 𝑓𝑓𝑠𝑠(𝑡𝑡)
 (28) 

 

Where, 𝑥𝑥(𝑡𝑡) ∈ ℜ𝑛𝑛 is the system status vector, 
𝑦𝑦(𝑡𝑡) ∈ ℜ𝑝𝑝 is the measured output vector, 𝑢𝑢(𝑡𝑡) ∈
ℜ𝑚𝑚 is the input controlling vector, 𝑓𝑓𝑎𝑎(𝑡𝑡) ∈ ℜ𝑞𝑞𝑎𝑎 is 
the resultant vector of the faults related to 
quadrotor actuators, and 𝑓𝑓𝑠𝑠(𝑡𝑡)ε Rqs is the resultant 
vector of sensor faults. We have: 

 

𝑥𝑥 = [𝑥𝑥1, … , 𝑥𝑥12]𝑇𝑇
= [𝜙𝜙, �̇�𝜙,𝜃𝜃, �̇�𝜃,𝜓𝜓, �̇�𝜓, 𝑥𝑥, �̇�𝑥, 𝑦𝑦, �̇�𝑦, 𝑧𝑧, �̇�𝑧]𝑇𝑇 

(29) 
 

Considering actuator faults and velocity 
sensor faults we have: 

 
�̇�𝑥1 = 𝑥𝑥2

�̇�𝑥2 = 𝑎𝑎1𝑥𝑥4𝑥𝑥6 + 𝑎𝑎2𝑥𝑥22 + 𝑎𝑎3𝛺𝛺�𝑟𝑟𝑥𝑥4 + 𝑏𝑏1(𝑢𝑢2 + 𝑓𝑓𝑎𝑎1)
�̇�𝑥3 = 𝑥𝑥4

�̇�𝑥4 = 𝑎𝑎4𝑥𝑥2𝑥𝑥6 + 𝑎𝑎5𝑥𝑥42 + 𝑎𝑎6𝛺𝛺�𝑟𝑟𝑥𝑥2 + 𝑏𝑏2(𝑢𝑢3 + 𝑓𝑓𝑎𝑎2)
�̇�𝑥5 = 𝑥𝑥6

�̇�𝑥6 = 𝑎𝑎7𝑥𝑥2𝑥𝑥4 + 𝑎𝑎8𝑥𝑥62 + 𝑏𝑏3(𝑢𝑢4 + 𝑓𝑓𝑎𝑎3)
�̇�𝑥7 = 𝑥𝑥8

�̇�𝑥8 = 𝑎𝑎9𝑥𝑥8 +
1
𝑚𝑚
𝑢𝑢𝑥𝑥𝑢𝑢1

�̇�𝑥9 = 𝑥𝑥10

�̇�𝑥10 = 𝑎𝑎10𝑥𝑥10 +
1
𝑚𝑚
𝑢𝑢𝑥𝑥𝑢𝑢1

�̇�𝑥11 = 𝑥𝑥12

�̇�𝑥12 = 𝑎𝑎11𝑥𝑥12 − 𝑚𝑚 +
𝐶𝐶𝜙𝜙𝐶𝐶𝜃𝜃
𝑚𝑚

(𝑢𝑢1 + 𝑓𝑓𝑎𝑎4)

 (30) 

 
𝑦𝑦 = [𝑥𝑥1𝑥𝑥2 + 𝑓𝑓𝑠𝑠1𝑥𝑥3𝑥𝑥4 + 𝑓𝑓𝑠𝑠2𝑥𝑥5𝑥𝑥6 + 𝑓𝑓𝑠𝑠3 

𝑥𝑥7𝑥𝑥8 + 𝑓𝑓𝑠𝑠4𝑥𝑥9𝑥𝑥10 + 𝑓𝑓𝑠𝑠5𝑥𝑥11𝑥𝑥12 + 𝑓𝑓𝑠𝑠6]𝑇𝑇 (31) 

 
And: 
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⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧𝑎𝑎1 =

𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑧𝑧𝑧𝑧
𝐼𝐼𝑥𝑥𝑥𝑥

 ,𝑎𝑎2 = −
𝐾𝐾𝑓𝑓𝑎𝑎𝑥𝑥
𝐼𝐼𝑥𝑥𝑥𝑥

𝑎𝑎3 = −
𝐽𝐽𝑟𝑟
𝐼𝐼𝑥𝑥𝑥𝑥

, 𝑎𝑎4 =
𝐼𝐼𝑧𝑧𝑧𝑧 − 𝐼𝐼𝑥𝑥𝑥𝑥
𝐼𝐼𝑥𝑥𝑥𝑥

𝑎𝑎5 = −
𝐾𝐾𝑓𝑓𝑎𝑎𝑥𝑥
𝐼𝐼𝑥𝑥𝑥𝑥

 ,𝑎𝑎6 =
𝐽𝐽𝑟𝑟
𝐼𝐼𝑥𝑥𝑥𝑥

𝑎𝑎7 =
𝐼𝐼𝑥𝑥𝑥𝑥 − 𝐼𝐼𝑥𝑥𝑥𝑥

𝐼𝐼𝑧𝑧𝑧𝑧
 , 𝑎𝑎8 = −

𝐾𝐾𝑓𝑓𝑎𝑎𝑧𝑧
𝐼𝐼𝑧𝑧

𝑎𝑎9 = −
𝐾𝐾𝑓𝑓𝑡𝑡𝑥𝑥
𝑚𝑚

 ,𝑎𝑎10 = −
𝐾𝐾𝑓𝑓𝑡𝑡𝑥𝑥
𝑚𝑚

𝑎𝑎11 = −
𝐾𝐾𝑓𝑓𝑡𝑡𝑧𝑧
𝑚𝑚

    ,     

⎩
⎪⎪
⎨

⎪⎪
⎧𝑏𝑏1 =

𝑙𝑙
𝐼𝐼𝑥𝑥𝑥𝑥

𝑏𝑏2 =
𝑙𝑙
𝐼𝐼𝑥𝑥𝑥𝑥

𝑏𝑏3 =
𝑙𝑙
𝐼𝐼𝑧𝑧𝑧𝑧

 
(32) 

 
The following hypotheses are required to 

analyze the premise:  
1- sensor faults create slow changes in time 

in the form of: 
𝑓𝑓�̇�𝑠𝑖𝑖(𝑡𝑡) ≈ 0 , 𝑖𝑖 ∈ [1,2,3,4,5,6] (33) 
 
2- The resultant actuator faults are related to 

quadrotor movement and banked velocity 
sensor faults as follows: 

 
|𝑓𝑓𝑎𝑎𝑖𝑖(𝑡𝑡)| ≤ 𝑓𝑓𝑎𝑎𝑖𝑖+   𝑎𝑎𝑎𝑎𝑑𝑑   �𝑓𝑓𝑠𝑠𝑠𝑠(𝑡𝑡)� ≤ 𝑓𝑓𝑠𝑠𝑠𝑠+   , 𝑖𝑖

∈ [1,2,3,4] 
𝑎𝑎𝑎𝑎𝑑𝑑  𝑗𝑗 ∈ {[1,2,3,4,5,6] 

(34) 

 

Where, { 𝑓𝑓𝑎𝑎1+ ,𝑓𝑓𝑎𝑎2+ ,𝑓𝑓𝑎𝑎3+ ,𝑓𝑓𝑎𝑎4+ } and 
{ 𝑓𝑓𝑠𝑠1+ ,𝑓𝑓𝑠𝑠2+, 𝑓𝑓𝑠𝑠3+, 𝑓𝑓𝑠𝑠4+, 𝑓𝑓𝑠𝑠5+,𝑓𝑓𝑠𝑠6+} are fixed positive 
amounts. 

3- Unknown parts of 𝛾𝛾𝑎𝑎𝑖𝑖(𝑥𝑥,𝑓𝑓𝑎𝑎𝑖𝑖 , 𝑡𝑡) consist of 
the resultants of the actuator faults related to 
quadrotor movements and 𝛾𝛾𝑠𝑠𝑖𝑖(𝑥𝑥,𝑓𝑓𝑠𝑠𝑖𝑖 , 𝑡𝑡) 
related to banked velocity sensor faults as 
follows: 

|𝛾𝛾𝑎𝑎𝑖𝑖(𝑥𝑥, 𝑓𝑓𝑎𝑎𝑖𝑖 , 𝑡𝑡)| ≤ |𝑚𝑚𝑖𝑖(𝑥𝑥, 𝑡𝑡)|𝑓𝑓𝑎𝑎𝑖𝑖+

< 𝑘𝑘𝑎𝑎𝑖𝑖   𝑎𝑎𝑎𝑎𝑑𝑑   �𝛾𝛾𝑠𝑠𝑠𝑠�𝑥𝑥,𝑓𝑓𝑠𝑠𝑠𝑠 , 𝑡𝑡��
≤ 𝑘𝑘𝑠𝑠𝑠𝑠 

                 𝑖𝑖 ∈ [1,2,3,4]   𝑎𝑎𝑎𝑎𝑑𝑑  𝑗𝑗 ∈ {[1,2,3,4,5,6] 
(35) 

 
 
Where, { 𝑘𝑘𝑎𝑎1,𝑘𝑘𝑎𝑎2,𝑘𝑘𝑎𝑎3, 𝑘𝑘𝑎𝑎4} and 

{ 𝑘𝑘𝑠𝑠1, 𝑘𝑘𝑠𝑠2,𝑘𝑘𝑠𝑠3,𝑘𝑘𝑠𝑠4,𝑘𝑘51,𝑘𝑘𝑠𝑠6} are fixed positive 
amounts. 

The selected controlling strategy is based on 
two loops (an internal and an external loop). 

The internal loop entails four controlling 
rules: roll control, pitch control, Yaw control, 
and height control. The external loop entails 
two control rules of x and y. The external loop 
produces optimal amounts of roll (𝜙𝜙𝑑𝑑) and 
pitch (𝜃𝜃𝑑𝑑) through the reforming block. This 
block reforms roll and pitch rotations based 
on an optimal yaw (𝜓𝜓𝑑𝑑). In figure 3 a 
summary sketch of this strategy has been 
represented. 

 

 
Fig.3.An integrated design of the proposed 

controlling strategy 
 
Based on back-stepping model, a returning 

algorithm is utilized to integrate control rules 
that enforce the system to follow the optimal 
route in the presence of actuator and sensor 
faults: 

𝑒𝑒𝑖𝑖 = �
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑑𝑑                                                , 𝑖𝑖 ∈ [1,3,5,7,9,11]
𝑦𝑦𝑖𝑖 − �̇�𝑥(𝑖𝑖−1)𝑑𝑑 + 𝑐𝑐(𝑖𝑖−1)𝑒𝑒(𝑖𝑖−1) − 𝜍𝜍(𝑖𝑖−1), 𝑖𝑖 ∈ [2,4,6,8,10,12] 

And, 
 

𝜍𝜍𝑖𝑖 = � 𝑘𝑘𝑖𝑖 � 𝑒𝑒𝑖𝑖𝑑𝑑𝜏𝜏
𝑡𝑡

0
                       𝑖𝑖 ∈ [1,3,5,7,9,11]

𝑘𝑘𝑖𝑖𝑐𝑐𝑖𝑖𝑚𝑚𝑎𝑎(𝑒𝑒𝑖𝑖)                     𝑖𝑖 ∈ [2,4,6,8,10,12]
 

 
 
Are the related Lyapanov equations as 

follows: 
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𝑉𝑉𝑖𝑖

= �

1
2
𝑒𝑒𝑖𝑖2 +

1
2 𝑒𝑒𝑓𝑓𝑠𝑠

2                     𝑖𝑖 ∈ [1,3,5,7,9,11], 𝑗𝑗 ∈ [1,2,3,4,5,6]

𝑉𝑉𝑖𝑖−1 +
1
2 𝑒𝑒𝑖𝑖

2                                                    𝑖𝑖 ∈ [2,4,6,8,10,12]
 

 

And, 
 

⎩
⎪⎪
⎨

⎪⎪
⎧

efj = fsj − ςi                                    i ∈ [1,3,5,7,9,11]  and  j ∈ [1,2,3,4,5,6]

γj = �ci ki
1 0

� > 0                          i ∈ [1,3,5,7,9,11]  and  j ∈ [1,2,3,4,5,6]

ci > 0                              𝑖𝑖 ∈ [2,4,6,8,10,12]

ki > �
ksj + kaj′     j ∈ [1,2,3,6] and   j′ ∈ [1,2,3,4]

ksj       j ∈ [4,5] �    i ∈ {2,4,6,8,10,12]

 

 

The summary of the controlling relations 
achieved are represented as follows: 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝑢𝑢2 =
1
𝑏𝑏1
�
�̈�𝑥1𝑑𝑑 − 𝑐𝑐1 �−𝑐𝑐1𝑒𝑒1 + 𝑘𝑘1 � 𝑒𝑒1𝑑𝑑𝜏𝜏

𝑡𝑡

0
+ 𝑒𝑒2� + (𝑘𝑘1 − 1)𝑒𝑒1

−𝑐𝑐2𝑒𝑒2 − 𝑎𝑎1𝑦𝑦4𝑦𝑦6 − 𝑎𝑎2𝑦𝑦22 − 𝑎𝑎3Ω�𝑟𝑟𝑦𝑦4 − 𝑘𝑘2𝑐𝑐𝑖𝑖𝑚𝑚𝑎𝑎(𝑒𝑒2)
�

𝑢𝑢3 =
1
𝑏𝑏2
�
�̈�𝜃𝑑𝑑 − 𝑐𝑐3 �−𝑐𝑐3𝑒𝑒3 + 𝑘𝑘3 � 𝑒𝑒3𝑑𝑑𝜏𝜏

𝑡𝑡

0
+ 𝑒𝑒4� + (𝑘𝑘3 − 1)𝑒𝑒3

−𝑐𝑐4𝑒𝑒4 − 𝑎𝑎4𝑦𝑦2𝑦𝑦6 − 𝑎𝑎5𝑦𝑦42 − 𝑎𝑎6Ω�𝑟𝑟𝑦𝑦2 − 𝑘𝑘4𝑐𝑐𝑖𝑖𝑚𝑚𝑎𝑎(𝑒𝑒4)
�

𝑢𝑢4 =
1
𝑏𝑏3
�
�̈�𝜓𝑑𝑑 − 𝑐𝑐5 �−𝑐𝑐5𝑒𝑒5 + 𝑘𝑘5 � 𝑒𝑒5𝑑𝑑𝜏𝜏

𝑡𝑡

0
+ 𝑒𝑒6� + (𝑘𝑘5 − 1)𝑒𝑒5

−𝑐𝑐6𝑒𝑒6 − 𝑎𝑎7𝑦𝑦2𝑦𝑦4 − 𝑎𝑎8𝑦𝑦62 − 𝑘𝑘6𝑐𝑐𝑖𝑖𝑚𝑚𝑎𝑎(𝑒𝑒6)
�

𝑢𝑢𝑥𝑥 =
𝑚𝑚
𝑢𝑢1
��̈�𝑥𝑑𝑑 − 𝑐𝑐7 �−𝑐𝑐7𝑒𝑒7 + 𝑘𝑘7 � 𝑒𝑒7𝑑𝑑𝜏𝜏

𝑡𝑡

0
+ 𝑒𝑒8� + (𝑘𝑘7 − 1)𝑒𝑒7

−𝑐𝑐8𝑒𝑒8 − 𝑎𝑎9𝑦𝑦8 − 𝑘𝑘8𝑐𝑐𝑖𝑖𝑚𝑚𝑎𝑎(𝑒𝑒8)
�        /𝑢𝑢1 ≠ 0                

𝑢𝑢𝑥𝑥 =
𝑚𝑚
𝑢𝑢1
��̈�𝑦𝑑𝑑 − 𝑐𝑐9 �−𝑐𝑐9𝑒𝑒9 + 𝑘𝑘9 � 𝑒𝑒9𝑑𝑑𝜏𝜏

𝑡𝑡

0
+ 𝑒𝑒10� + (𝑘𝑘9 − 1)𝑒𝑒9

−𝑐𝑐10𝑒𝑒10 − 𝑎𝑎10𝑦𝑦10 − 𝑘𝑘10𝑐𝑐𝑖𝑖𝑚𝑚𝑎𝑎(𝑒𝑒10)
�        /𝑢𝑢1 ≠ 0               

𝑢𝑢1 =
𝑚𝑚

𝐶𝐶𝑥𝑥1𝐶𝐶𝑥𝑥3
��̈�𝑧𝑑𝑑 − 𝑐𝑐11 �−𝑐𝑐11𝑒𝑒11 + 𝑘𝑘11 � 𝑒𝑒11𝑑𝑑𝜏𝜏

𝑡𝑡

0
+ 𝑒𝑒12� + (𝑘𝑘11 − 1)𝑒𝑒11

−𝑐𝑐12𝑒𝑒12 − 𝑎𝑎11𝑦𝑦12 + 𝑚𝑚 − 𝑘𝑘12𝑐𝑐𝑖𝑖𝑚𝑚𝑎𝑎(𝑒𝑒12)
�

 

 

Proof: for i=1, we have: 

𝑖𝑖 = 1 → �
𝑒𝑒1 = 𝑥𝑥1 − 𝑥𝑥1𝑑𝑑

𝑉𝑉1 =
1
2
𝑒𝑒12 +

1
2
𝑒𝑒𝑓𝑓12

 

�̇�𝑉1 = 𝑒𝑒1(�̇�𝑥1𝑑𝑑 − 𝑐𝑐1𝑒𝑒1 + 𝜍𝜍1 − 𝑓𝑓𝑠𝑠1 − �̇�𝑥1𝑑𝑑) + 𝑒𝑒𝑓𝑓1 
In order to compensate the effect of roll 

movement velocity sensor fault, we 
introduce an integral that can alleviate the 
trace fault. We consider: 

𝜍𝜍1 = 𝑘𝑘𝑘𝑘𝑠𝑠1 � 𝑒𝑒1
𝑡𝑡

0
𝑑𝑑𝜏𝜏 

Therefore, we have: 

�̇�𝑉1 = −(𝑒𝑒1 𝑒𝑒𝑓𝑓1) �𝑐𝑐1 1
k1 0� �

𝑒𝑒1
𝑒𝑒𝑓𝑓1�

= −𝑒𝑒1−TΥ1e�1 ≤ 0 

C1 and k1 are utilized to make a definite 
positive matrix of Υ1 and this means that 
V̇1 ≤ 0. 

For i=2, we have: 

𝑖𝑖 = 2 → �
𝑒𝑒2 = 𝑦𝑦2 − �̇�𝑥1𝑑𝑑 + 𝑐𝑐1𝑒𝑒1 − 𝜍𝜍1

𝑉𝑉2 = 𝑉𝑉1 +
1
2
𝑒𝑒22

 

And  
�̇�𝑉2 = 𝑒𝑒1�−𝑐𝑐1𝑒𝑒1 − 𝑒𝑒𝑓𝑓1� + 𝑒𝑒𝑓𝑓1[(−𝑘𝑘1𝑒𝑒1)

+ 𝑒𝑒2(𝑎𝑎1𝑦𝑦4𝑦𝑦6 
+𝑎𝑎2𝑦𝑦22 + 𝑎𝑎3𝛺𝛺�𝑟𝑟𝑥𝑥4 + 𝑏𝑏1(𝑢𝑢2 + 𝑓𝑓𝑎𝑎1) − �̈�𝑥1𝑑𝑑 
+𝑐𝑐1�−𝑐𝑐1𝑒𝑒1 − 𝑒𝑒𝑓𝑓1� − 𝑘𝑘1 + Υ𝑎𝑎1 + 𝑏𝑏1𝑢𝑢2] 

The consistency of (e1, e2) can be 
calculated through the introduction of a u2 
input control as follows: 

𝑢𝑢2 =
1
𝑏𝑏1

(�̈�𝑥1𝑑𝑑 − 𝑐𝑐1(−𝑐𝑐1𝑒𝑒1 + 𝜍𝜍1 + 𝑒𝑒2)

+ (𝑘𝑘1 − 1)𝑒𝑒1 − 𝑐𝑐2𝑒𝑒2
− 𝑎𝑎1𝑦𝑦4𝑦𝑦6 − 𝑎𝑎2𝑦𝑦22 − 𝑎𝑎3𝛺𝛺�𝑟𝑟𝑦𝑦4
− 𝜍𝜍2), 𝑐𝑐2 > 0 

And, 
�̇�𝑉2 = −𝑒𝑒1−𝑇𝑇𝛶𝛶1�̅�𝑒1 − 𝑐𝑐2𝑒𝑒22 − 𝑒𝑒2(𝜍𝜍2 − 𝛶𝛶𝑎𝑎1)) 

|𝛶𝛶𝑎𝑎1| = 𝑏𝑏1|𝑓𝑓𝑎𝑎1| < 𝑘𝑘2 
𝜍𝜍2 = 𝑘𝑘2𝑐𝑐𝑖𝑖𝑚𝑚𝑎𝑎(𝑒𝑒2) → �̇�𝑉2

≤ −𝑒𝑒1−𝑇𝑇𝛶𝛶1�̅�𝑒1 − 𝑐𝑐2𝑒𝑒22

− |𝑒𝑒2|(𝑘𝑘2 − |𝛶𝛶𝑎𝑎1|) 
(𝑘𝑘2 − |𝛶𝛶𝑎𝑎1|) > 0 →→ �̇�𝑉2 ≤ 0 

The stages above are repeated to calculate 
u3, u4, ux, and uy. 

Simulation 

Simulation is done in two forms. First 
without faults of the actuator and sensor and 
then regarding the faults in sensor and 
actuator. Sensor fault is considered %50 of 
the maximum amounts of angular and linear 
velocity and the resultant fault of the 
actuators is related to the roll, pitch, yaw, and 
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height movement angles regarding %20 of the 
maximum amounts of them in seconds 5, 9, 
12, 15, 20, 24, 27, and 30 enforced on the 

system. The amounts required for simulation 
are represented in table 1 [26]. 
 

Table 1- The amounts of parameters utilized in simulations 
 

Value Parameter 
0.486 kg m 
9.806 𝑚𝑚 𝑐𝑐2�  g 
0.25 m l 
2.9842× 10−5 𝑁𝑁 𝑟𝑟𝑎𝑎𝑑𝑑 𝑐𝑐�

�  b 

3.2320× 10−7 𝑁𝑁 𝑟𝑟𝑎𝑎𝑑𝑑 𝑐𝑐�
�  d 

2.8385× 10−7 𝑘𝑘𝑚𝑚.𝑚𝑚2 𝐽𝐽𝑟𝑟 
diag(3.8278,3.8278,7.1345) × 10−3 𝑘𝑘𝑚𝑚.𝑚𝑚2 𝐼𝐼(𝑥𝑥,𝑥𝑥,𝑧𝑧) 

diag(5.5670,5.5670,6.3450) × 10−4 𝑁𝑁 𝑟𝑟𝑎𝑎𝑑𝑑 𝑐𝑐�
�  𝐾𝐾𝑓𝑓𝑎𝑎(𝑥𝑥,𝑥𝑥,𝑧𝑧) 

diag(0.0320,0.0320,0.0480) × 10−4 𝑁𝑁 𝑚𝑚 𝑐𝑐⁄�  𝐾𝐾𝑓𝑓𝑡𝑡(𝑥𝑥,𝑥𝑥,𝑧𝑧) 

4.3× 10−4 𝑁𝑁.𝑚𝑚
𝐴𝐴�  𝐾𝐾𝑚𝑚 

5.6 𝐾𝐾𝑔𝑔 
0.67 ohms 𝑅𝑅𝑎𝑎 

 

 
 

Fig.4. Angular Velocity of the Roll Fig.5.Angular Roll graph 

 
 

Fig.6.Angular velocity of the pitch 
 

Fig.7.Pitch angle 
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Fig.8.Angular velocity of yaw Fig.9.Yaw angle 

  
Fig.10 Linear velocity of X Figu.11.Movement throughout X axis 

 
 

Fig.12. Linear velocity of Y Fig.13. Movement throughout Y axis  

 

 
Fig.14.Linear velocity throughout X axis Fig.15. Movement throughout Z axis 
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Fig.16.Input control u1 Fig.17.Input control u2 

  

Fig.18. Input control u3 Fig.19. Input control u4 

 
 

Fig.20.Flight route Fig.21.Angular velocity of roll 

  
Fig.22. Roll angle Fig.23.Angular velocity of pitch 
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Fig.24.Pitch angle 
 

Fig.25.Angular velocity of yaw 
 

 
 

Fig.26.Yaw angle Fig.27.Linear velocity of x 

 
 

Fig.28. X position Fig. 29.Linear velocity of Y 

 

 
Fig.30. Y position Fig.31. Linear velocity of Z 



Journal of Artificial Intelligence in Electrical Engineering, Vol.8, No. 29, March 2019 
 

37 
 

 

 

Fig.32.Z position 
 

Fig.33.Input control u1 
 

  
Fig.34. Input control u2 

 
  Fig.35.Input control u3 

 

 

 
  Fig.36. Input control u4 

 

Fig.37. Flight route 
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In figures 4, 6, and 8 which represent 
angular velocity of roll, pitch, and yaw, we 
observed an optimal tracing. The trace of roll, 
pitch, and yaw angles in without fault form 
represented in figures 5, 7, and 9 are optimal. 
In without fault format, the figures of linear 
velocity and movement throughout the axes 
x, y, and z represented in figures 10, 12, 14, 
11, 13, and 15 showed optimal amounts and 
appropriate traces. u1, u2, u3, and u4 are 
control signals of the system in without faults 
mode and are represented in figures 16, 17, 
18, and 19, respectively, and they have 
optimal amounts, although there are some 
trivial fluctuations. The flight route tracing 
has been carried out appropriately in without 
fault format as it has been represented in 
figure 20. In the state of faults and in the 
presence of actuator and sensor faults 
enforced, the tracing of angular velocity and 
roll, pitch, and yaw angles represented in 
figures 21, 23, 25, 22, 24, and 26, 
respectively, has been appropriate. Figures 
27, 28, 29, 30, 31, and 32 which represented 
linear velocity and movement throughout the 
axes x, y, and z in with fault format have 
shown appropriate tracing. In faulty format, 
the system control signals of u1, u2, u3, and u4 
which have been represented in figures 33, 
34, 35, and 36, respectively, showed optimal 
amounts. The flight route tracing has been 
carried out appropriately in faulty format as it 
has been represented in figure 37. 

Results and discussion 
In the present study first we have used 

Newton-Euler method to model the 
quadrotor. Then, the resistant control based 
on back-stepping has been utilized to control 

the system. Actuator and sensor faults were 
added to the system afterwards. Then, the 
control rules were calculated for a state 
through which the system encountered with 
faults in the actuator and the sensor. The 
system consistency was approved using 
Lyapanov functions. The simulations were 
carried out in MATLAB software and the 
results showed system consistency and 
efficient system control in both states (with 
and without faults) 
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