
Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 49, April 2024 

 

25 

 

Service Placement in a Fog Computing 

Environment with Knowledge of Service Quality 

Yousef Abofathi1, Babak Anari2, Mohammad Masdari3 
1,3Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran 

2 Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran 

Email: anari322@gmail.com  

 

Received: 03 January 2024            Accepted: 22 August 2024      Published:15 February 2025 

Abstract 

Fog computing has been proposed to meet the growing demands of Internet of Things users with low 

latency and high bandwidth. Fog computing has extended cloud computing services to the edge of the 

network. In this research work, the methods of deploying services in the fog computing environment 

have been investigated with a focus on service quality. Considering challenges such as resource 

constraints, heterogeneous environments, and dynamic network conditions, a new framework for 

deploying services aware of multifaceted aspects of service quality, including response time, 

availability, reliability, and latency, is proposed. In this article, a new method called DLA-SPSQ is 

used for optimal placement of clustered services based on service quality criteria. The proposed 

algorithm is a combination of FCS and DLA-FMP algorithms. The fuzzy FCS algorithm clusters IOT 

user requests based on the quality-of-service criteria. The quality of clusters is validated based on 

evaluation criteria. A single objective cost function is used to evaluate the loop delay of 

modules/services. The results show the improvement of the proposed method in clustering services 

compared to the case of not clustering them.  

Keywords: fog computing, distributed learning automata, quality of service, fuzzy 

clustering of services, placement of services. 

 

1. Introduction 

Cisco announced that more than 75 billion 

devices will be connected to the Internet by 

2025, generating massive amounts of 

data[1]. Processing large amounts of data 

with limited resources in real-time is 

practically impossible. Cloud computing has 

been used to solve the problem of data 

processing. Cloud computing also faces 

increased latency, bandwidth limitations, 

privacy, and security issues. Fog computing 

was used to overcome the problems of cloud 

applications. Fog computing has extended 

cloud computing services to the network's 

edge, processing, analysing, and storing data 

at locations close to users (IoT). Using fog 

computing results in reducing the amount of 

data sent to the cloud, reducing delay and 

calculation costs, and increasing scalability. 

With all its benefits, fog computing has 

challenges such as optimal placement of 

modules/services, resource management, 

network interference and latency, data 

management, adaptation to changing 

environments, security issues, and privacy 



ANARI et al : Service Placement in A Fog Computing Environment with Knowledge of Service Quality 

26 

 

protection. Optimum placement of services 

in the fog environment due to the 

heterogeneous nature and limited capacity 

of most fog nodes (limited resources), 

environment dynamics, creation and 

removal of resources in the fog network, 

moving people, changing infrastructure and 

application information over time (e.g., 

workload change) and geographic 

distribution of fog devices on an extensive 

infrastructure is a complex issue. Due to the 

mentioned reasons, the problem of placing 

services/modules of Internet of Things 

applications can be considered an NP-Hard 

combinatorial optimization problem[2, 3]. 

In this research work, optimal placement is 

done on services selected in fuzzy 

clustering. Fuzzy clustering is performed on 

them based on service quality criteria. The 

selected service quality criteria are response 

time, availability, reliability, and delay. The 

working method is that the services are 

initially clustered based on the service 

quality criteria with the proposed DLA-

SPSQ algorithm after removing outliers 

from the loaded data set. Clustering 

evaluation criteria have been used to 

validate the quality of clusters. According to 

the need of the problem and the acceptable 

values for the evaluation criteria, clustering 

with three clusters has been chosen in this 

research. The XB and average evaluation 

criteria in each cluster have been used to 

determine the priority among the three 

clusters for implementation. After clustering 

the data set, the services of each cluster are 

optimally placed in a distributed learning 

automata system according to the DLA-

FMP algorithm. Most of the presented 

methods for solving the problem of 

placement of services/modules are based on 

evolutionary algorithms and without 

clustering the requests of Internet of Things 

users, which are unsuitable for online 

applications due to the time-consuming 

search for the solution space. 

A local and global search framework is 

designed to locate the modules in the fog 

topology to implement the DLA-FMP 

algorithm. To map fog topology to 

distributed learning automata, a proposed 

framework has been modelled in the paper 

x. The proposed algorithm can be used in 

dynamic environments, and local and global 

search can be performed simultaneously in 

the fog environment. The proposed method 

can be applied to any topology with a high 

convergence speed. With this method, it is 

possible to make maximum use of the 

available capacity of fog nodes in the lower 

layers and close to the Internet of Things 

layer, and it is possible to achieve the 

minimum delay and reduce the execution 

time of tuples and network consumption 

The main contribution of this article is as 

follows: 

 Designing a framework for fuzzy 

clustering of services based on service 

quality criteria. 

 Providing a new approach for 

optimal service placement according to 

service quality criteria. 

 Ability to implement the proposed 

method for homogeneous and 

heterogeneous topology. 

 Validation of the proposed algorithm 

regarding service execution delay 

criteria, tuple executiondelay, and 

network usage reduction. 

This paper is further organized as follows: 

Section 2 provides a summary of related 

studies, and Section 3 provides concepts 

related to fuzzy clustering of services, 

module/service placement problems, 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 49, April 2024 

27 

 

learning automata, distributed learning 

automata, and the evaluated criteria given in 

the optimal placement of services. The 

proposed method is explained in Section 4. 

In section 5, the simulation results and their 

analysis are given. Finally, Section 6 

includes conclusions and future directions. 
 

2. Related Works 
 

This section summarizes several studies 

related to fuzzy clustering strategies of 

services and their optimal placement in the 

fog environment. These studies are 

motivated by fuzzy system clustering and 

optimization goals such as minimizing delay 

or improving service quality. The work 

related to the fuzzy clustering of services 

has been done in this article. Most of the 

studies about optimization have been done 

in the first article of this research, and here, 

they are listed in a categorized manner to 

complete the scope of the proposed 

algorithm. 
 

A) Several articles of the work 

done about fuzzy clustering of systems 

are summarized below: 

In[4], the authors address some common 

challenges in the Internet of Things, such as 

managing large volumes of data and the 

need for real-time processing, with the 

possibility of more efficient and accurate 

data clustering. This is particularly 

important for IoT applications where data 

classification is fundamental to decision-

making processes, such as smart cities, 

healthcare monitoring systems, and 

industrial automation. 

In[5], the researchers propose an 

innovative algorithmic solution that 

concurrently optimizes for latency, 

bandwidth, throughput, cost, and energy 

consumption to make deployment decisions. 

They incorporate a Pareto optimization 

technique, which allows stakeholders to 

understand the trade-offs and make 

informed choices about their deployment 

strategies. 

In [6], the authors present an innovative 

mechanism for embedding Internet of 

Things (IoT) services in a fog computing 

environment that prioritizes Quality of 

Service (quality of service). Acknowledging 

the importance of meeting quality of service 

criteria such as latency, throughput, and 

reliability, the authors have proposed a new 

service placement strategy using an open-

source development model. 

In [7],a set of developed algorithms for 

managing the deployment process is 

described. These algorithms consider the 

different QoS requirements of different IoT 

applications and balance these requirements 

against the current capabilities and load on 

cloud and fog resources. Key to this process 

is the dynamic assessment of network 

conditions, user demands, and service 

importance to ensure that QoS objectives 

are consistently met. 

In[8], various algorithms for service 

placement and resource management, which 

are designed to maintain quality of service 

standards, have been discussed. These 

algorithms focus on minimizing latency, 

maximizing bandwidth, and ensuring 

reliability and fault tolerance in IoT 

services. 

The model proposed in[9]considers 

different quality of service requirements in 

the context of IoT, such as ensuring low 

latency, high throughput, and fixed network 

stability. It features a new architectural 

solution that uses fog nodes—gateways, 

routers, or other edge devices—to distribute 



ANARI et al : Service Placement in A Fog Computing Environment with Knowledge of Service Quality 

28 

 

the computing load between the cloud and 

end devices. For this, it uses an adaptive 

mechanism that can dynamically evaluate 

the service demands of IoT applications in 

real-time and align them with the 

capabilities of fog nodes. For example, an 

intelligent traffic system requires immediate 

data processing for effective traffic control, 

which this model prioritizes with efficient 

use of edge computing resources. 

The authors in [10]propose a new approach 

that combines fuzzy logic with meta-

heuristic algorithms for resource 

provisioning. Fuzzy logic is applied to 

provide a more flexible decision-making 

process that can handle the imprecision and 

uncertainty inherent in cloud environments. 

It adjusts resource provisioning more subtly 

than binary logic, which is either too 

aggressive or too conservative. In this 

article, fuzzy clustering is used to classify 

the demand for input resources into different 

fuzzy categories, and a meta-heuristic 

algorithm optimizes the allocation of 

resources in each cluster. 

In[11], fuzzy clustering can be used to 

improve data analysis, resource allocation, 

and load balancing by assigning workloads 

to the most appropriate computing layers 

(cloud canter or edge devices in the fog) and 

managing inherent uncertainty and 

variability. The performance and capacity of 

these resources have been investigated. 

In [12], a fuzzy approach for deploying 

IoT applications in cloud computing 

environments better aligns with real-world 

deployment scenarios' dynamic and 

complex nature and outperforms rigid, rule-

based systems. 

B) Here, based on the optimization 

strategies used, a classification of 

advanced studies is presented, which are 

(i) mathematical optimization, (ii) 

heuristic techniques, (iii) meta-

heuristics, (iv) machine learning, and (v) 

Other materials and methods. 

 
 

Mathematical optimization techniques 

Mathematical optimization is finding the 

best value for an objective function in a 

permissible set, calculated as the maximum 

or minimum value based on some criteria. 

In this method, unlike the complex problem 

of module placement, more minor problems 

can be solved because examining the entire 

solution space in complex problems requires 

high execution time. Different mathematical 

optimization models that have been used in 

fog computing can be called integer linear 

programming[13], mixed integer linear 

programming[14], and non-linear integer 

programming methods [15, 16] which are 

done as discrete and continuous 

optimization. Mathematicians have long 

used this method to solve optimization 

problems in all sciences, including 

computers and engineering. 

Heuristic techniques 

The module placement problem is 

computationally very complex due to the 

dynamic nature of the fog infrastructure, 

and analyzing the entire solution space can 

be more practical. In this case, heuristic 

techniques are often used to arrive at the 

answer. Heuristic techniques use 

information from previous experiences with 

similar problems to solve problems. 

Heuristic techniques include rules that make 

it easy to implement a practical solution to 

complex problems but have no guarantee of 

performance[3, 14]. 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 49, April 2024 

29 

 

Metaheuristic techniques 

Today, more meta-heuristic methods are 

used to solve complex and challenging 

problems. These methods are inspired by 

nature and are high-level techniques for 

modeling and optimization. Meta-heuristic 

methods are optimized by selecting random 

solutions and acting as a black box. 

Effective and efficient exploration of the 

search space avoids local optimization due 

to the stochastic nature of the method. It 

improves better solutions in a reasonable 

amount of time through an iterative search 

process[17-19]. 

Machine learning techniques 

In several cases, machine learning 

techniques have been used to solve the 

problem of placing modules. This method 

uses data to improve performance among a 

set of tasks. Based on sample data (training 

data), it makes a model for decision-making 

and necessary predictions without explicit 

planning. Machine learning algorithms have 

been used in various cases, such as speech 

recognition, health care[20], machine 

vision, etc. Developing conventional 

algorithms to perform the required tasks is 

impossible and difficult. 

Other techniques 

Several other strategies have also been 

reviewed in the literature. A new method 

called multi-fog placement (MFP) has been 

introduced [21]to place resources in the 

Internet of Things systems in the fog 

environment. In this paper, the authors have 

used multi-region fog architecture, 

including several fog nodes, to reduce delay 

and energy consumption. Comprehensive 

studies on service placement algorithms 

have been done[22-26]. 

 

3. Preliminaries 

This section describes the basic elements 

underlying the challenge of fuzzy clustering 

of services/modules and their optimal 

placement, the principles of machine 

learning, and the framework of distributed 

learning machines. 

3-1- Fuzzy clustering of services 

The concept of fuzzy clustering of Internet 

of Things (IoT) users’ service quality 

criteria using Fuzzy C-Means (FCM) in a 

fog network environment entail creating 

groups (clusters) of IoT service quality 

experiences and preferences that are not 

sharply defined but overlap. This approach 

recognizes the subjective and varied nature 

of user experiences in IoT applications and 

the importance of latency-sensitive and 

context-aware processing provided by fog 

networking. Here is a summary of how 

FCM applies to IoT quality of service 

metrics in a fog network deployment: 

 Quality of Service Data Collection: 

This involves collecting various quality of 

service metrics from IoT devices spread 

throughout the cloud network. These 

metrics can include response time, 

availability, reliability, latency, and others, 

which may vary in importance depending on 

the specific IoT context and application. 
 

 Application of FCM for 

Clustering: 

Deploy the FCM algorithm to analyze the 

service quality data. Since FCM allows for 

fuzzy membership, each IoT user or device 

can belong to multiple clusters that 

represent different service quality profiles or 

experiences. 
 



ANARI et al : Service Placement in A Fog Computing Environment with Knowledge of Service Quality 

30 

 

 Initialization: Choose the number 

of clusters and initialize the cluster 

centres. 

 Membership Assignment: 

Compute the membership degree of 

each IoT user’s service quality data for 

each cluster. 

 Centroid Update: Update the 

cluster centroids based on the calculated 

membership degrees and the service 

quality data. 

 Iterative Process: Iterate the 

assignment and update steps until the 

centroids stabilize within a small 

tolerance limit. 

 Interpretation of Clusters: 

Assess the resulting clusters to understand 

different categories or levels of service 

quality experienced by users across the fog 

network. It can be insightful to identify 

clusters that reflect high satisfaction, 

moderate satisfaction, and low satisfaction, 

for example. 

 

 Action based on Cluster Analysis:  

Utilize the insights from cluster analysis to 

optimize resource distribution, improve 

service delivery, and forecast future 

demands or the need for infrastructure 

adjustments in the fog network.By using 

FCM, the fog network can reliably interpret 

the nuanced, user-reported experiences of 

service quality, accommodating the 

inherently imprecise and overlapping 

evaluation that different IoT users might 

have. Furthermore, the localized data 

analytics capability of fog computing allows 

for real-time or near-real-time clustering 

and analysis, whichis crucial for 

promptquality of service adjustments and 

enhancements in IoT systems. 

3-2- Module Placement ProblemDefinition 

Suppose an array of IoT applications for 

processing 

as𝐴𝑝𝑝{𝐴𝑝𝑝1, … , 𝐴𝑝𝑝𝑘, . . . , 𝐴𝑝𝑝𝑛} 

defined.𝐴𝑝𝑝𝑘 representing a collection of 

m modules, as 

{𝑀(𝑘,1) , … , 𝑀(𝑘,𝑡), … , 𝑀(𝑘,𝑚)}. These 

modules are mandated to execute within the 

virtualized spheres of either the cloud or the 

fog on demand from a user. The optimal 

placement of each module unto an 

appropriate fog node is contingent upon a 

specific cost metric. Modules are 

characterized by the Equation (1). 
 

𝑀𝑘,𝑡

= {𝑀𝑘,𝑡
𝐶𝑃𝑈, 𝑀𝑘,𝑡

𝑅𝐴𝑀 , 𝑀𝑘,𝑡
𝐷𝑖𝑠𝑘 , 𝑀𝑘,𝑡

𝐵𝑊 , 𝑀𝑘,𝑡
𝐷𝐿 , 𝑀𝑘,𝑡

𝑠𝑖𝑧𝑒} 

(1) 

 

In Equation (1), 𝑀𝑘,𝑡
𝐶𝑃𝑈, 𝑀𝑘,𝑡

𝑅𝐴𝑀, 𝑀𝑘,𝑡
𝐷𝑖𝑠𝑘, 

𝑀𝑘,𝑡
𝐵𝑊, 𝑀𝑘,𝑡

𝐷𝐿, and 𝑀𝑘,𝑡
𝑠𝑖𝑧𝑒 correspond to the 

module’s requisites for processing 

capability, RAM, main memory, network 

traffic to serve the module, execution 

deadline (in milliseconds), and the volume 

of module instructions (in 

MIPS),respectively. The process of 

assigning modules,𝑀𝑘,𝑡 where t belongs to  t 

ɛ{1,…, |𝐴𝑝𝑝𝑘| } from applications𝐴𝑝𝑝𝑘, k 

∈{1,…, n} to fog nodes 𝐹𝑜𝑔(𝑖,𝑗), iɛ{0,…, L}, 

jɛ{0,…, ni} is performed such that the best 

possible solution can be reached with the 

lowest value of the cost function without 

violating the service level agreement (SLA) 

and disrupting the QoS. It is known as the 

service/module placement problem. 

3-3- Learning Automata 

The method of automata-based learning 

involves selecting the most suitable action 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 49, April 2024 

31 

 

from a range of possible actions. An 

automaton selects an action from its limited 

action set to use in a random environment. 

This environment then the chosen action 

and provides feedback to the automaton. 

With the feedback, the automaton refines its 

action-selection mechanism, specifically its 

probability distribution of actions. This 

process — from action selection by the 

automaton to environmental application and 

assessment to the adjustment of the action 

probability distribution —iterates until the 

automaton achieves a predefined goal state. 

An automaton that adapts to a random and 

unknown environment and enhances its 

performance is called a learning automaton. 

This concept was introduced by [27, 28]. 

Learning automata have found utility across 

diverse areas, such as computer 

networks[29],fuzzy logic systems[30], 

image analysis[31], chaos theory[32], 

structure identification in Bayesian 

Networks[33, 34], advanced reinforcement 

learning[35], and the dissection and 

interpretation of speech [36]. Figure 1 

illustrates the interaction between a learning 

automaton and its stochastic environmental 

context. 
 

 

Fig.1. Mutual interaction between learning 

automata and the random environment 

 

Learning automata are classified into 

fixed-structure learning automata (FSLA) 

and variable-structure learning automata 

(VSLA). Within a fixed-structure 

automaton, the probabilities associated with 

selecting actions and the probabilities 

governing transitions between states are 

static. Conversely, in a variable-structure 

automaton, these same probabilities—the 

action selection likelihoods and state 

transition frequencies—are dynamic, 

evolving as time progresses. The variable-

structure learning automaton (VSLA) can be 

conceptualized as LA={α,β,P,T}, where it 

encapsulates the permitted actions available 

to the automaton,  represents the 

environmental feedback (reinforcement 

signals) in reaction to the automaton’s 

selected action, constitutes the set of 

probabilities for each action (Element Pi 

indicates the probability of choosing action 

αi). T denotes the learning algorithm 

updating the automaton’s action probability 

vector based on the received environmental 

feedback. In binary environments, the 

feedback from the environment to the 

automaton’s action is interpreted as either 

positive/rewarding (β=0) or negative/ 

penalty (β=1). The most fundamental 

learning algorithm is linear, which is 

formalized in Equations (2) and (3). When 

the automaton’s action is rewarded by the 

environment, the action probability vector 

gets updated as specified in Equation (2). 

Conversely, if the environment penalizes the 

automaton’s action, the update is carried out 

per Equation (3). Within Equations (2) and 

(3), the variables ‘a’ and ‘b’ act as tuning 

parameters for rewards and penalties, 

respectively, affecting the increment and 

decrement rates of the action probabilities. 

(2) 
𝑝𝑗(𝑛 + 1) = {

𝑝𝑗(𝑛) + 𝑎 (1 − 𝑝𝑗(𝑛)) , 𝑖𝑓 𝑗 = 𝑖

(1 − 𝑎)𝑝𝑗(𝑛),                  𝑖𝑓 𝑗 ≠ 𝑖
 

 

(3) 𝑝𝑗(𝑛 + 1) = {

(1 − 𝑏)𝑝𝑗(𝑛),                𝑖𝑓 𝑗 = 𝑖

𝑏

𝑟 − 1
+ (1 − 𝑏)𝑝𝑗(𝑛), 𝑖𝑓 𝑗 ≠ 𝑖

 



ANARI et al : Service Placement in A Fog Computing Environment with Knowledge of Service Quality 

32 

 

 

3-4- Distributed learning automata 

A distributed learning automata (DLA) is a 

new model of interconnected automata in 

which a set of automatons cooperate to 

solve a specific problem. Choosing an 

action by an automaton in the network 

activates the automata corresponding to this 

action. Only one automaton is active in the 

network at any time. A DLA with n learner 

automatons can be defined by a directed 

graph (A, E) where A= {A1, A2,···,An}is the 

set of automata and E⊂A×A is the set of 

edges such that the edge ( i,j) corresponds to 

the jth action from automata Ai to automata 

Aj. Ajwill be activated when the learning 

automata action Aj is selected. The number 

of actions of the learning automata Ak, 𝑘 =

1,2,3, … , 𝑛,equals the degree of the output of 

the node corresponding to the learning 

automata Ak (Figure 2). 

 

Fig. 2. Distributed learning automata with 

three automatons 

3-5- Application Loop Delay 
 

Each fog node has a waiting queue in 

which the tuples are placed as soon as they 

arrive at the nodes. In fog nodes, each tuple 

is removed from the queue and processed 

with the default FIFO policy. The 

application execution loop delay (D) 

between the user and the deployed fog 

nodes is calculated using Equation (4). 

 

D= ∑ (Ts→f +

∞

for each APPj

∑ (PDf→fˊ + T
f→fˊ
Trans + Tf

Queue
+

|APPj|−1

i=1

 Tf
process

)  +  Tf→a ) 

 

(4) 

 

where 𝑇𝑠→𝑓 is the transfer time from the 

sensor to the first fog node, and 𝑇𝑓→𝑎 is the 

transfer time from the last fog node to the 

actuator; moreover, T
f→fˊ
Tran, The transmission 

delay is based on the length of the tuples 

and the network bandwidth between two 

end-to-end nodes, which is calculated using 

equation (5). 

T
f→fˊ
Trans    = TupleNwLength 

Bandwidth
 (5) 

 

In equation (5), Bandwidth and 

tupleNwLength, respectively, indicate the 

link's Bandwidth and the size of the tuple 

used between two end-to-end fog nodes in 

the network. The waiting time of each fog 

node is calculated using equation (6). 

𝑇𝑓
𝑄𝑢𝑒𝑢𝑒 = ∑ 𝑇

ɨ
𝑤𝑎𝑖𝑡

𝑛

ɨ=1

 
(6) 

 

where 𝑇ɨ
𝑤𝑎𝑖𝑡,ɨɛ{1,2, 3,…,n}is the waiting 

time for the tuple ɨthin the waiting queue. 

The execution time at each fog node is 

calculated using equation (7). 

𝑇𝑓
𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = ∑ 𝑇Ɨ

𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑛

Ɨ=1

 
(7) 

In the above equation, 𝑇Ɨ
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 is the 

execution time of the ɨth tuple in each fog 

and iscalculated as Equation (8). 

 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 49, April 2024 

33 

 

𝑇Ɨ
𝑝𝑟𝑜𝑐𝑒𝑠𝑠 =  

𝑇𝑢𝑝𝑙𝑒𝐶𝑝𝑢𝐿𝑒𝑛𝑔𝑡ℎ

𝑇𝑜𝑡𝑎𝑙_𝑀𝐼𝑃𝑆𝑜𝑓𝑓𝑜𝑔
 

(8) 

 

In equation (8), TupleCpuLength indicates 

the processing required to execute a tuple, 

and Total_MIPS of the fog indicates the 

total MIPS allocated to the processing 

element node of each fog (PE). The 

propagation delay is calculated using 

equation (9) between two adjacent fog 

nodes. 

𝑃𝐷𝑓→𝑓ˊ =
𝐷𝑓→𝑓ˊ

𝑃𝑆
 

(9) 

The end-to-end distance between two 

adjacent fog nodes is indicated by 𝐷𝑓→𝑓ˊ, PS 

indicates the speed of light, and its size is 

equal to3 ∗ 108m/s
. 

 

3-6- Tuple CPU Execution Delay criterion 

The execution delay of tuple processing is 

calculated using Equation (10). 
 

Tuple Cup Execution Delay= 

∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐶𝑝𝑢𝑇𝑖𝑚𝑒(𝑇𝑢𝑝𝑙𝑒𝑇𝑦𝑝𝑒)

∞

 𝑓𝑜𝑟 𝐴𝑙𝑙 𝑇𝑢𝑝𝑙𝑒 𝑇𝑦𝑝𝑒

 

(10) 

 

 

where AverageCpuTime indicates the 

average execution time of each type of 

entered tuple.  

3-7- Network Usage criterion  

IOT input devices transmit the data 

required for processing in multiple byte 

units to fog or cloud nodes in higher layers. 

The amount of data sent and received by the 

network is called network usage. Network 

utilization is calculated using equation(11). 

Network usage depends on the size and 

overall delay of the request between the 

source device and the user's desired 

destination. 
 

Network usage= Latency*TupleNwSize (11) 
 

In equation (11), Latency indicates the 

sending delay of each node in the fog 

network, and TupleNwSize indicates the file 

size of each sent tuple. 
 

4. The Proposed DLA-SPSQ 

Algorithm  
 

The proposed Distributed Learning 

Automata-Service Placement based Service 

Quality (DLA-SPSQ) method is performed 

in two steps, which are: 

1. Fuzzy clustering of services 

2. Optimum placement of 

services based on distributed 

learning automata 

Fuzzy clustering of services is done by 

FCS Algorithm and optimal placement of 

services is done based on distributed 

learning automata by DLA-FMP method, 

each of the methods are explained in order 

below. 
 

4-1- Fuzzy clustering of services (FCS) 

Web service quality of service (QoS) is 

essential to the overall user experience. This 

includes response time, availability, 

reliability, and latency. Due to the wide 

variation and uncertainty in these 

parameters, the fuzzy logic approach is 

often used. Fuzzy logic enables more 

flexible and realistic modeling of complex 

systems by handling fuzzy and ambiguous 

data. Fuzzy-based clustering is a 

classification method in machine learning 

where data elements are grouped based on 

https://www.google.com/search?q=my+purpose+framework&spell=1&sa=X&ved=2ahUKEwj34KTE09n1AhX5A2MBHTHUCXIQkeECKAB6BAgBEDM
https://www.google.com/search?q=my+purpose+framework&spell=1&sa=X&ved=2ahUKEwj34KTE09n1AhX5A2MBHTHUCXIQkeECKAB6BAgBEDM


ANARI et al : Service Placement in A Fog Computing Environment with Knowledge of Service Quality 

34 

 

their similarity. In the QoS of web services, 

fuzzy-based clustering can separate services 

into different quality levels or groups based 

on specific QoS characteristics. This allows 

easy management and prioritization of 

services. 

 

Fuzzy-based QoS clustering of web 

services has been widely used and 

researched. Several models and techniques 

have been proposed to improve service 

selection, matching, and composition in web 

services. Continued development in this 

area promises more efficient and user-

centric web services. 

AlgorithmFCS 

1. Load dataset. 

2. Remove extraneous data from 

dataset. 

3. fuzzy clustering. 

4. Calculate below the Evaluation 

criteria of clustering for validating cluster 

quality. 

A) PC (Partition Coefficient) 

B) CE (Classification 

Entropy) 

C) XB (Xie-Beni Index)  

D) avgSilhouette 

5. Determining the priority of clusters 

for placing services according to the XB 

values of each cluster and the average value 

of clustering quality criteria in each cluster. 
 

Each of the steps of the FCS algorithm is 

explained in order below. 
 

 Load dataset 

In this section, the method of loading 

datasets in different formats for fuzzy 

clustering of web services requested by 

Internet of Things users to run in the fog 

network by the Load dataset algorithm is 

explained in two modes. 

Algorithm Load dataset 

Input:your dataset 

1. Load datasetfrom mat file: 

 //Path and file name with extensionmat. 

path='D:\aaaFuzzy110\fuzzy 

classification\datasetName.mat' 

Data=load(path); 

2. Load datasetfrom xlsx file: 

 /Path and file name with extensionxlsx. 

file Path = 'C:\Users\Home\Desktop\ 

xlsxFileName.xlsx' 

Data = xlsread(filePath); 

 

 Remove extraneous data from 

dataset. 

Outliers can significantly bias clustering 

results because they may be inappropriately 

attributed to the degree of membership in a 

cluster. To remove outliers, you should 

consider preprocessing your data. 

While MATLAB does not have a built-in 

function specifically to detect and remove 

outliers for direct FCM, it is certainly 

possible to combine several steps and 

techniques to detect outliers before 

performing FCM. Use statistics, including: 

1) Standard deviation method: If the 

data is normally distributed, about 68% 

of the data values fall within one 

standard deviation of the mean and 95% 

fall within two standard deviations. 

Data points that lie beyond a certain 

threshold may be considered outliers. 

2) Interquartile range (IQR): The spread 

of the middle 50% of values. Anything 

more than 1.5 times the IQR above the 

third quartile and below the first 

quartile can be considered an outlier. 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 49, April 2024 

35 

 

3) Standard Deviation Method: If data is 

normally distributed, then around 68% 

of data values will lie within one 

standard deviation of the mean, and 

95% within two standard deviations.  

4) Boxplot Analysis: Using boxplots can 

help visualize potential outliers. 

5) Proximity Based Methods: Such as 

DBSCAN, where data points that do 

not fall within a cluster are considered 

outliers. 

This section explains how to remove 

outliers from a data set using the IQR 

method by the remove outlier’s algorithm. 

Algorithm remove outliers 

Input: dataset 

Output: filteredData 

% Compute the lower and upper bounds for each 

feature 

Q1 = quantile (dataset, 0.25); 

Q3 = quantile (dataset, 0.75); 

IQR = Q3 - Q1; 

lowerBound = Q1 - 1.5 * IQR; 

upperBound = Q3 + 1.5 * IQR; 

% Initialize a logical index vector assuming all 

values are not outliers 

nonOutlierIdx = true (size (dataset, 1), 1); 

% Check for outliers in each feature dimension 

for i = 1: size (Data.data10, 2) 

nonOutlierIdx = nonOutlierIdx& ... 

         (dataset (: i) >lowerBound(i)) & ... 

         (dataset (: i) <upperBound(i)); 

end 

% Use the nonOutlierIdx to filter the non-outliers 

filteredData = dataset (nonOutlierIdx, :); 
 

The standard methods of outlier detection 

might incorrectly remove non-outliers, 

especially when the data is not normally 

distributed or when the “outliers” actually 

represent valuable extremes that are of 

interest. 

FCM is less sensitive to outliers than hard 

clustering methods because it assigns a 

degree of belonging to each cluster rather 

than absolute membership. But the presence 

of outliers can still affect the centroids and 

therefore the results of the clustering 

process. 

 Fuzzy clustering 
 

The FCM is a soft clustering method that 

allows a single web service to belong to 

multiple clusters to varying degrees. This 

characteristic is particularly beneficial in 

fog environments where web services 

exhibit varying quality-of-service (QoS) 

attributes and may not fit strictly into a 

single category. For instance, a video 

streaming service might rank highly in 

bandwidth but lower in response time, 

fitting into different clusters for different 

QoS assessments. By applying FCM, fog 

nodes can categorize services into clusters 

based on criteria like latency, bandwidth, 

reliability, and throughput.  

This section explains how to use the FCM 

(Fuzzy C-Means) function for fuzzy 

clustering of web services based on service 

quality criteria using a fuzzy clustering 

algorithm. 

 

Algorithm fuzzy clustering 

Input: dataset, number of clusters 

Output:clusters, U,centers 

X= dataset 

[centers, U] = fcm (X,numberofclusters) 

maxU=max(U); // U is the membership matrix from 

fcm 

// Identifies data points that are most strongly 

associated with each cluster. 

𝑖𝑛𝑑𝑒𝑥𝑘=find (U (k, :)==maxU); Ɐ k=1,2, 3, … 

,numberofclusters 

//In this step, a subset of the dataset is created. 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑘= X (𝑖𝑛𝑑𝑒𝑥𝑘 , :) Ɐ k=1,2, 3,…, 

numberofclusters 
 



ANARI et al : Service Placement in A Fog Computing Environment with Knowledge of Service Quality 

36 

 

 

 Calculate Evaluation criteria of 

clustering for validating cluster 

quality 

Calculating cluster validity indices is an 

essential step in evaluating the performance 

of a clustering algorithm in MATLAB. 

Cluster validity indices can help assess the 

quality of cluster formation—for example, 

how distinct they are, how dense they are, 

and how well they fit the underlying data 

distribution. 

For fuzzy clustering, such as that 

performed by the FCM (Fuzzy C-Means 

Clustering) function in MATLAB, standard 

validity indices are: 

PC (Partition Coefficient) 

This method is specific to fuzzy clustering. 

The PC is calculated for different numbers 

ofclusters, and a higher value indicates a 

better clustering structure.It can be 

calculated using equation 12. 

PC = sum (sum (U.^2)) / size (X, 1) (12) 

where U is the membership matrix from 

FCM, and X is dataset. 

 
 

CE (Classification Entropy) 

Evaluates the distribution of membership 

values across clusters. Lower values are 

generally better, indicating a more defined 

partition.It can be calculated using equation 

13. 

CE = -sum(sum((U.*log(U)))) / size (X, 1) (13) 

 

XB (Xie-Beni Index) 

Provides a ratio of compactness and 

separation of clusters; a lower value of the 

Xie-Beni index indicates a better partition 

due to compact and well-separated clusters. 

FCM algorithm can be run for different 

numbers of clusters and XB index can be 

calculated for each partition. The number of 

clusters with the lowest XB index can be 

considered as optimal clustering, which can 

be calculated using the Xie-Beni Index 

algorithm. 

AlgorithmXie-Beni Index 

Input: dataset,centers, U //U is the membership matrix 

from FCM 

Output:XB 

X= dataset 

sum_dist = sum(sum(sum((U.^2))).* pdist2(X, centers).^2); 

min_dist = inf; 

for i = 1:2 

    for j = i+1:3 

        d = norm (centers (i, :) - centers (j, :), 2); 

min_dist = min (min_dist, d); 

    end 

end 

XB = sum_dist / (size(X,1) * min_dist^2); 
 

 Silhouette Coefficient 

 

Calculating the silhouette coefficient in 

fuzzy clustering, especially in Fuzzy C-

Means (FCM), can be tricky since each data 

point has a degree of belonging to every 

cluster, not just a single one. The silhouette 

coefficient measures how similar a point is 

to its own cluster compared to other 

clusters, which is straightforward in hard 

clustering methods. Still, for fuzzy 

clustering, one must first determine the 

degree to which a data point is assigned to 

its clusters. 

Here's how to calculate the silhouette 

coefficient for a clustered dataset, which the 

FCM function in MATLAB can calculate. 

crispy the Clusters: 

Although in FCM, each data point has a 

membership degree to each cluster, to 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 49, April 2024 

37 

 

calculate the silhouette coefficient we need 

a “hard” assignment. Assign each data point 

to the cluster for which it has the highest 

membership value. 

Calculate a(i)Within-

ClusterDissimilarity: 

For each data point i, calculate the average 

distance from i to all other points in its 

assigned cluster. 

Calculate b(i)Between-Cluster Dissimilarity: 

For the same data point i, calculate the 

average distance from i to all points in the 

next nearest cluster that it is not assigned to. 

One way to define the “next nearest” cluster 

could be finding the cluster for which the 

average distance to all its points is minimal, 

excluding the cluster to which i is assigned. 

Compute the Silhouette Value: 

The silhouette value s(i) for each data 

point is calculated byequation 14:  

s(i) = (b_i - a_i) / max (a_i, b_i) (14) 

Here, a(i) represents the average distance 

from i to all other points in its own cluster, 

and b(i) represents the smallest average 

distance from i to points in any other cluster 

that i is not a part of. 

Average Silhouette Coefficient: 

To find the overall silhouette coefficient 

for the dataset, average s(i) over all data 

points i. 

In MATLAB, the silhouette algorithm is 

designed for hard clustering outputs. It is 

necessary to rewrite the existing function to 

implement the silhouette coefficient in 

fuzzy mode. It is explained here under the 

Silhouette Coefficient Algorithm. 

 
 

AlgorithmSilhouette Coefficient 

Input: dataset, U //U is the membership matrix 

from FCM 

Output:avgSilhouette//Average silhouette value of 

the dataset 

X= dataset 

[~, hardClustering] = max (U, [], 1);  

% Peral locate silhouette values array 

s = zeros (size (X, 1), 1);  

 for i = 1: size (X, 1) 

% within-cluster distance 

a_i = mean (pdist2(X(i, :), X(hardClustering ==  

hardClustering(i), :)));  

       % between-cluster distances excluding the own 

cluster 

b_i = inf;  

for k = setdiff(unique(hardClustering), 

hardClustering(i))  

distToOtherCluster = mean (pdist2(X (i, :),  

X(hardClustering == k, :))); 

b_i = min (b_i, distToOtherCluster); 

end 

s(i) = (b_i - a_i) / max (a_i, b_i); 

end 

 avgSilhouette = mean(s) 
 

This simplified algorithm does not handle 

some cases (such as when a_i is zero), so 

this must be modified for the specific 

application and data set. 

4-2- DLA-FMP Algorithm  

After the data set's clustering, each 

cluster's services are optimally placed in a 

distributed learning automata system 

according to the DLA-FMP algorithm[37]. 

With the optimal placement performed by 

the Distributed Learning Automata – 

FogModule/Service   Placemen(DLA-FMP) 

algorithm, it is possible to significantly 

reduce the delay in the execution of services 

in clusters with higher priority and respond 

to the requested users' services who have 

paid more money at a suitable time. Provide 

higher quality services to increase user satis  

faction. The general steps of the DLA-FMP 

https://www.google.com/search?q=my+purpose+framework&spell=1&sa=X&ved=2ahUKEwj34KTE09n1AhX5A2MBHTHUCXIQkeECKAB6BAgBEDM


ANARI et al : Service Placement in A Fog Computing Environment with Knowledge of Service Quality 

38 

 

algorithm are illustrated by the diagram 

presented in Figure 3. 

This section describes the main concepts of 

the algorithm proposed in article x. The 

DLA-FMP algorithm's working method is 

that the required parameters are first defined 

and then quantified. In the next step, a fog 

topology is created using the iFogSim tool 

after the fuzzy clustering service. To 

perform optimal placement, a distributed 

learning automata is mapped on the defined 

fog network so that each of the fog nodes in 

the fog network corresponds to a learning 

automaton. 

    Start

         Initialization  

   Build-Fog-Topology       

           Build-DLA

    Module Placement

     Learning-Process

   Store-Best-Solution

                  DLA               

    converges  to the best

                   actions            

       Best Solution

     End

YesNo

  Fuzzy Web Service Clustering

 

Fig. 3. DLA-FMP algorithm steps diagram 
 

This section describes the main concepts of 

the algorithm proposed in article x. The 

DLA-FMP algorithm's working method is 

that the required parameters are first defined 

and then quantified. In the next step, a fog 

topology is created using the iFogSim tool 

after the fuzzy clustering service. To 

perform optimal placement, a distributed 

learning automata is mapped on the defined 

fog network so that each of the fog nodes in 

the fog network corresponds to a learning 

automaton. 

The proposed algorithm for solving the 

module placement problem uses three main 

phases in each iteration: Phase 1: Module 

placement, Phase 2: Learning process, and 

Phase 3: Cost function evaluation phase. 

These three phases are explained below: 

Phase1-Module Placement: In this phase, 

each application is placed in a module in 

one of the fog nodes, starting from the edge-

level fog nodes. Each edge-level automaton 

chooses one action from its set of actions to 

place each module. After selecting the 

action, the capacity of the fog node 

corresponding to the selected action is 

checked using Equation (15).  

 

𝑀(𝑘,𝑡)
𝑅𝐴𝑀 ≤ 𝐹𝑜𝑔(𝑖,𝑗)

𝑅𝐴𝑀 , 𝑀(𝑘,𝑡)
𝑐𝑝𝑢

≤ 𝐹𝑜𝑔(𝑖,𝑗)
𝑐𝑝𝑢

 (15) 
 

 

The desired module is deployed if the 

above conditions apply to the selected fog 

node.Otherwise, the learning automaton 

corresponding to the selected action will be 

responsible for placing that module. This 

process continues until the module can be 

placed in one of the fog nodes or that 

module is placed in the cloud. The 

important point in this process is that the 

cloud can only choose one action. In this 

phase, learning automata in DLA finds a 

suitable place for each desired module of 

each application.  

Phase 2 - Learning process: The output 

of Phase1 indicates that each application 

module is located in which fog node. In 

Phase 2, we check whether the action 

selected by the automaton corresponding to 

each fog node could minimize the objective 

function. If that automaton has minimized 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 49, April 2024 

39 

 

the objective function, it is inferred that the 

action chosen by that automaton is suitable. 

Thus, that action will be rewarded according 

to Equations (2) and (3); otherwise, it will 

be penalized. This learning process is 

repeated until DLA converges to the best 

actions. 
 

Phase 3 - The cost function evaluation 

and Store-Best-Solution: The cost function 

is used to evaluate the rewards or penalties 

in the learning process. The cost function 

(D) is considered as a single objective 

function in the proposed method. Therefore, 

the goal is to reduce the average delay of 

IoT user services (D) in all fog nodes during 

the execution of applications.In this phase, 

the best solution is saved after learning and 

evaluating the cost function. 

These three main phases continue until the 

distributed learning automata converges to 

the best solution. 

5. Evaluation and Experimental 

Analysis 
 

The evaluation, similar to the proposed 

DLA-SPSQ method, is done in two stages, 

which are: 
 

5-1- Fuzzy clustering of services 

In these stages, the selected data set is 

clustered by Fuzzy C-Means (FCM) in 

MATLAB after removing extraneous data. 

Clustering evaluation criteria have been 

calculated to validate the quality and 

optimal number of clusters. High-priority 

clusters are determined by calculating the 

average service quality indicators in each 

cluster. The data set (QWS Dataset) has 

been used for clustering services[39]. From 

the service quality criteria, four criteria have 

been selected according to the purpose of 

the problem, which are given in Table 1. 

 

Table 1. Selected service quality criteria 
 

Title Description 

Response 

Time 

Time taken to send a request and receive a 

response 

Availability Number of successful invocations/total 

invocations 

Reliability Ratio of the number of error messages to total 

messages 

Latency Time taken for the server to process a given 

request 

 

To remove outlier data from the data set, 

the algorithm (remove outliers) mentioned 

in section 4-1 is used; also, for easy work, 

the fuzzy k-means method can be used. The 

calculation results of the PC, CE 

andavgSilhouetteof clustering evaluation 

criterion for validating the quality of the 

clusters are given in Table 2.According to 

the need of the problem and the acceptable 

values for the evaluation criteria, clustering 

with three clusters has been chosen in this 

research work (row 2 of Table 2). 

 

Table 2. Selected clustering from clustering 

evaluation criterion 

 
Clusters PC CE avgSilhouette 

2 Cluster 0.964617 

 

0.06473

2 

 

0.872612 

 

3 Cluster 0.9245799

9 

0.14784

12 

0.7893497 

4 Cluster 

0.808208 

 

0.34763

7 

 

0.574982 

 

5 Cluster 0.774274 

 

0.41459 

 

0.522598 

 

6 Cluster 0.736786 

 

0.49245

8 

 

0.479991 

 

⁞ ⁞ ⁞ ⁞ 

 

The calculation results of the XB 

clustering evaluation criterion for validating 

the quality of the clusters are given in Table 3. 

 
 

 



ANARI et al : Service Placement in A Fog Computing Environment with Knowledge of Service Quality 

40 

 

Table 3. Selected clustering from XB criteria 
 

Cluster

s 

XB1 XB2 XB3 XB4 XB5 XB

6 

2 

Cluster 

164 233

5 

    

3 

Cluster 

249

8 928 

213

45 

   

4 

Cluster 

198

006 

860

8 

789

3 

333

56 

  

5 

Cluster 

107

645 

112

61 

319

98 

127

73 

316

640 

 

6 

Cluster 

191

19 

830

225 

388

270 

851

81 

220

14 

255

98 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

 

In this research work, the priority of the 

clusters can be determined according to the 

lowest amount of response time, delay, 

reliability, XB criterion and the highest 

amount of availability. 
 

Table 4.Selected cluster from the average 

value of QoS criteria in each cluster 
 

Evaluation 

Criteria 

Cluster1 Cluster

2 

Cluster

3 

Response Time 

1214.233 

237.074

6 

3269.77

6 

Availability 77.1105 81.5802 77.1269

8 

Reliability 71.67403 69.5673

9 

72.1111

1 

Latency 216.926 32.6584

7 

379.055

1 

XB 2498 928 21345 

Priority 2 1 3 
 

 

In Table 4, the lowest average result for the 

evaluation criteria of response time, 

reliability, delay, XB and the highest 

average availability are obtained for cluster 

2. Therefore, with certainty, the first priority 

can be assigned to cluster 2. (lighted with 

yellow color). According to the values 

obtained for other clusters, clusters 1 and 3 

are placed in the second and third priorities, 

respectively. 
 

5-2- Simulation and evaluation of the 

proposed method 

In these stages, the DLA-FMP method has 

been used to calculate AppLoopDelay, 

Tuplecupexecutiondelay, and Networkusage 

criteria in high-priority clusters of different 

sizes, and the results of the proposed DLA-

FMP method have been evaluated and 

compared in two modes of clustering and 

without clustering of services. 
 

5-2-1- Simulation Environment 

The iFogSim simulator tool and Java 

programming language have been used to 

simulate the proposed method. The 

specifications of the system used are given 

in Table 5. The iFogSim simulator uses a 

tree structure to generate fog topology. 

Since the proposed fog topology structure is 

a graph, the iFogSim simulator has been 

developed to simulate the proposed method 

so that any graph can be defined and 

created. 
 

 
 

Table 5. Specifications of the simulation system 
 

Name Description 

CPU Core i7-3720QM CPU @ 

2.60GHZ 

RAM 32.0GB 
Memo

ry 
1TB+ 128GB SSD 

OS Window10-64 bit 
 

5-2-2- Parameter Setting  

The proposed method considers the reward 

(a) and penalty (r) parameters of 0.3 and 

0.003, respectively. The values assigned to 

their parameters in related articles have been 

used in implementing the compared 

algorithms. 

 

 
 



Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 49, April 2024 

41 

 

5-2-3- Fog Device Characteristic  

In the simulation of the proposed method, 

a heterogeneous topology with 63 fog 

nodes, which has 32 edge nodes and is 

shown as 𝑇63(32), is used. The CPU and 

RAM specifications of fog nodes of 

topology 𝑇63(32) are given in Table 6. In 

addition, the specifications related to the 

power consumption of each fog node in the 

idle state (idlePower), high bandwidth 

(UpBW) and low bandwidth (downBW) are 

given in Table 7. 

 

Table 6. Topology with 63 fog nodes 𝑇63(32)[37] 

 

Lev

el 

𝐅𝐨𝐠(𝐢,𝐣)(𝑪𝑷𝑼 , 𝑹𝑨𝑴) 

0 Fog(0,0)(44800,40000)  

1 Fog(1,0)(22400,20000),Fog(1,1)(33600,30000) 

2 Fog(2,0)(18000,16000),Fog(2,1)(17000,15000), 

Fog(2,2)(19000,17000),Fog(2,3)(20000,18000) 

3 Fog(3,0)(8400,8000),Fog(3,1)(8400,8000), 

Fog(3,2)(5600,6000),Fog3,3)(5600,6000), 

Fog(3,4)(16000,14000),Fog(3,5)(15000,13000), 

Fog(3,6)(14000,12000),Fog(3,7)(12000,10000) 

4 Fog(4,00)(8400,8000),Fog(4,01)(8400,8000), 

Fog(4,02)(18000,16000),Fog(4,03)(8600,6000), 

Fog(4,04)(12000,10000),Fog(4,05)(13000,8000)

, 

Fog(4,06)(16000,14000),Fog(4.07)(9400,6000), 

Fog(4,08)(16000,10000),Fog(4,09)(5600,6000), 

Fog(4,10)(4200,2000),Fog(4,11)(5600,4000), 

Fog(4,12)(14000,8000),Fog(4,13)(12000,10000)

, 

Fog(4,14)(8000,6000),Fog(4,15)(6000,4000), 

5 Fog(5,00)(4000,2000),Fog(5,01)(4000,2000)    

       ,      …                  ,Fog(5,31)(4000,2000) 

 

Table 7. Fog nodes parametervalues 

 

Fog node UpBW, downBW, idlePower 
Cloud 100, 10000, 1332 
Fog 

nodes  
10000, 10000,83.4333 

 

 

5-2-4- Application Characteristic  

The iFogSim simulator tool was used to 

create programs and related modules. The 

general structure of the program used in the 

iFogSim simulator is shown in Figure 4. It 

includes three modules: Object_Detector, 

Motion_Detector, and 

Object_Tracker.One Object_Detector module is 

considered for 𝐴𝑝𝑝1, and therequired 

Object_Detector modules are considered for 

applications 𝐴𝑝𝑝2,  𝐴𝑝𝑝3 𝑎𝑛𝑑  𝐴𝑝𝑝4 

according to Table 8. 
 

Camera
Motion

Detector

Object

Detector 1

User

Interface

Object

Detector n

Object

Tracker

PTZ

Controller

RAW_VIDEO_STREAM MOTION_VIDEO_STREAM

OBJECT_LOCATION 2
Object

Detector 2
. . .

OBJECT_LOCATION nPTZ PARAMS

 

Fig. 4. Modules and edges of the smart monitoring 

application [38] 

 

Table 8. Specifications of the generated applications 
 

Applicatio

n Name 

Modul

es 

 

 𝑨𝒑𝒑𝒌( " 𝑴(𝑲,𝟏)
𝑪𝑷𝑼 , 𝑴(𝑲,𝟏),

𝑹𝑨𝑴 ", 

… , " 𝑴(𝑲,𝒎)
𝑪𝑷𝑼 , 𝑴(𝑲,𝒎),

𝑹𝑨𝑴 ”) 

 𝐴𝑝𝑝1 3 𝐴𝑝𝑝1(“50,10”,”400,10”,”200,10”) 

 𝐴𝑝𝑝2 6 𝐴𝑝𝑝2(“50,10”,”400,10”,”200,10”, 

”600,10”,”200,10”,”400,10”) 

 𝐴𝑝𝑝3 9 𝐴𝑝𝑝3(“50,10”,”400,10”,”200,10”, 

”600,10”,”200,10”,”400,10”, 

”200,10”,”600,10”,”200,10”) 

 𝐴𝑝𝑝4 12 𝐴𝑝𝑝4(“50,10”,”400,10”,”200,10”, 

”600,10”,”200,10”,”400,10”, 

”200,10”,”600,10”,”200,10”, 

”300,10”,”400,10”,”300,10”) 
 

 

5-3- Experiments 

In this section, the results related to the 

simulation and evaluation of each parameter 

in both clustering and non-clustering modes 

of services have been reviewed and 

compared 
 



ANARI et al : Service Placement in A Fog Computing Environment with Knowledge of Service Quality 

42 

 

5-3-1-Experiment1 

In this experiment, the application loop 

delay is calculated by the DLA-FMP 

algorithm in the two modes of clustering 

and non-clustering of services by Equation 

4. The simulation results in both cases are 

given in Figure 5. According to this figure, 

due to the optimal placement of high-

priority cluster services in resources close to 

the network's edge, they are more efficient 

than running the service randomly. As a 

result, the proposed method performs better 

in reducing the delay of the program loop. 

 
Fig. 5. Comparison of AppLoopDelay in two 

modes of clustering and non-clustering of 

services 
 

According to the results obtained in Figure 

5 and comparing the results in both cases, 

the proposed algorithm has improved the 

App Loop Delay parameter in the service 

clustering mode compared to the service 

non-clustering mode. On average, the 

application loop delay of applications is an 

18.5% reduction. 

5-3-2-Experiment 2 

This experiment aims to investigate the 

amount of delay caused by the processing of 

tuples for services in both clustered and 

non-clustered modes during the simulation 

process. According to Figure 6, the average 

processing delay of tuples in the clustering 

mode of services compared to the non-

clustering mode is acceptable by increasing 

the number of services in the selected 

cluster and has experienced an improvement 

of 17.78 percent. Due to the optimal 

placement of the modules, the increase in 

the delay in the processing of tuples in the 

proposed method has been less in the 

clustering mode than in the non-clustering 

mode. Therefore, the processing delay of 

tuples is significantly increased with the 

increase of the number of modules in non-

clustering mode. 

 

 

Fig. 6. Comparison of tuple cup execution delay in two 

modes of clustering and non-clustering of 

services 

 

 

5-3-3-Experiment 3 

In this test, the amount of network usage is 

calculated in two modes of clustering and 

non-clustering services during the simulation 

process. This parameter depends on the 

number of links in the fog network, and 

with the increase in the number of links, the 

size of the network usage increases. As 

shown in Figure 7, the use of the network in 

the service clustering mode performs better 

than the service non-clustering mode. Due 

to the optimal placement of the modules, 

there has been a significant reduction in the 

delay in creating communication links 

between the modules/services in the source 

and destination devices, and the proposed 

algorithm has experienced a 15.82% reduction. 

0

500

1000

1500

2000

2500

9
8

1
9
7

2
8
1

3
8
4

4
9
5

7
1
2

9
5
2

1
0
4
7

1
1
5
8

1
2
9
0

1
3
0
6

A
P

P
L

O
O

P
D

E
L

A
Y

 (
IN

 M
IL

L
IS

E
C

O
N

D
S

)

SELECTED CLUSTERS WITH DIFFERENT SIZE

AppLoopDelay With Clustering AppLoopDelay Without Clustering

0

5000

10000

15000

20000

25000

30000

98 197 281 384 495 712 952 1047115812901306

T
u

p
le

 c
u

p
 e

x
e
c
u

ti
o
n

 D
e
la

y
 (

in
 m

il
li

se
c
o
n

d
s)

selected clusters with different size

TupleCupDelay Without Clustering TupleCupDelay With Clustering



Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 49, April 2024 

43 

 

 
Fig. 7. Comparison of network usage in two modes 

of clustering and non-clustering of services 
 

5-3-4-Experiment 4 

In this section, the p values obtained from 

the statistical analysis for the evaluated 

parameters such as AppLoopDelay, Tuple 

cup execution delay, and Network usage are 

given in Table 9. A value of p ≤ 0.05 

indicates that H0 can be rejected with a 

confidence interval of 95%. In other words, 

p-values smaller than 0.05 show that the 

proposed method is better than service 

execution in non-clustering mode due to 

module/services loop delay, tuples 

processing delay, and network usage rate. 

 

Table 9. Statistical analysis for the proposed algorithm 

Metric Algorithms P-

value 
Significan

ce 

AppLoopDel

ay 

Non-clustering 

mode:clusteredmode 

P = 

0.0028 

extremely 

statistically 

Tuple cup 

execution 

Delay 

Non-clustering 

mode:clusteredmode 

P = 

0.0189 

very 

statistically 

Network 

usage 

Non-clustering 

mode:clusteredmode 

P = 

0.0382 

Statisticall

y 
 

 

6. Conclusion 
 

We can determine the optimal service 

placement in the fog network based on the 

clustering results, minimize latency, and 

improve service responsiveness by 

considering the proximity between IoT 

devices and fog nodes. In addition, we can 

allocate services according to the 

availability of resources and the capacity of 

fog nodes and ensure the efficient use of 

resources.This article proposes a DLA-

SPSQ method based on fuzzy clustering of 

services and distributed learning automata 

for optimal placement of services/modules 

in heterogeneous fog nodes. The DLA-

SPSQ algorithm combines the FCS 

algorithm and the DLA-FMP algorithm. 

Fuzzy clustering of services, the optimal 

number of clusters, and the determination of 

high-priority clusters based on service 

quality criteria have been done using cluster 

evaluation criteria. The optimal placement 

of services in two modes, clustered and non-

clustered, is based on the cost function 

provided by the DLA-FMP. This article 

proposes a method called DLA-SPSQ based 

on fuzzy clustering of services and 

distributed learning automata for optimal 

placement of services/modules in 

heterogeneous fog nodes. The DLA-SPSQ 

algorithm combines the FCS algorithm and the 

DLA-FMP algorithm. The FCS algorithm has 

done fuzzy clustering of services, the 

optimal number of clusters, and the 

determination of high-priority clusters based 

on service quality criteria. The optimal 

placement of services in two modes, 

clustered and non-clustered, is based on the 

cost function provided by the DLA-FMP 

algorithm. For the optimal placement of 

services, the topology of the fog network is 

modelled by a directed graph and mapped to 

a DLA. DLA performs the deployment of 

services from the edge nodes upwards in the 

fog topology with the cooperation of 

automatons in an optimal and hierarchical 

manner. In this search method, due to the 

use of the maximum capacity of the edge 

0

100

200

300

400

500

600

700

800

900

1000

98 197 281 384 495 712 952 1047 1158 1290 1306

N
e
tw

o
r
k

U
sa

g
e

selected clusters with different size

NetworkUsage Without Clustering NetworkUsage With Clustering



ANARI et al : Service Placement in A Fog Computing Environment with Knowledge of Service Quality 

44 

 

level fog nodes, the cost function (service 

execution delay), tuple processing execution 

delay, and network usage have decreased by 

18.5%, 17.78%, and 15.82%, respectively. 

P-Value ≤ 0.05 in the results of Experiment 

4 confirms the efficiency and improvement 

of the proposed algorithm in the state of 

clustering of services compared to the state 

of not clustering them. 
 

future works: 

Research areas related to the proposed 

topic that can be done in future works are: 

 Creating multi-objective optimization 

models for optimal placement of services 

considering QoS requirements and 

resource constraints simultaneously. 

 Research the placement of sustainable 

services considering renewable energy 

sources in fog nodes  

 Investigating the impact of load 

balancing on service quality in fog nodes 

with heterogeneous workloads. 

 Investigating security and privacy in the 

optimal deployment of QoS-based 

services. 

 Creating criteria and standards for 

service quality evaluation in cloud 

computing environments. 

 Investigate economic models for 

billing based on the QoS provided, such as 

premium pricing for higher service levels. 

 Investigating the effect of network 

conditions on the performance of real-

time analytical programs in fog 

environments. 

 

References 
 

[1] Y. Al Mtawa, A. Haque, and B. Bitar, "The 

mammoth internet: Are we ready?," IEEE 

Access, vol. 7, pp. 132894-132908, 2019. 

[2] P. Maiti, B. Sahoo, A. K. Turuk, A. Kumar, and 

B. J. Choi, "Internet of Things applications 

placement to minimize latency in multi-tier fog 

computing framework," ICT Express, vol. 8, no. 

2, pp. 166-173, 2022, doi: 

http://dx.doi.org/10.1016/j.icte.2021.06.004. 

[3] T. Huang, W. Lin, C. Xiong, R. Pan, and J. 

Huang, "An ant colony optimization-based 

multiobjective service replicas placement 

strategy for fog computing," IEEE Transactions on 

Cybernetics, vol. 51, no. 11, pp. 5595-5608, 2020, 

doi: http://dx.doi.org/10.1109/TCYB.2020.2989309. 

[4] S. Gorikapudi and H. K. Kondaveeti, "A novel 

clustering model via optimized fuzzy C‐ means 

algorithm and sandpiper optimization with 

cycle crossover process in IoT," Concurrency 

and Computation: Practice and Experience, 

vol. 35, no. 23, p. e7776, 2023. 

[5] M. Hosseini Shirvani and Y. Ramzanpoor, 

"Multi-objective QoS-aware optimization for 

deployment of IoT applications on cloud and 

fog computing infrastructure," Neural 

Computing and Applications, vol. 35, no. 26, 

pp. 19581-19626, 2023. 

[6] D. Zhao, Q. Zou, and M. Boshkani Zadeh, "A 

QoS-aware IoT service placement mechanism 

in fog computing based on open-source 

development model," Journal of Grid 

Computing, vol. 20, no. 2, p. 12, 2022. 

[7] A. Brogi and S. Forti, "QoS-aware deployment 

of IoT applications through the fog," IEEE 

Internet of Things Journal, vol. 4, no. 5, pp. 

1185-1192, 2017. 

 

[8] M. Haghi Kashani, A. M. Rahmani, and N. 

Jafari Navimipour, "Quality of service‐ aware 

approaches in fog computing," International 

Journal of Communication Systems, vol. 33, no. 

8, p. e4340, 2020. 

[9] H. K. Apat, B. Sahoo, and S. Mohanty, "A 

Quality of Service (QoS) aware Fog Computing 

model for intelligent (IoT) applications," in 

2021 19th OITS International Conference on 

Information Technology (OCIT), 2021: IEEE, 

pp. 267-272.  

[10]  A. N. Al-Masri and M. Nasir, "A novel 

fuzzy clustering with metaheuristic based 

resource provisioning technique in cloud 

environment," Fusion: Practice and 

Applications, vol. 6, no. 1, pp. 08-8-16, 2021. 

http://dx.doi.org/10.1016/j.icte.2021.06.004
http://dx.doi.org/10.1109/TCYB.2020.2989309


Journal of Artificial Intelligence in Electrical Engineering, Vol. 13, No. 49, April 2024 

45 

 

[11] M. Kupriyanov, I. Holod, and A. Shorov, 

"Fuzzy Clustering Based on Cloud and Fog 

Computing," in 2019 XXII International 

Conference on Soft Computing and 

Measurements (SCM)), 2019: IEEE, pp. 1-5.  

[12] F. Tavousi, S. Azizi, and A. Ghaderzadeh, "A 

fuzzy approach for optimal placement of IoT 

applications in fog-cloud computing," Cluster 

Computing, pp. 1-18, 2022. 

[13]  A. M. Maia, Y. Ghamri-Doudane, D. Vieira, 

and M. F. de Castro, "An improved multi-

objective genetic algorithm with heuristic 

initialization for service placement and load 

distribution in edge computing," Computer 

Networks, vol. 194, p. 108146, 2021, doi: 

http://dx.doi.org/10.1016/j.comnet.2021.108146. 

[14] M. Ghobaei-Arani and A. Shahidinejad, "A 

cost-efficient IoT service placement approach 

using whale optimization algorithm in fog 

computing environment," Expert Systems with 

Applications, vol. 200, p. 117012, 2022, doi: 

http://dx.doi.org/10.1016/j.eswa.2022.117012. 

[15]  F. Khosroabadi, F. Fotouhi-Ghazvini, and 

H. Fotouhi, "Scatter: Service placement in real-

time fog-assisted iot networks," Journal of 

Sensor and Actuator Networks, vol. 10, no. 2, p. 

26, 2021. 

[16]  A. Yousefpour, G. Ishigaki, and J. P. Jue, 

"Fog computing: Towards minimizing delay in 

the internet of things," in 2017 IEEE 

international conference on edge computing 

(EDGE), 2017: IEEE, pp. 17-24.  

[17]  C. Liu, J. Wang, L. Zhou, and A. 

Rezaeipanah, "Solving the multi-objective 

problem of IoT service placement in fog 

computing using cuckoo search algorithm," 

Neural Processing Letters, vol. 54, no. 3, pp. 

1823-1854, 2022, doi: 

http://dx.doi.org/10.1007/s11063-021-10708-2. 

[18]  B. Natesha and R. M. R. Guddeti, 

"Adopting elitism-based Genetic Algorithm for 

minimizing multi-objective problems of IoT 

service placement in fog computing 

environment," Journal of Network and 

Computer Applications, vol. 178, p. 102972, 

2021, doi: http://dx.doi.org/10.4108/eai.22-2-

2022.173492. 

[19]  M. Salimian, M. Ghobaei-Arani, and A. 

Shahidinejad, "An evolutionary multi-objective 

optimization technique to deploy the IoT 

Services in fog-enabled Networks: an 

autonomous approach," Applied Artificial 

Intelligence, pp. 1-34, 2022, doi: 

http://dx.doi.org/10.1080/08839514.2021.20081

49. 

[20]  F. M. Calisto, N. Nunes, and J. C. 

Nascimento, "Modeling adoption of intelligent 

agents in medical imaging," International 

Journal of Human-Computer Studies, vol. 168, 

p. 102922, 2022, doi: 

http://dx.doi.org/10.2139/ssrn.4116048. 

[21]  M. Dadashi Gavaber and A. Rajabzadeh, 

"MFP: an approach to delay and energy-

efficient module placement in IoT applications 

based on multi-fog," Journal of Ambient 

Intelligence and Humanized Computing, vol. 

12, no. 7, pp. 7965-7981, 2021, doi: 

https://link.springer.com/article/10.1007/s12652

-020-02525-7. 

[22]  G. Baranwal and D. P. Vidyarthi, "FONS: a 

fog orchestrator node selection model to 

improve application placement in fog 

computing," The Journal of Supercomputing, 

vol. 77, no. 9, pp. 10562-10589, 2021, doi: 

https://link.springer.com/article/10.1007/s11227

-021-03702-x. 

[23]  M. Masdari, A. B. Sangar, and K. 

Majidzadeh, "A Hybrid Multi-objective 

Algorithm for Imbalanced Controller Placement 

in Software-Defined Networks," Journal of 

Network and Systems Management, vol. 30, no. 

3, pp. 1-54, 2022, doi: 

http://dx.doi.org/10.1007/s10922-022-09650-y. 

[24]  Z. M. Nayeri, T. Ghafarian, and B. Javadi, 

"Application placement in Fog computing with 

AI approach: Taxonomy and a state of the art 

survey," Journal of Network and Computer 

Applications, vol. 185, p. 103078, 2021, doi: 

http://dx.doi.org/10.1016/j.jnca.2021.103078. 

[25]  F. A. Salaht, F. Desprez, and A. Lebre, "An 

overview of service placement problem in fog 

and edge computing," ACM Computing Surveys 

(CSUR), vol. 53, no. 3, pp. 1-35, 2020, doi: 

http://dx.doi.org/10.1145/3391196. 

[26]  E. Torabi, M. Ghobaei-Arani, and A. 

Shahidinejad, "Data replica placement 

approaches in fog computing: a review," 

Cluster Computing, pp. 1-29, 2022, doi: 

http://dx.doi.org/10.1007/s10586-022-03575-6. 

http://dx.doi.org/10.1016/j.comnet.2021.108146
http://dx.doi.org/10.1016/j.eswa.2022.117012
http://dx.doi.org/10.1007/s11063-021-10708-2
http://dx.doi.org/10.4108/eai.22-2-2022.173492
http://dx.doi.org/10.4108/eai.22-2-2022.173492
http://dx.doi.org/10.1080/08839514.2021.2008149
http://dx.doi.org/10.1080/08839514.2021.2008149
http://dx.doi.org/10.2139/ssrn.4116048
https://link.springer.com/article/10.1007/s12652-020-02525-7
https://link.springer.com/article/10.1007/s12652-020-02525-7
https://link.springer.com/article/10.1007/s11227-021-03702-x
https://link.springer.com/article/10.1007/s11227-021-03702-x
http://dx.doi.org/10.1007/s10922-022-09650-y
http://dx.doi.org/10.1016/j.jnca.2021.103078
http://dx.doi.org/10.1145/3391196
http://dx.doi.org/10.1007/s10586-022-03575-6


ANARI et al : Service Placement in A Fog Computing Environment with Knowledge of Service Quality 

46 

 

[27] K. Narendra and M. Thathachar, "Learning 

Automata: An Introduction Prentice-Hall," New 

Jersey, 1989. 

[28]  M. A. Thathachar and P. S. Sastry, 

"Varieties of learning automata: an overview," 

IEEE Transactions on Systems, Man, and 

Cybernetics, Part B (Cybernetics), vol. 32, no. 

6, pp. 711-722, 2002, doi: 

https://doi.org/10.1109/tsmcb.2002.1049606. 

[29]  K. S. Narendra and M. A. Thathachar, "On 

the behavior of a learning automaton in a 

changing environment with application to 

telephone traffic routing," IEEE Transactions 

on Systems, Man, and Cybernetics, vol. 10, no. 

5, pp. 262-269, 1980, doi: 

https://doi.org/10.1109/TSMC.1980.4308485. 

[30]  Z. Anari, A. Hatamlou, and B. Anari, 

"Automatic Finding Trapezoidal Membership 

Functions in Mining Fuzzy Association Rules 

Based on Learning Automata," International 

Journal of Interactive Multimedia & Artificial 

Intelligence, vol. 7, no. 4, 2022, doi: 

https://doi.org/10.1142/S0218001421590266. 

[31]  B. Anari, J. A. Torkestani, and A. M. 

Rahmani, "Automatic data clustering using 

continuous action-set learning automata and its 

application in segmentation of images," Applied 

Soft Computing, vol. 51, pp. 253-265, 2017, 

doi: https://doi.org/10.1145/3391196. 

[32]  B. Zarei and M. R. Meybodi, "Improving 

learning ability of learning automata using 

chaos theory," The Journal of Supercomputing, 

vol. 77, no. 1, pp. 652-678, 2021, doi: 

https://doi.org/10.1007/s11227-020-03293-z. 

[33]  K. Asghari, M. Masdari, F. Soleimanian 

Gharehchopogh, and R. Saneifard, "A fixed 

structure learning automata‐ based optimization 

algorithm for structure learning of Bayesian 

networks," Expert Systems, vol. 38, no. 7, p. 

e12734, 2021, doi: 

https://doi.org/10.1111/exsy.12734. 

[34]  F. Farahbakhsh, A. Shahidinejad, and M. 

Ghobaei‐ Arani, "Multiuser context‐ aware 

computation offloading in mobile edge 

computing based on Bayesian learning 

automata," Transactions on Emerging 

Telecommunications Technologies, vol. 32, no. 

1, p. e4127, 2021, doi: 

https://doi.org/10.1002/ett.4127. 

[35]  F. Jazayeri, A. Shahidinejad, and M. 

Ghobaei-Arani, "Autonomous computation 

offloading and auto-scaling the in the mobile 

fog computing: a deep reinforcement learning-

based approach," Journal of Ambient 

Intelligence and Humanized Computing, vol. 

12, pp. 8265-8284, 2021, doi: 

https://link.springer.com/article/10.1007/s12652

-020-02561-3. 

[36] N. Kumar, J.-H. Lee, and J. J. Rodrigues, 

"Intelligent mobile video surveillance system as 

a Bayesian coalition game in vehicular sensor 

networks: Learning automata approach," IEEE 

Transactions on Intelligent Transportation 

Systems, vol. 16, no. 3, pp. 1148-1161, 2014, 

doi: 

http://dx.doi.org/10.1109/TITS.2014.2354372. 

[37] Y. Abofathi, B. Anari, and M. Masdari, "A 

learning automata based approach for module 

placement in fog computing environment," 

Expert Systems with Applications, vol. 237, p. 

121607, 2024. 

[38] U. Arora and N. Singh, "IoT application 

modules placement in heterogeneous fog–cloud 

infrastructure," International Journal of 

Information Technology, vol. 13, no. 5, pp. 

1975-1982, 2021, doi: 

http://dx.doi.org/10.1007/s41870-021-00672-4. 

[39] https://qwsdata.github.io/ 

 

https://doi.org/10.1109/tsmcb.2002.1049606
https://doi.org/10.1109/TSMC.1980.4308485
https://doi.org/10.1142/S0218001421590266
https://doi.org/10.1145/3391196
https://doi.org/10.1007/s11227-020-03293-z
https://doi.org/10.1111/exsy.12734
https://doi.org/10.1002/ett.4127
https://link.springer.com/article/10.1007/s12652-020-02561-3
https://link.springer.com/article/10.1007/s12652-020-02561-3
http://dx.doi.org/10.1109/TITS.2014.2354372
http://dx.doi.org/10.1007/s41870-021-00672-4

