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Abstract 
In general, identifying and locating faces in images or videos is considered as the first step in face 
recognition. It is quite clear that an accurate detection algorithm can significantly benefit system 
performance and vice versa. Therefore, face recognition is one of the key steps in the application of face 
recognition systems. In deep learning algorithms are able to learn high-level features, which have been 
highly regarded by researchers for use in the field of machine vision, as well as in a variety of fields 
such as image classification and human gesture estimation, which are the key activities for image 
perception. In this paper, we present a hybrid method called Hyper-Yolo-face to identify faces, facial 
landmarks localization, pose estimation and recognize the gender of a given image using deep 
convolutional neural networks, the Yolo algorithm, and local binary patterns. The proposed network 
architecture is based on the AlexNet model and the integration of the binary pattern operator and 
Yolov3, which results in increasing performance and accuracy. Yolo changes the architecture of face 
recognition systems and looks at the problem of recognition as a regression problem which goes directly 
from the pixels of the image to the coordinates of the box and the probability of the classes. Experiments 
on the AFLW and FDDB datasets indicated that the proposed model performs significantly better than 
other algorithms and methods and improves detection accuracy. 
Keywords: Convolutional network, Face detection, Yolo, Pose estimation, Gender recognition, Facial 
landmarks localization, local binary pattern. 
 
 

1. INTRODUCTION1 
Face recognition and analysis is a 
challenging issue in machine vision and is 
researched for some applications including 
face recognition, face tracking, face 
recognition, and more. Although methods 
based on deep convolutional neural 
networks achieved significant results in 
face recognition [1, 2 and 3], facial 
landmark localization, head pose estimation 
and gender recognition are difficult for 
facial images with extreme gestures, light, 
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and resolution changes. This paper presents 
a new CNN-based method for face 
recognition, pose estimation, facial 
landmark localization, and gender 
recognition simultaneously in a given 
image. A CNN architecture was designed to 
learn the common features of these tasks 
and use the synergy between them. Since 
the binary pattern uses both statistical and 
structural features of the texture, it is a 
powerful tool for texture analysis. 
Therefore, it was used when feeding 
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features to the grid, and input dimensions 
were upgraded to 6 dimensions, which 
improved the accuracy of diagnosis. In the 
local binary pattern operator, local texture 
patterns are extracted by comparing the 
value of adjacent pixels with the value of 
the central pixel and are represented by 
binary codes. The local binary model was 
first proposed by Ocala et al. in 1996. It is 
one of the most common descriptors due to 
its resistance to brightness changes, low 
computational complexity, and ability to 
encode details. Researchers use this method 
in most image processing researches to 
improve accuracy. As in [4], this fact is 
applied for distributing the information in 
the features across the network 
hierarchically. The lower layers are used to 
assess the edges and corners. Thus, they 
have better location properties and are more 
appropriate for identifying the landmarks of 
the image and estimating poses. However, 
the deeper layers are category-dependent 
and appropriate for learning complicated 
tasks such as identifying face and gender. In 
fact, different tasks could be taught by using 
all the middle layers of a deep CNN. Since 
a CNN architecture includes several layers 
with hundreds of feature mappings in each 
layer, it cannot be efficiently used for 
learning multiple tasks due to the total size 
of the super-features. In addition, it should 
be interrlated to encode common features 
across many tasks efficiently. Recent 
research on deep learning showed that 
CNNs can be employed to estimate the 
desired complex function. Therefore, a 
separate hybrid CNN was produced to mix 
the super-features. Several loss functions 
were simultaneously used to teach them 
how to do the tasks, i.e. recognizing the 
faces, which led to an increase in the 

performance of each individual task. The 
present study aims to propose a novel 
architecture of CNN  to identify face and 
gender by integrtaing the middle layers of 
the network. This method focuses on the 
architecture of AlexNet model [5] and 
utilizes a Yolo algorithm named Yolo_face, 
instead of the selective search algorithm [6], 
on R-CNN [7] to provide area and face crop 
suggestions. This method can help quickly 
recognize and cut the faces of the images by 
using the introduced Yolo algorithm and 
entering them into the proposed network 
along with some other information added by 
Local Binary Patterns (LBP). The YOLO 
v3 architecture was applied for face 
recognition network and could successfully 
improve it by suggesting a definition for the 
loss function of the new regression 
including MSE losses and GIOU losses as 
well as more suitable bounding boxes to 
identify faces with k-means clustering. This 
paper is organized as follows. The review of 
literature is covered in Section 2. Details of 
the proposed method are described in 
Section 3. Implementations of the proposed 
deep CNN Hyper-Yolo-face approaches, as 
well as the results of the proposed approach 
on the data set are presented in Section 4. 
The conclusions are summarized and 
discussed in Section 5. 

 
2. Review of the literature 

Ramaya et al. [8] proposed a convolutional 
neural network to solve the problem of 
changes in brightness and head position in 
face recognition. In the proposed method, 
people are distinguished from each other 
using local patterns on their faces. The 
accuracy of this method was improved by 
96.4% compared to the previous methods 
and by evaluating this method on the Yale 
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dataset, the detection accuracy was 95.99%. 
Gao et al. [9] proposed a new type of 
building block for deep architecture called 
an automatic encoder with an observer to 
identify the face by a training sample from 
each individual. In this method, all of the 
different faces are first modeled to map the 
normal face of each person. Then, the 
features related to the same person are 
extracted. Finally, they are extracted, which 
make face recognition easier using a self-
encoder with the feature supervisor resistant 
to light scattering and opacity. By 
evaluating this method, the detection 
accuracy in AR datasets, Extended Yale-B, 
CMU-PIE, and Multi-PIE was 21.85¸22.82, 
79.82, and 97.93%, respectively. Zhang et 
al. [10] proposed Sparse coding neural 
networks and Softmax classification for 
solving the problem of changes in 
brightness, state, and low image quality in 
face recognition. Face image preprocessing 
is used for hierarchical building and training 
of a deep network. The deep neural network 
is trained by a recursive algorithm and 
optimized using two different schemes. The 
evaluation of ORL datasets showed an 
identification accuracy of 97. 5%, Yale 
datasets gave an identification accuracy of 
94.67%, Yale-B datasets had an 
identification accuracy of 82% and PERET 
datasets showed 92.78% of identification 
accuracy. Viola-Jones detector [11] is a 
traditional method which uses Haar-like 
feature classifications to identify faces. This 
method provides instant face recognition 
and works well for full faces with enough 
light. In addition, face recognition methods 
based on the Deformable Parts Model 
(DPM) [12] were presented in which a face 
is defined as a set of parts [13, 14]. It was 
shown that in face recognition without 

limitation, features such as HOG or Haar 
wavelets do not receive distinct face 
information in different poses or brightness 
changes. Various CNN-based face 
recognition methods were proposed to 
overcome these limitations [15, 16, 17, 18, 
and 19]. These methods generated new 
results on many of the challenging existing 
face recognition datasets. Other face 
recognition methods include NPDF Faces 
[20], Adapt [21] and [22]. One of the first 
approaches to consider the combined tasks 
of face recognition, pose estimation, and 
locating symbols was suggested in [23] and 
then developed in [24]. This model is based 
on a combination of a tree with shared 
reservoirs of parts, in which each face 
symbol is modeled as a part and uses total 
combinations to capture topological 
changes due to point-of-view changes. 
Recently, a cascade method was proposed 
in [25] to detect faces and landmarks 
localization simultaneously in a given 
image. This method improves detection by 
having a face alignment step in this cascade 
structure. Further, multi-task learning using 
CNNs was studied recently. Eigen and 
Fergus [26] proposed a multi-scale CNN to 
predict depth, surface normalities, and 
semantic tags simultaneously from an 
image. They used CNNs at different scales, 
in which the output of the smallest network 
scale is considered as the input of the larger 
scale. Yang and Ramanan [27] proposed the 
DAG-CNN method, which extracts features 
from multiple layers to have top, middle, 
and bottom features for image 
categorization. Sermanet et al. [28] 
combined the output of first class of CNN 
with the classifier input after sub-
classification for pedestrian detection. 
Previous works on gender recognition 
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focused on finding good distinguishing 
features for classification. Various methods 
used a combination of one or more features 
such as LBP, SURF, HOG or SIFT. During 
recent years, feature-based methods have 
attracted a great deal of attention in face 
recognition. Binary classifiers were used in 
[29] for any characteristic including 
masculinity, long hair, white skin, etc. 
Separate features were calculated for 
different items and used to train each of the 
SVMs in each feature. CNN-based methods 
were also proposed for feature-based 
learning demonstrations [30, 31]. 

3. Proposed approach and architecture 
This study proposes a hybrid CNN model 
for face recognition, gender recognition, 
landmarks localization, and pose estimation 
simultaneously. This proposed algorithm 
consists of two modules. The first module 
uses the proposed Yolo algorithm called 
Yolo_face, which crops faces from images 
and scales them to 227×227 pixels. The 
second module is a CNN which receives 
these resized cropped areas and classifies 
them as faces or non-faces, and then uses 
the LBP feature to increase the size of the 
input images to six color channels.  The 
suggested network, including five 
convolutional layers with three fully 
connected layers (Fig. 1), is used in two 
ways. First, features on CNN are 
hierarchically distributed on the network, 
which are at a lower level for identifying the 
faces and estimating the pose. Instead, the 
properties of the higher layers are 
appropriate for more complex tasks such as 
detecting or classifying [34]. In addition, 
the simultaneous learning of several 
interrelated tasks can result in synergy and 
improve the performance of each task as 

reported in previous studies [35, 36]. All 
intermediate layers were not used for 
combination since the nearby layers were 
highly interrelated. The max1, conv3, pool5 
layers from Alexnet were mixed by a 
separate network. The direct combination of 
these features is known as a simple method. 
Since the mappings of this feature for these 
layers have different dimensions (6 × 6 ×
256, 13 × 13 × 384, and 27 × 27 × 96, 
respectively), they cannot be easily 
combined with each other. Therefore, 
conv1a and conv3a convolutional layers were 
added to the pool1 and conv3 layers in the 
output to get feature mappings compatible 
with the 6 × 6 × 256 dimensions. Next, the 
outputs of these layers were mixed with 
pool5 to create a feature mapping with 6 ×
6 × 768 dimensions, which are too large to 
train a multi-task framework. Therefore, a 
core convolutional layer (convall) 1 × 1was 
added to decrease these dimensions to 6 ×
6 × 192. The fully connected (fcall) layer 
was added to convall with feature vector 
outputs of 3072 dimension. Next, the 
network was seperated into five separate 
branches for each task.  
The fully connected fcdetection, fclandmarks, 
fcvisibility, fcpose, fcgender layers with 512 
dimensions were added to fcall. Finally, a 
fully connected layer was added to each 
branch to use the labels for each task. An 
activation function (ReLU) was used after 
each convolution or a fully connected layer. 
No integration function was conducted in 
this hybrid network and resulted in local 
immutability, which was not appropriate for 
localizing the facial landmarks. Then, task-
specific loss functions were employed to 
learn the weights related to the network. 
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Fig.1. The structure of the proposed 

network 
 
The original LBP operator is introduced as 
a powerful descriptor for image texture 
[32]. This operator generates a binary 
number for each pixel according to the 
adjacent 3 × 3 pixel labels. Labels are 
obtained by thresholding the value of 
neighboring pixels with the center pixel 
value. Thus, the label is 1 for pixels with a 
value greater than or equal to the value of 
the center pixel, while the label is 0 for 
pixels with values less than the value of the 
center pixel. These labels are then rotated 
side by side to form an 8-bit number. The 
performance of this operator is shown in 
Figure 2. 
 
 

 
Fig. 2. Operator of local binary patterns 

[32] 
 
During the recent years, the LBP method 
underwent changes in order to improve 
performance in various applications such as 
improving separation strength, increasing 
tolerance toward changes, selecting a 
neighbor, and combining it with other 

methods. In this method, for each RGB 
color channel, the LBP operator was 
applied separately on each of the color 
channels of the input images to the network 
to increase the channel size of each image 
to 6 dimensions. The output of this operator 
on the sample image is given in Figure 3. 
 

 
Fig.3. LBP output on three RGB 

 channels of image 
 
If an area is categorized as a face, it can 
provide the facial landmarks and estimate 
the head pose with respect to the camera and 
gender information. The cropped face from 
the images by this hypothetical Yolo was a 
candidate to be used in the main network for 
estimating other parametersincluding 
gender detection and pose estimation. The 
backbone of the face recognition network 
included Darknet-53. It should be noted that 
the feature extraction network was based on 
Darknet. In order to obtain a suitable 
bounding box for face detection, the first 
stage was to adapt the number of the 
searches (seed) k experimentally for the 
clustered bounding boxes. Then, randomly 
k is the bounding box as the initial 
clustering centers, and then calculating the 
IoU of the bounding boxes of k and all other 
bounding boxes.  All face labels were 
divided into k classes by employing the IoU 
as the intersection criterion for bounding 
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boxes. Next, the mean values of the size of 
bounding boxes of k class were considered 
as the centers of the new cluster, which were 
repeated several times to reach 
convergence. The centers of the initial k 
cluster were divided into 9 classes in the 
experiments. YOLO optimizes a multi-part 
loss function while training this model , 
including reliability, objective function of 
regression, , classification, and 
responsibility for the absence of any object. 
However, face recognition is consisdred as 
a binary classification problem. The 
weights experimentally changed to 2: 1: 
0.5: 0.5 in order to make the total objective 
function more appropriate for recognizing 
face . The final objective function is 
obtained as Eq. 1: 
𝐿𝐿 = 2 ⋅�𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 + �𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 0 5⁄

⋅�𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 0 5⁄

⋅�𝐿𝐿𝑜𝑜𝑐𝑐𝑐𝑐 
(1) 

                                                                              
Where Lreg is the coordinate regression loss, 
Lnarconf demonstrates the confidence loss of 
the bounding box with objects, Lnoobjconf 
denotes the loss of trust to bounding boxes 
with no objects, and Lcls shows the 
classification loss. The predicted location of 
IoU and the related labels of the 
corresponding monitored data are usually 
used to evaluate optimization, and the MSE 
function is applied as the regression loss. 
However, a gap was available between 
maximizing IoU and optimizing MSE.  
Particularly, it is impossible to optimize 
non-intersecting boxes. A generalization to 
the IoU was suggested as a new metric 
called GIoU to address this weakness. 
There is a strong relationship between 
optimizing the MSE function and the metric 
itself in the new metric. Based on [33], the 

regression loss function was enhanced by 
integrating the main soft error ln with the 
weight loss of GIoU generalization. The 
new regression loss could be computed as 
Eqs. 2, 3, and 4. 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺𝐺𝐺 −
𝐴𝐴𝑜𝑜−𝑈𝑈
𝐴𝐴𝐶𝐶

 
(2) 

 
        

𝐿𝐿𝐺𝐺𝐺𝐺𝑜𝑜𝑈𝑈
= 1 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺    

(3) 

                                                  
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = � ���Δc𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐 − Δ𝑐𝑐𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡ℎ|

𝑜𝑜=𝑥𝑥.𝑦𝑦.𝑤𝑤.ℎ

+ 𝛼𝛼 ⋅ 𝐿𝐿𝐺𝐺𝐺𝐺𝑜𝑜𝑈𝑈�
2
 

=  ���Δx𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐 − Δ𝑥𝑥𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡ℎ| + 𝛼𝛼

⋅ 𝐿𝐿𝐺𝐺𝐺𝐺𝑜𝑜𝑈𝑈�
2  

���Δy𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐 − Δ𝑦𝑦𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡ℎ| + 𝛼𝛼 ⋅ 𝐿𝐿𝐺𝐺𝐺𝐺𝑜𝑜𝑈𝑈�
2  

  +���Δw𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐 − Δ𝑤𝑤𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡ℎ| + 𝛼𝛼

⋅ 𝐿𝐿𝐺𝐺𝐺𝐺𝑜𝑜𝑈𝑈�
2  

 +���Δh𝑝𝑝𝑟𝑟𝑟𝑟𝑐𝑐 − Δℎ𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡ℎ| + 𝛼𝛼

⋅ 𝐿𝐿𝐺𝐺𝐺𝐺𝑜𝑜𝑈𝑈�
2 

  (4) 

                                                          
where Ac is the smallest convex set 
enclosingthe predicted location and the 
correct labels, α shows a real value factor, 
and x, y, w, and h represent the locations 
and size of the bounding boxes, 
respectively. The α factor was set as 0.1 in 
this model. 

3.1 Training and testing process of network 

The AFLW dataset [36] was used to train 
and test the proposed network. This dataset 
contains 25,993 faces with 21,997 full real-
time images, face shapes, race, age and 
gender. Further, there are 21 landmarks for 
each face with a box bounded to the face, 
face pose (left and right bending, up and 
down bending and rotation) and gender 
information. From this collection, 2400 
images were randomly selected for testing 
and the rest for training. Various loss 
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functions were used to train facial 
recognition tasks, facial landmarks 
localization, pose estimation, and gender 
recognition. 
Face recognition in images: The proposed 
Yolo algorithm was applied for face 
recognition and face cropping. The 
architecture and loss functions of this 
algorithm are presented and discussed in 
Section 3. 
Facial landmark localization: A total of 21 
markup language points were utilized to 
localize facial landmarks as the AFLW 
dataset. Some of these landmarks become 
non-visible due to the fact that these faces 
have different perfect poses. The candidate 
box areas with intersection (IOU) arger than 
0.35 of the target label map were used to 
learn this task while others were neglected. 
An area could be determined by {x, y, w, h}, 
where the (x, y) is the coordinates of the 
center of the area and w and h denote the 
width and height, respectively. Each point 
of the visible sign was replaced based on the 
center of the area (x, y) and normalized by 
(w, h) as Eq. (5).  

(𝑎𝑎𝑖𝑖. 𝑏𝑏𝑖𝑖) = �𝑥𝑥𝑖𝑖−𝑥𝑥
𝑤𝑤

. 𝑦𝑦𝑖𝑖−𝑦𝑦
ℎ
�       (5) 

 
Where the (xi, yi) reliability coordinates are 
the basis of known correctness, and (ai, bi) 
are used as labels for training the 
localization task using weighted Euclidean 
loss with a coefficient of visibility. This loss 
was applied to predict the location of the 
landmarks calculated from Eq. (6). 

𝑙𝑙𝐺𝐺𝑙𝑙𝑙𝑙𝐿𝐿 = 1
2𝑁𝑁
∑ 𝑣𝑣𝑖𝑖�(𝑥𝑥�𝑖𝑖 − 𝑎𝑎𝑖𝑖)�

2
+𝑁𝑁

𝐺𝐺=1

((𝑦𝑦�𝑖𝑖 − 𝑏𝑏𝑖𝑖)2)      

   
(6) 

 
      
Where the (𝑥𝑥�𝑖𝑖 ,𝑦𝑦�𝑖𝑖) is the ith location of the 
predicted landmarks by this network with 

respect toa known area and N denotes the 
total number of landmark points (21 for 
AFLW [37]). The coefficient of visibility 
(vi) is 1 when the ith landmark is obserevd 
in the candidate area. Otherwise, it is zero, 
i.e., there is no loss related to the non-visible 
points. Therefore, it will not considered in 
the post-release phase.  
Visibility learning: The coefficient of 
visibility can test the presence of a facial 
landmark on the predicted face. Regarding  
an area with an intersection greaterthan 
0.35, the Euclidean loss was utilized to train 
visibility as in Eq. (7). 

𝑙𝑙𝐺𝐺𝑙𝑙𝑙𝑙𝑣𝑣 =
1
𝑁𝑁
��(𝑣𝑣�𝑖𝑖 − 𝑣𝑣𝑖𝑖)�

2
𝑁𝑁

𝐺𝐺=1

    (7) 

  where 𝑣𝑣�𝑖𝑖 indicates  the predicted visibility 
of the ith landmark. The true visibility (𝑣𝑣𝑖𝑖) 
is one when the ith landmark is visible in the 
candidate area. Otherwise, it is equal to 
zero.  
Pose estimation: Euclidean loss was used to 
train the estimation of the head rotation 
(P1), bending towards up and down (P2), 
and bending towards left and right (P3). The 
loss of a candidate area with more than 0.5 
intersection with the target map is 
calculated by Eq. (8). 

𝑙𝑙𝐺𝐺𝑙𝑙𝑙𝑙𝑃𝑃

=
(�̂�𝑝1 − 𝑝𝑝1)2 + (�̂�𝑝2 − 𝑝𝑝2)2 + (�̂�𝑝3 − 𝑝𝑝3)3

3  
(8) 

 
   Where (�̂�𝑝1, �̂�𝑝2, �̂�𝑝3) represent the estimated 
poses.  
Gender recognition: Gender is a two-part 
issue similar to face recognition. For a 
candidate area with 0.5 intersection with the 
target map, the Softmax loss was calculated 
based on Eq. (9). 
𝑙𝑙𝐺𝐺𝑙𝑙𝑙𝑙𝐺𝐺 = −(1 − 𝑔𝑔) ⋅ 𝑙𝑙𝐺𝐺𝑔𝑔 (1 − 𝑝𝑝𝑟𝑟)

− 𝑔𝑔 ⋅ 𝑙𝑙𝐺𝐺𝑔𝑔 (𝑝𝑝𝑟𝑟) 
  (9) 
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   where g=0 when the gender is male; 
otherwise, g is 1. (p0, p1) is the two-
dimensional probability vector measure 
from this network. The total loss is 
calculated as the weighted sum of each of 
the four losses as in Eq. (10). 

𝑙𝑙𝐺𝐺𝑙𝑙𝑙𝑙𝑜𝑜𝑡𝑡𝑐𝑐𝑐𝑐 = �𝜆𝜆𝑡𝑡𝑖𝑖𝑙𝑙𝐺𝐺𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖

𝑖𝑖=5

𝑖𝑖=1

 (10) 
 

  where ti indicates  the ith entry of the 
 T = {D, L, V, P, G} set of tasks. The weight 
parameter (𝜆𝜆𝑡𝑡𝑖𝑖) is decided based on the 
importance of this task in the overall loss. 
The (𝜆𝜆𝐷𝐷 = 1, 𝜆𝜆𝐿𝐿 = 5, 𝜆𝜆𝑉𝑉 = 0.5, 𝜆𝜆𝑃𝑃 = 5, 𝜆𝜆𝐺𝐺 = 2) 
values were chosen for the experiments. 
More weights were assigned to the tasks of 
locating the facial landmarks and estimating 
the pose due to the need for spatial 
accuracy. 

4. Analysis of results and experiments 
Face recognition results for the AFW and 
FDDB datasets are presented in this section. 
The AFW [38] dataset is collected by 
Flicker, and the images in this dataset 
contain many changes in appearance and 
point of view. There are a total of 468 faces 
in this dataset. The FDDB database [39] 
consists of 2,845 images including 5,171 
images collected from news articles on the 
Yahoo web site. Some recently published 
methods which were compared in this 
evaluation include DP2MFD [40], 
CascadeCNN [41] and Hyper face [42]. 
FDDB dataset is very challenging for the 
proposed method and other R-CNN-based 
face recognition methods, which could be 
due to its multiple blurry and small faces. 
Some of these faces are not in the candidate 
search areas. Additionally, resizing small 
faces to the 227×227 input size further 
distorts the face, which can lead to a low 
detection score. However, the performance 

of the proposed model could be compaed 
with some recently published deep learning 
face recognition methods such as DP2MFD 
[40] and Faceness [43] on the FDDB dataset 
with 91.1% mAP. Figs. 4 and 5 display the 
precision-recall curves of the various 
detectors related to the AFW and PASCAL 
face datasets, respectively. Furthemore, Fig. 
6 shows the comparison of the 
performances of various detectors by 
Receiver Operating Characteristic (ROCs) 
curves on the FDDB dataset. As can be seen, 
the suggested method outperformed all the 
commercial and academic detectors 
reported on the AFW and PASCAL 
datasets. Hyper-Yolo-face has an average 
accuracy of 99.3% (mAP) and 98.20% for 
the AFW and PASCAL datasets, 
respectively. 
 

 
Fig. 4. Evaluation of face recognition performance 

on the AFW dataset (The numbers in the guide 
represent the mean accuracy (mAP) for the relevant 

dataset) 
 

 
Fig.5. Evaluations of face recognition performance 
on the PASCAL face dataset (The numbers in the 
guide represent the mean accuracy (mAP) for the 

relevant data set) 
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Fig.6. Evaluation of face recognition performance 
on the FDDB dataset (The numbers in the guide 

represent the mean accuracy) 
 

Figures 5 and 6 illustrate that multi-task 
CNNs (Multitask_Face and Hyper-Yolo-
face) operate with a wider margin than R-
CNN-Face. This increase in performance is 
mainly related to the fact that the multi-task 
learning approach helps to the network to 
learn improved features for face 
recognition, as evidenced by their mAP 
values in the AFLW dataset.  
The performance of various facial 
landmarks localization algorithms was 
evaluated on the AFW [38] and AFLW [36] 
datasets. Both of these datasets contain 
faces with complete pose changes. Some of 
the compared methods in terms of facial 
landmarks localization include FaceDPL 
[44], JointCascade [45], SDM [46] and 
3DDFA [47]. The performance of different 
methods of facial landmark localization on 
the AFW dataset using the defined protocol 
in [44] is shown in Figure 7. As shown, (*) 
represents the models evaluated on full 
close-up faces or using manual initial values 
[38]. This dataset contains six main points 
for each face includingleft_eye_center, 
right_eye_center, nose_tip, mouth_left, 
mouth_center, and mouth_right. The error 
was calculated as the average distance 
between these predicted main points and the 
correct normalized labels to the size of the 

face. Diagrams for this comparison are 
obtained from [44]. 

 
Fig.7. Cumulative error distribution curves for 

facial landmark localization on the AFW 
dataset (The numbers in the guide are part of 

the test faces which have an average error 
lower than (5%) of the size of the face) 

 
This error was calculated for the AFLW 
dataset using all visible points. The same 
protocol defined in [47] was used for AFW. 
Here, the only difference was that the 
AFLW test set contained only 1000 images 
with 1132 face samples and the rest of the 
images were used for training. It randomly 
generated a subset of 450 samples from this 
test set with left and right bending angles of 
1/3,[60°, 90°], [30°,60°], [0°,30°] to comply 
with this protocol. The performance of 
different methods of facial landmark 
localization is compared in Figure 8. The 
diagrams of this comparison are obtained 
from [47] in which evaluations for RCPR, 
ESR and SDM are performed by using these 
algorithms for face file processing. The 
normalized mean error (NME) for the 
AFLW dataset for each pose group is given 
in Table 1.  
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Fig.8. Cumulative error distribution curves for 

landmarks localization on the AFLW dataset (The 
numbers in the guide represent the average NME 

for the test images.) The test samples were selected 
so that they are 1/3 of the absolute left and right 
bending angle ,[60°, 90°], [30°,60°], [0°,30°]) 

 
 As shown, the proposed Hyper-Yolo-face 
performs better than many new methods of 
facial landmarks localization including 
FaceDPL [44], 3DDFA [47] and SDM [46]. 
Table 1 shows that the proposed method 
worked accurately on all pose angles. 
 
Table 1. NME (in percentage) of the 
alignment results of face on the AFLW test 
set with the best results  
 
 AFLW Dataset 21(pts) 
Method [0,3

0] 
[30,
60] 

[60,
90] 

Me
an 

std 

CDM[6
2] 

8.1
5 

13.0 16.1
7 

12.
44 

4.
04 

ESR[4] 5.6
6 

7.12 11.9
4 

8.2
4 

3.
29 

SDM[5
6] 

4.7
5 

5.55 9.34 6.5
5 

2.
45 

3DDFA
[69] 

5.0
0 

5.06 6.74 5.6
0 

2.
45 

Hyper 
face[42] 

3.9
3 

4.14 4.71 4.2
6 

0.
41 

Hyper-
Yolo- 
face[our
s 
method] 

3.0
0 

2.89 3.56 3.9
0 

0.
38 

 
The proposed method on the AFW dataset 
[37] was evaluated for the gesture 

estimation task. Recognition boxes are used 
to evaluate the facial landmarks localization 
and initialization. For the AFW dataset, the 
proposed approach was compared with 
Multi.AAM [38], HoG with multiple view 
angles [38], FaceDPL [44] and face.com [] 
and Hyperface [42]. Cumulative error 
distribution curves on the AFW dataset are 
given in Figure 9. This curve shows the part 
of the faces where the estimated pose is in 
the fluctuation range of error. As displayed 
, the proposed method operates with a much 
better margin than the existing methods. 

 
Figure 9. Cumulative error distribution 
curves of pose estimation on the AFW 

dataset (The numbers in the guide 
represent the percentage of faces labeled in 

±15° of error fluctuations) 
 

The performance of gender recognition was 
evaluated on the CelebA [48] and LFWA 
[49] datasets since these datasets contain 
gender information. The CelebA dataset 
contains 10,000 attributes and 200,000 
images. The LFWA dataset contains 13,233 
images with 5,749 attributes. The proposed 
approach was compared with FaceTracer 
[50], PANDA-w [51], PANDA-1 [51] and 
Hyper face [42]. The performance of 
different methods of gender recognition is 
reported in Table 2. The proposed method 
performs best on the LFWA dataset 
compared to all of the methods listed in the 
table. 
 

Table 2. Comparison of performance (by 
percentage) of gender detection on the CelebA 

and LFWA datasets 
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Method CelebA LFWA 

FaceTracer[31] 91 84 
PANDA-W[64] 93 86 
PANDA-1[64] 97 92 

Hyperface 97 94 
Hyper-Yolo-

face[oure method] 
99 100 

 
5. Discussion and conclusion 

This paper presented a Hyper-Yolo-Face 
multi-task deep learning method for face 
recognition, facial landmark localization, 
head pose estimation, and gender 
recognition simultaneously. Numerous 
experiments have demonstrated the 
effectiveness of this method in all four tasks 
using multiple publicly available datasets. 
In the future, the performance of this 
method will be evaluated in other 
applications including human recognition 
and human pose estimation, object 
identification and pedestrian recognition 
simultaneously. Based on the results, some 

observations are presented. First, all facial 
functions benefit from using a multi-task 
learning framework. This benefit is mainly 
due to the network's ability to learn more 
distinguishing features and post-processing 
techniques which can be improved by facial 
landmark localization and recognizing 
points for an area. Second, the composition 
of the middle layers improves this function 
for tasks related to the structure of pose 
estimation and locating the prominent 
points of the face because these properties 
do not change in the deeper layers of CNN 
relative to geometry. The Hyper-face uses 
these observations to improve the 
performance of all four tasks. Several 
qualitative results of the proposed method 
on the AFW, AFLW and FDDB datasets are 
shown in Figure 10. As observed, the 
proposed method can simultaneously 
perform all four tasks on images including 
poses, brightness, and sharp resolution 
changes with a cluttered background. 

 
 

 
 

 Figure 10. Qualitative results of the proposed method (The blue boxes represent the recognized faces of the 
women and the pink boxes represent the recognized faces of the man. Pose estimation on each face is shown at 

the top of these boxes for rotation, up and down bending, and left and right bending, respectively) 
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