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Abstract 

The current analysis exploited a hybrid ANFIS model that was optimized using PSO, GWO, and SFLA, three 
evolutionary algorithms. Three common models, MLP, RF, and SVM, were used to test and evaluate their 
performance on the same training and validation datasets, to build a LSM in EAP, Iran. For analyzing the 
associations between landslides and landslide conditioning variables, the PCF model was exploited as a 
bivariate statistical test. Furthermore, in the present analysis, the Pearson correlation test was used to measure 
the predictive strength of ten landslide condition variables. The fuzzy c-means clustering approach was then 
used to construct an initial fuzzy inference system for LSM. In addition, three wise algorithms, namely GWO, 
SFLA, and PSO, were used to train the ANFIS in the current analysis. One of the most significant benefits of 
these approaches is that they improve precision by optimizing and calculating ANFIS parameters. Indeed, it has 
the potential to reduce dimension dangers and the problems of local minimum, thus improving the ANFIS model 
accuracy. Lastly, ROC curves were used to test the LSMs generated by ANFIS-GWO, ANFIS-SFLA, and ANFIS-
PSO. According to the results, the AUC values for the ANFIS-PSO, ANGIS-SFLA, and ANFIS-GWO models 
were 0.89, 0.88, and 0.88, respectively. 
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1. Introduction 

Landslides are complex natural disasters 
that are frequently initiated several 
fatalities and casualties globally.   These 
occurrences have the potential to risk the 
lives of people and infrastructures of the 
nations in various areas around the world 
with immense social-economic on 
sequences [1]. To this end, pinpointing the 
zones with landslide vulnerability is an 
effective technique to avert and decrease 
plausible damages. 

Landslide susceptibility modeling is 
extensively acknowledged, and prediction 
accuracy outcomes highly rely on the 
exploited data quality, conditioning 
factors, environmental conditions, 

topographic features of the region, and 
landslide inventory. Therefore, LSM 
requires a multi-criteria approach and high 
levels of accuracy and reliability in the 
resulting maps in order to be relevant for 
decision-making and the design of disaster 
management plans [2]. 

A review of research background 
signifies that various methods of preparing 
hazard maps and landslide susceptibility 
have recently been established using 
statistics, deterministic, and heuristic 
Statistical models, such as multivariate 
analysis, weights of evidence[3], 
Probabilistic models e.g., FR[4] evidential 
belief function [5], analytical hierarchy 
process [6], and Certainty factor [7]have 
been exploited by a great deal of the 
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aforementioned studies. The heuristic 
method is developed in accordance with 
experts-related ideas and experiences with 
the intention of assigning various weights 
to different influencing factors. 
Nevertheless, the method would not 
produce satisfactory results due to the 
limited study area data and low rate of 
reproducibility [4]. 

Increasing applications of data mining 
and machine learning algorithms have 
been reported in landslide susceptibility 
assessments, involving fuzzy logic 
algorithms, artificial neural networks 
(ANN) and evolutionary population-based 
algorithms [8]. As reported in previous 
studies machine learning models in most 
cases outperform conventional methods as 
they appear sufficient in handling non-
linear data with different scales and from 
different type of sources [9]. Also, it has 
been well established that the integration 
of conventional statistical methods and 
machine learning methods in most cases 
perform better than individual machine 
learning techniques in susceptibility 
assessments. For instance, models such as 
Naive Bayes [10], Multi-Layer Perceptron 
[11], Decision Tree [12], Neuro-Fuzzy 
[13], Support Vector Machine    [14], 
Logistic Regress in [15], and Reduced 
Error Pruning Trees [16] are among the so-
called ML methods. Therefore, ML 
approaches are considered to be promising 
in spatial prediction of landslide. 

Nowadays, deep learning neural network 
(DLNN) is obtaining remarkable state-of-
the art accomplishment for LSM [17]. It is 
rapidly getting popular in LS domain due 
to the production of precisely spatial 
information from the raw input. Lots of 
researches have been developing on 

several landslide occurrence prediction 
using DLNN such as deep convolutional 
neural network [15]. Considering that lots 
of synthetic data and very expensive 
resources are needed to execute the deep 
learning approaches.[18], reported that 
DLNN’s used for detecting landslides do 
not automatically outperform ML methods, 
as they strongly depend by the depth of the 
layers, the input window sizes and training 
strategies. The high bias and over-fitting 
problem are major issues in deep learning 
algorithm due to nature of data. Although 
the DLNN model could be considered as 
an alternative approach with highly 
predictive accuracy, there are several 
limitations that should be considered. The 
most important one that may influence the 
decision of using DLNN models in 
landslide assessments is the process of 
tuning the structural parameters. Finding 
the optimal number of hidden layers and 
processing elements is a very 
computational demanding task. 

The idea of integrating state-of-the art 
models, such as artificial neural networks 
(ANN) and adaptive neuro-fuzzy inference 
system (ANFIS), and metaheuristic 
optimization algorithms with the aim of 
developing enhanced models has been 
suggested by many researchers. Regarding 
the ANFIS model, several integrations of 
this model with GA[19], ant colony 
optimization (ACO), differential evolution 
(DE) [19], and biogeography-based 
optimization (BBO) [20] have been 
suggested to obtain accurate estimates of 
natural hazards. Therefore, Fuzzy 
reasoning was proposed in order to address 
the issue [21]. Nevertheless, since fuzzy 
member-ship values are determined 
subjectively, the approach does not provide 
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results with high precision. As a result, 
modern landslide prediction models must 
be developed in order to cope with 
imprecisions and uncertainties and enhance 
landslide prediction capabilities [22]. 

However, despite widespread 
applications of the machine learning 
methods, some drawbacks exist in these 
methods that limit their performance [23]. 
The main weakness of the machine 
learning methods is that their application 
involves tuning of several parameters that 
make them challenging and time-
consuming to apply [1]. While, for many 
years, the modelers either had to manually 
tune the parameters during a time-
consuming trial and error process or for 
simplicity they used the default settings 
which are usually far from optimal, 
metaheuristic optimization algorithms have 
recently emerged as a remedy to alleviate 
the difficulty associated with the machine 
learning methods [1]. The optimization 
algorithms provide an intelligent 
framework to automatically and properly 
define the parameters of the base model. 
Although plenty of methods and models 
have been exploited to create maps of 
landslide susceptibility by geographic 
information systems (GIS), there is not a 
compromised method to be accepted as the 

most appropriate one due to the possible 
limitations of the qualitative techniques 
caused by unplanned occurrences or 
inadequate knowledge upon which the 
expert decisions are centered on [24]. 
Conversely, inaccuracy, and imprecision of 
data are among the shortfalls of 
quantitative methods [25]. As indicated, 
due to a number of methods and 
techniques, recognizing and identifying the 
most efficient methods and techniques are 
still challenging. 

2. Background 

For the sake of clarity, this section will 
briefly introduce the background concepts 
of machine learning and landslides 
prevention. 

2.1. Machine learning 

Machine Learning algorithms are mainly 
divided into four categories: Supervised 
learning, unsupervised learning, Semi-
supervised learning, and Reinforcement 
learning, as shown in Fig. 1. In the 
following, we briefly discuss each type of 
learning technique with the scope of their 
applicability to solve real-world problems 
[26].  
 

 

Fig.1. Type of ML 
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The difference between supervised 

learning and unsupervised learning is that 
supervised learning requires labeled 
training data. Unsupervised machine 
learning involves analyzing data that has 
not been labeled or processed, while 
supervised machine learning involves 
training using data that has been tagged at 
both its entrance and its exit. During the 
process of machine learning, the model is 
responsible for discovering the link 
between the labeled input data and the 
output data. Models are refined until they 
can accurately predict the outcomes of 
experiments using data that has not yet 
been collected. The production of labeled 
training data often calls for a significant 
investment of resources. Unsupervised 
machine learning acquires knowledge via 
the use of raw training data that has not 
been labeled. They are often used in the 
process of discovering the underlying 
trends in a given dataset since 
unsupervised models can discover 
relationships and patterns within unlabeled 
datasets [27]. 

The issue that the approach is used to 
address. Unsupervised learning is typically 
used in the process of determining 
connections across databases while 
supervised machine learning is often used 
to organize information or select a factor. 
Supervised machine learning requires 
labeled data; hence it requires a significant 
increase in the number of resources. There 
is less human supervision when it comes to 
unsupervised machine learning, therefore it 
may be more difficult to reach the proper 
levels of understandability[27].  

 

2.1.1. Supervised learning 

Supervised machine learning requires 
labeled input and output data during the 
training phase of the ML workflow to be 
effective. A data scientist will often label 
the training data when preparing to train 
and assess a model. Once a system has 
learned the connection between input and 
output data, it may be used to classify and 
predict data that has not yet been examined 
by researchers [28, 29] 

The term "supervised machine learning" 
denotes the fact that at least part of this 
method requires human monitoring. The 
vast majority of data provided is unlabeled 
and unprocessed. Supervised learning 
refers to building a model for connecting 
known inputs to unknown outputs. 
Consequently, the output values for new 
data can be predicted based on those 
relationships learned from the previously 
labeled training data.  Supervised learning 
can be divided into classification and 
regression problems. In classification 
problems, the intended output is a semantic 
label or class. For example, to identify 
potential landslides, classification 
problems would label each pixel in an 
image as ‘landslide’ or ’non-landslide’. 
Regression problems aim to predict a 
continuous variable. Common supervised 
learning algorithms include the logistic 
regression (LR), decision tree (DT), 
support vector machine (SVM), Naive 
Bayes (NB), artificial neural networks,( 
RF) random forest 
– LR: A supervised learning algorithm that 
uses a logistic function to map the input 
variables to categorical dependent 
variables. 
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– DT: A supervised learning algorithm is 
commonly used in classification 
problems. The structure resembles a 
tree. The branch node represents several 
alternatives. Each leaf node represents a 
decision. 

– SVM: A supervised learning algorithm is 
also commonly used in classification 
problems by constructing a separating 
line to distinguish between objects in a 
multidimensional space. 

– NB: A supervised learning algorithm is 
based on Bayes’ theorem and widely 
used in classification problems, which 
assumes that features are independent 
and have no correlations. 

– ANN: ANN consists of a set of 
connected processing units that work 
together, can found an association of 
patterns among input and output. 

kNN: A supervised learning algorithm uses 
’feature similarity’ to predict the values 
of new data points, in which the new 
data point will be assigned a value 
based on the distance it matches the 
points in the training set. 

-RF: Random Forest is a commonly-used 
machine learning that combines the 
output of multiple decision trees to 
reach a single result. Its ease of use and 
flexibility have fueled its adoption, as it 
handles both classification and 
regression problems. 

2.1.2. Unsupervised Machine Learning 

Unsupervised learning adopts a more 
latent strategy as opposed to directed AI. 
For instance, the number of groups focuses 
will be chosen by an individual; however, 
the model will dissect gigantic measures of 
information productively and without 
human management. 

Unsupervised AI is subsequently very 
much adjusted to give replies to questions 
concerning stowed-away examples and 
associations in the actual information. The 
tremendous heft of the information that is 
open is unlabeled, crude information. 
Unsupervised gaining is an intense method 
for making inferences from this 
information by putting together the 
information into bunches because of 
shared credits or looking at data sets for 
hidden designs. The prerequisite for 
labeled information, be that as it may, 
makes directed AI more asset-concentrated 
[30].  
– K-Means clustering: An unsupervised 

learning algorithm divides all input data 
into k clusters, in which data in the 
same cluster are as similar to each other 
as possible. 

- Clustering: clustering is designed to 
group unlabeled examples based on 
their similarity to each other. (If the 
examples are labeled, this kind of 
grouping is called classification. 

 2.1.3. Semi-supervised: 

Semi-supervised machine learning is a 
combination of supervised and 
unsupervised machine learning methods. It 
can be fruit-full in those areas of machine 
learning and data mining where the 
unlabeled data is already present and 
getting the labeled data is a tedious 
process. With more common supervised 
machine learning methods, you train a 
machine learning algorithm on a “labeled” 
dataset in which each record includes the 
outcome information.  
-Transudative SVM: Transudative 

support vector machines (TSVM) has 
been widely used as a means of treating 
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partially labeled data in semi supervised 
learning [26].  

-Self-Training: In self-training, a 
classifier is trained with a portion of 
labeled data. The classifier is then fed 
with unlabeled data. The unlabeled 
points and the predicted labels are 
added together in the training set. This 
procedure is then repeated further. 
Since the classifier is learning itself, 
hence the name self-training [26].   

2.1.4. Reinforcement: 

Reinforcement learning is a type of 
machine learning algorithm that enables 
software agents and machines to 
automatically evaluate the optimal 
behavior in a particular context or 
environment to improve its efficiency, i.e., 
an environment-driven approach. This 
type of learning is based on reward or 
penalty, and its ultimate goal is to use 
insights obtained from environmental 
activists to take action to increase the 
reward or minimize the risk [31]. It is a 
powerful tool for training AI models that 
can help increase automation or optimize 
the operational efficiency of sophisticated 
systems such as robotics, autonomous 
driving tasks, manufacturing and supply 
chain logistics, however, not preferable to 
use it for solving the basic or 
straightforward problems [26]. 

2.2. Deep learning methods 

Deep learning (DL) is playing an 
increasingly important role in our lives. It 
has already made a huge impact in areas, 
such as cancer diagnosis, precision 
medicine, self-driving cars, predictive 
forecasting, and speech recognition. The 
painstakingly handcrafted feature 

extractors used in traditional learning, 
classification, and pattern recognition 
systems are not scalable for large-sized 
data sets. In many cases, depending on the 
problem complexity, DL can also 
overcome the limitations of earlier shallow 
networks that prevented efficient training 
and abstractions of hierarchical 
representations of multi-dimensional 
training data. 

Deep neural network (DNN) uses 
multiple (deep) layers of units with highly 
optimized algorithms and architectures.   
implementations. The review also covers 
different types of deep architectures, such 
as deep convolution networks, deep 
residual networks, recurrent neural 
networks, reinforcement learning, variation 
auto encoders, and others. Deep neural 
network consists of several layers of 
nodes. Different architectures have been 
developed to solve problems in different 
domains or use-cases. E.g., CNN is used 
most of the time in computer vision and 
image recognition, and RNN is commonly 
used in time series problems/forecasting. 
On the other hand, there is no clear winner 
for general problems like classification as 
the choice of architecture could depend on 
multiple factors. Nonetheless [32] 
evaluated 179 classifiers and concluded 
that parallel random forest or parRF_t, 
which is essentially parallel 
implementation of variation of decision 
tree, performed the best. Below are four of 
the most common architectures of deep 
neural networks. ** 
 

1. Convolution Neural Network 
2. Auto encoder 
3. Restricted Boltzmann Machine (RBM) 
4. Long Short-Term Memory (LSTM)** 
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-Convolution Neural Network: CNN is 
based on the human visual cortex and is 
the neural network of choice for computer 
vision (image recognition) and video 
recognition. It is also used in other areas 
such as NLP, drug discovery, etc.  a CNN 
consists of a series of convolution and sub-
sampling layers followed by a fully 
connected layer and a normalizing (e.g., 
SoftMax function) layer [31]. 

- Auto encoder: is a neural network that 
uses unsupervised algorithm and learns the 
representation in the input data set for 
dimensionality reduction and to recreate 
the original data set. The learning 
algorithm is based on the implementation 
of the backpropagation 

-Restricted Boltzmann Machine (RBM): 
RBM is an artificial neural network where 
we can apply unsupervised learning 
algorithm to build non-linear generative 
models from unlabeled data [33]. The goal 
is to train the network to increase a 
function (e.g., product or log) of the 
probability of vector in the visible units so 
it can probabilistically reconstruct the 
input. It learns the probability distribution 
over its inputs. RBM is made of two-layer 
network called the visible layer and the 
hidden layer. Each unit in the visible layer 
is connected to all units in the hidden layer 
and there are no connections between the 
units in the same layer. 

Long Short-Term Memory (LSTM): 
LSTM is an implementation of the 
Recurrent Neural Network and was first 
proposed by Hoch Reiter et al. in 1997 
[34]. Unlike the earlier described feed 
forward network architectures, LSTM can 

retain knowledge of earlier states and can 
be trained for work that requires memory 
or state awareness. LSTM partly addresses 
a major limitation of RNN, i.e., the 
problem of vanishing gradients by letting 
gradients to pass unaltered.  LSTM 
consists of blocks of memory cell state 
through which signal flows while being 
regulated by input, forget and output gates. 
These gates control what is stored, read 
and written on the cell. LSTM is used by 
Google, Apple and Amazon in their voice 
recognition platforms** 

2.3. Landslide 

A geo-hazard is a devastating 
phenomenon that is directly and indirectly 
caused by activity in the earth’s interior or 
geological environment changes, including 
human activity or climate change. As one 
type of global geo-hazard, landslides are 
geological phenomena related to ground 
movements of rock fall and debris flow 
and can refer to the movement of a mass of 
rock, debris, or earth down a slope under 
the influences of gravity, rainfall, and 
earthquake. Lithology, tectonics, climate 
change, and anthropogenic pressure may 
cause slope instability that could progress 
to landslides [35]. Heavy rainfall, rapid 
snowmelt, or earthquakes could also 
trigger a landslide occurrence. Landslides 
are ubiquitous in any terrestrial 
environment with slopes. 

In most cases, landslide occurrence 
means catastrophic results.it has brought 
out the massive destruction of 
infrastructure and even thousands of 
fatalities every year [36]. From 2004 to 
2010, 2620 fatal landslides were recorded, 
causing 32,322 fatalities. At least 17% of 
all natural-hazard fatalities around the 
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world can be attributed to landslides. In the 
most affected areas financial costs and 
countermeasures are on the order of 
billions of dollars. 

Recently, as a consequence of human 
disturbance (e.g. Deforestation, mineral 
mining, and intensive exploitation of land 
for construction) and extreme weather, the 
frequency and intensity of landslides have 
increased dramatically. With the advent of 
extreme natural events, the prevention of 
landslides has become an urgent task. 
landslides prevention involves an 
assessment of slope instability phenomena 
and the change in the occurrence of slopes 
by means of effective geological 
engineering principles and other existing 
and emerging technologies. landslides 
prevention can provide valuable 
information for government agencies, 
planners, decision makers, and local 
landowners to make emergency plans that 
reduce the negative effects on economics 
and human life. Typically, the study of 
landslides prevention is divided into two 
aspects: detection and prediction. 
Related datasets for landslides prevention 
are generally obtained from three sources: 
(i) remotely sensed data acquired by Earth-
observing satellites, (ii) data collected by 
in situ sensors, and (iii) data collected 
during fieldwork [37].  

2.3.1. Typical data source for landslides 
prediction 

In the present study, the ESRI ArcGIS 
10.3 software was utilized with the 
intention of producing and displaying the 
data layers. All the layers of data were 
organized in raster format with a pixel size 
of 30 (m)×30 (m). The influencing factors 
were obtained from ASTER Global DEM , 

the geological map, and a topographic map 
with the same resolution [38]. Then the 
geological map was used in order to obtain 
the lithology map, which was then 
converted into a raster format. Landsat 8 
(OLI images) were used in order to derive 
the NDVI as well as land use maps. For 
further analyses, all the so-called factors 
were standardized by a similar scale of 30 
×30 (m2). Besides, the conditioning factors 
that were of continuous data were 
reclassified into distinct subsections with 
the intention of transforming continuous 
data to sections at specific intervals. In 
order to achieve the identical output 
scaling, the other discrete conditioning 
variables were reclassified into groups 
(Fig. 2). For training/modelling, 536 (70%) 
landslide locations were utilized in the 
present analysis, and 230 (30%) landslides 
were utilized for validating. A value of "1" 
was allocated to the landslide training 
instances[39]. Moreover, from the 
landslide-free zones, a similar amount of 
non-landslide points (766) was randomly 
produced, and a value of '0' was allocated 
to these instances, which were randomly 
divided into two sections with a ratio of 
70/30 as well [40]. 

3. ML modeling 

3.1. Random Forest (RF)  

RF is regarded as an ensemble learning 
method that classifies unidentified samples 
predicated on the combined outcomes of a 
series of weak classifications Trees 
developed via bootstrapping techniques. 
Particularly, the learning process includes 
choosing the predictor variable for each 
iteration and resampling the data through 
replacement]. By means of this approach, 
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an RF model demonstrates a higher 
efficient ability to prevent overfitting 
problems and by and large present a 
superior generalization output. 

In a randomized forest, the best split 
amid a subcategory of predictors, which 
are haphazardly selected by the node is 
used to split each node. Inherently, inside 
huge datasets, it has been a prominent 

technique for identifying beneficial 
hitherto invisible patterns. There are n 
variables that could be selected as random 
subsections from the training data with the 
intention of determining the best possible 
node to split. The best node division could 
be finalized utilizing Gini criteria [41]. 

  

 
 

Fig.2. Ten condition factors map 

3.2.Support Vector Machine (SVM)  

SVM is a series of techniques for ML on 
the basis of the notion of an optimum 
hyperplane of separation. In feature space, 
SVM considers the widest margin between 
the two groups. A standard SVM model 
could be of a two-class or multi-class 
model (an amalgamation of a two-class 
SVMs chain). The most widely used form 
of ML is the two-class SVM. The 
separating hyperplane is among the 
possible planes, which divides two groups 
during the model performance. The line L 
being the in-between classification line, 
and L1 and L2 being lines running parallel 
to L across the sample points nearest to the 

classification line. The classification 
margin is considered to be the distance 
between them. The purpose of the 
optimum hyperplane classification is to 
correctly distinguish between the two types 
of samples while maximizing the support 
vector margin. In general, there are two 
categories of SVMs on the basis of object 
classification, viz. the two-class and 
multiclass. The multiclass SVM is a 
synthesis of a set of two-class SVMs [42]. 
Presently, pairwise classification and the 
one-to-the-other-class approach are 
prevalent multi-class SVM methods. The 
most commonly used technique is two-
class SVM. Normally, along with 
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grouping, SVM could be exploited for 
regression analysis. 

3.3. Artificial Neural Network (ANN) 

ANN are units for the processing of 
computational information influenced by 

the behavior and structure of actual 
biological neurons whose architecture 
attempts to mimic the human brain cells' 
acquisition of knowledge and 
organizational skills [43].  

 

 
Fig.3. The layers of MLP 

 
A three-layer feed-forward MLP has been 

constructed (Fig. 3). Following trial and 
error and cogitating the lowest error, the 
optimal network architecture was chosen. 
Initial weights in a limited range were 
initiated by random. Once the stopping 
error criteria are met, the process is 
terminated. The first objective in this 
analysis was to fulfill the stopping criteria 
of the root mean square error (RMSE). If 
RMSE is not attained, the epochs number 
could then be used as a termination 
criterion, which was set to be 1000 in the 
current analysis. 

3.4. Hybrid modelling 

3.4.1. Neuro-Fuzzy inference system 

ANFIS is a hybrid paradigm for inferring 
associations between inputs and outputs on 
the basis of artificial neural networks 

(ANN) and fuzzy logic. The neural-fuzzy 
framework with TSK inference engine that 
is proposed by. The so-called fuzzy 
inference engine was chosen due to its 
capability in modeling complex nonlinear 
problems with extra accuracy and with 
lower number of rules compared to other 
fuzzy inference engines (e.g., the Mamdani 
engine). The five layers of the neural fuzzy 
structure (Fig. 4) include two groups of 
nodes: fixed and adaptive nodes. The first 
and forth layers were fabricated with 
adaptive nodes, while set nodes are used to 
design the remaining layers. Connection 
weights were regulated during training 
phases in adaptive nodes with the intention 
of fitting to training data, while fixed 
nodes simply sum or normalize all 
incoming signals. 
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Fig.4. ANFIS structure 

Figure 5 depicts the final configuration of 
the neural fuzzy model used in the present 
analysis. As it can be observed, the model 
holds ten input variables, a single output, 
and 12 rules possessed with 240 antecedent 

and 132 consequent parameters. Three 
modeling methods were utilized to 
evaluate the best values for the so-called 
parameters during the training phase. 

 
 

Fig.5. Proposed fuzzy model 

3.4.2. Optimization algorithms 

 SFLA 

The SFLA is one of the renowned meta-
heuristic algorithms. By merging the 

Memetic algorithm and the PSO, this 
algorithm has achieved to prominence in 
local and global search. Furthermore, 
owing to its simplicity, fast convergence 
speed, and global search capabilities, the 
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algorithm is nowadays recognized by 
researchers as an effective optimization 
algorithm for discrete data. 

The development of the initial population 
is the first step in the implementation of 
the present algorithm, as it is with every 
other evolutionary algorithm. This 
algorithm's population consists of a group 
of frogs, each of those frogs is used as 
solution to a problem and is looking for 
food  [8]. The position of the frog i is 
demonstrated as Xi= (xi1, xi2, …, xiD). 
Initially, p number of frogs are distributed 
into n memeplexes. This set of frogs that 
have a similar structure but vary in their 
adaptability. As a result, the frogs’ 
descending ordering is operated based on 
their suitability, in which the first frog goes 
to the first memeplex from the first ordered 
list, the next frog goes to the next 
memeplex, and the n+1 frog goes to the 
first memeplex. This pattern will continue 
until there are no more frogs left to assign 
to memeplexes. The best and worst frog 
positions for either of the memeplex are 
defined by Xb and Xw (Fig. 6). 

 
Fig.6. The best frog leaping in SFLA 

This upgrade process is replicated before 
the update number has been satisfactory 
enough. In all memeplexes, both frogs are 
mixed and reordered into M memeplexes 
following the completion of the local area 

deep-searching of all memeplexes. 
Furthermore, once the local search fails to 
identify superior solutions with each 
iteration, random virtual frogs are created 
and replaced in the population with the aim 
of allowing the randomly production of 
knowledge. The shuffling and local search 
processes proceed until the specified 
convergence requirements are reached. 
The ultimate purpose of the process is to 
discover the right global optimal solutions. 

 GWO 

 This algorithm is a population-based 
optimization method. Alpha, beta, delta, 
and omega are the four leadership groups 
in a pack of grey wolves. The fittest 
approach to an optimization problem is the 
alpha. The search process (i.e., locating a 
prey) starts with the generation of a 
random population from the applicant 
solutions, which is then modeled in order 
to simulate the hunting behavior of the 
wolves’ pack. The wolves predict the 
possible location of the prey during the 
iterations of the algorithm. Flowingly, they 
calculate their distances from the prey and 
change their location depending on the 
prey. The wolves one by one represent a 
potential solution that changes during the 
hunt. Additionally, GWO frequently 
employs efficient operations to prevent 
being trapped in a local optimum in order 
to reach the global optimum (i.e., prey), as 
follows [42]: 

�⃗�(𝑡 + 1) = �⃗�௉(೟) − 𝐴.

∣ 𝐶. �⃗�௉(೟) − �⃗�(௧) ∣ 

(𝐴 = 2�⃗�. 𝑟௜ − �⃗�, 𝐶 = 2. 𝑟ଶ) 

(1) 
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Where �⃗� is the position vector of an 
applicant solution which is called grey 

wolf, t is the existing iteration, �⃗�௣denotes 

the global optimum’s position vector 
which is called prey, �⃗�ଵ,ଶ denotes random 

vectors between 0 and 1 which enable 
wolves to achieve every position in the 
search space, and throughout the iterations, 
the constituents of �⃗�are reduced linearly 
from 2 to 0 to highlight the exploration 
(which is searching for prey) and 
exploitation (which is targeting the prey): 

�⃗� = 2 −
2𝑡

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
     (2) 

Where t is the existing epoch and 
Max_Iter is the overall number of 
iterations. Throughout the exploration 
phase, he potential updating of positions 
could be given for other wolves consistent 
with the α, β, and δ positions: 

�⃗�ଵ = �⃗�ఈ − 𝐴ଵ. ∣ 𝐶ଵ. �⃗�ఈ − �⃗� ∣ (3) 

�⃗�ଶ = �⃗�ఉ − 𝐴ଶ. ∣ 𝐶ଶ. �⃗�ఉ − �⃗� ∣ (4) 

�⃗�ଷ = �⃗�ఋ − 𝐴ଷ. ∣ 𝐶ଷ. �⃗�ఋ − �⃗� ∣ (5) 

�⃗�(𝑡 + 1) =
�⃗�ଵ(𝑡) + �⃗�ଶ(𝑡) + �⃗�ଷ(𝑡)

3
 (6) 

Once the termination condition is met, the 
GWO algorithm's search process ends 
[26]. 

 PSO 

PSO is an optimization technique of 
stochastic type based on a population. It 
has been extensively employed to aid and 
solve the rapid convergence problem and 
global solutions in the majority of modern 
scientific and engineering optimization 
problems [44]. It uses an objective 
function and three mechanisms in order to 
discover an optimal solution by mimicking 
swarm behavior in tasks performances, 
such as that of bird flocks and fish. Each 
particle moves through the search space in 
quest of the best landing spot based on its 
own and neighboring particles' experiences 
(Fig. 7). 

At each iteration iter, two pieces of data 
characterize each of i particle on the search 

domain: its velocity 𝑉௜
௜௧௘௥ and its position 

𝑃௜
௜௧௘௥, which are updated as follows: 

 

ቐ

𝑉௜
௜௧௘௥ାଵ = 𝜔௜௧௘௥𝑉௜

௜௧௘௥ + 𝑐ଵ𝑟ଵ൫𝑃௜,஻௘௦௧
௜௧௘௥ − 𝑃௜

௜௧௘௥൯ + 𝑐ଶ𝑟ଶ(𝑃 ௟௢௕௔௟
௜௧௘௥ − 𝑃௜

௜௧௘௥)

𝑃௜
௜௧௘௥ାଵ = 𝑃௜

௜௧௘௥ + 𝑉௜
௜௧௘௥ାଵ

𝑖𝑡𝑒𝑟 =  1: 𝑀𝑎𝑥𝐼𝑡,   𝑖 = 1: 𝑁                                                                            

 (7) 

 
Fig.7. PSO update process 
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Where N is the particles’ number existing 
in the swarm, and MaxIt is the maximum 
number of iterations. The inertia weight is 
referred to as w_iter. The term V_i_iter  
refers to the particle's preceding velocity. It 
functions as a momentum, stopping the 
particle from making radical changes of 
direction and biasing it in the direction it is 
actually in. The cognitive part of the 
second term, c_1 r_1 (P_(i,Best)^iter-
P_i^iter), denotes the particle's personal 
experience. The particle is moved to its 
superior location as a result of the so-
called term by which models its inclination 
to go back to locations that were of highest 
satisfaction in the past. The third term, c_2 
r_2 (P_Global^iter-P_i^iter), denotes 
particles cooperation which is also known 
as social comportment. This term has the 
effect of attracting each particle to the best 
position sought by its neighbors. 

 3.5.   Development of the models 

Due to the prominence of ANFIS 
parameters’ fine-tuning in reaching a 
global optimum, the PSO, SFLA, and 
GWO metaheuristic algorithms were 
employed in order to search for the most 
appropriate variables and develop three 
ANFIS types of the model which are of 

meta optimized type, namely ANFIS-
GWO, ANFIS- PSO, and ANFIS-SFLA. 
With the aim of doing so, a primary fuzzy 
inference system was firstly created by 
means of training dataset and the c-means 
clustering method [45]. The GWO, PSO, 
and SFLA algorithms were then utilized in 
order to experiment with different 
combinations of the neuro-fuzzy system's 
basic parameters. Lastly, the basic 
parameter values were stored and the best 
values were calculated on the basis of the 
lowest MSE and RMSE values (Fig. 8), 
which were computed using n (the number 
of samples) and Ti (target values) existing 
in the validation or training dataset, as well 
as the landslide models’ Oi (output values). 
The ultimate landslide models were 
established and employed with the aim of 
computing the susceptibility index for 
either of the pixels in the study region by 
means of the optimum unification of the 
ANFIS model's basic parameters. 

ANFIS antecedent and consequent 
parameters were shown in Table 1 and 
Table 2 shows the final setting parameters 
of ANFIS-GWO, ANFIS- PSO, and 
ANFIS-SFLA. 
 

 
Table 1. The ANFIS parameters a) antecedent b) consequent 

(a)  

c1,1 1,1 c2,1 2,1 … c10,1 10,1 
c1,2 1,2 c2,2 2,2 … c10,2 10,2 
… … … … … … … 
c1,12 1,12 c2,12 2,12 … c10,12 10,12 

(b) 
p0,1 p1,1 … p10,1 
p0,2 p1,2 … p10,2 
… … … … 
p0,12 p1,12 … p10,12 
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Fig.8. Optimization steps of hybrid models 
 

Table 2. The parameters of optimization algorithms 
Parameters Iteration  Models  

Population=1000  c1=1, c2=3 w=0.9 → 0  500  ANFIS- PSO  
Frogs=1000  Memeplex=20 Frogs in Mem=50 500 ANFIS-SFLA  

Population=1000  a=2→0 0< (r1, r2) <1  500 ANFIS-GWO 

 

4. Landslides susceptibility assessment 

Landslide susceptibility expresses the 
likelihood of a landslide event occurring in 
a given area based on local terrain 
conditions or climate conditions. It usually 
partitions the geographical surface into 
zones of varying grades of stability based 
on the landslide inventory. The resulting 
output is a solely spatial distribution of the 

predicted categorized hazard probabilities 
across grid cells. 

Machine learning methods applied for 
landslide susceptibility assessment 
represent a structured gathering of the 
available information extracted from 
landslide inventories, process/model with 
that information, and form a judgment 
about it in a transient workflow. This 
workflow unfolds through stages of 
preprocessing, implementation or 



S. Abdollahizad: Using hybrid artificial intelligence for landslide modeling 

 

87 
 

modeling, and post processing, wherein 
modeling plays an essential role [37].  

4.1. Workflow of a machine learning in 
landslides susceptibility assessment 

Landslide assessments can reduce the 
hazard to a certain extent. However, the 
task of cataloging landslides to evaluate 
historical trends can be achieved and 
hazard zonation maps must be produced in 
this process. Such maps would make it 
easy for decision makers to take advantage 
of it to identify sensitive areas and manage 
regional land use. The main task of 
landslide assessment is preparation of 
landslide susceptibility maps incorporating 
spatial and temporal predictions of 
landslides on a regional scale. It is a great 
challenge to the global change research 
community. Results depend on the data 
used and modeling approaches employed, 
and the latter is the focus of this research 
[46]. 

So far, landslide susceptibility mapping 
methods and techniques have used simple 
expert knowledge first and then gradually 
evolved into sophisticated mathematical 
procedures, and using statistics with the 
aid of GIS. Physical-based methods are 
suitable for small-scale areas where 
detailed geomorphological and geological 
information are needed. These methods 
assess slope failure accurately because of 
its site-specific locations at a localized 
scale based on the safety factor index of 
slopes [46]. 

Supervised learning is by far the most 
widespread form of machine learning 
applied in landslide susceptibility 
assessment. The following are details 
about the workflow of supervised learning 

applied in landslide susceptibility 
assessment. 

Initially, high-quality spatial data are 
collected from remotely sensed images or 
real-time monitoring for a landslide to 
produce landslide inventories. A landslide 
inventory includes historical landslide data 
and other related information, such as 
geological data, meteorological conditions, 
and topographical data, which can roughly 
clarify the relationships between 
predisposing factors and landslide 
occurrences. Based on these data, the 
predictive models for landslide 
susceptibility zonation can construct the 
relationships between the input and output 
variables. Prior to any prediction 
modeling, these two types of variables 
should be identified. Commonly, the 
output consists of landslides and non-
landslides. The input relates to 
conditioning factors of landslides. 

Redundant or irrelevant factors may 
create noise, decreasing the overall 
predictive capability of the models. It is 
essential to choose suitable factors in 
landslide susceptibility assessment. 

To date, no universal guidelines have 
been agreed upon for the determination of 
case-specific conditioning factors [47]. 
Landslide conditioning factors show 
variation with respect to the study area and 
its geographical locations.  

Every study area has its own particular 
set of factors that cause landslides. 
According to numerous studies, common 
landslide causal factors can be divided into 
two categories: (i) internal factors, which 
are related to geology and topography, 
such as the elevation, profile curvature, 
slope, plan curvature, distance to faults, 
aspect, distance from rivers, landform and 
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lithology; and (ii) external factors, which 
usually cause landslides, such as rainfall, 
distance from roads and the seismic 
intensity. 

To further select the appropriate input 
factors, one effective method involves 
ranking the importance of the input 
variables. Popular algorithms include 
ReliefF [48], Genetic Algorithms (GA), 
Information Gain Ratio (IGR), and 
symmetrical uncertainty analysis. Through 
calculating a score for each factor, these 
algorithms can evaluate and rank the 
contributions of landslide causal factors, 
and the factors with lower contributions 
are sequentially removed. Furthermore, 
machine learning methods can rank these 
factors by their weights. Unsupervised 
learning methods such as cluster sampling 
can evaluate factors by weighting the 
relative importance of each conditioning 
factor. 

The predictive model is trained. The 
performance of the models is usually 
measured through some kind of cost 
function. It is also important to optimize 
model performance. This entails the 
adjustment of hyper parameters that 
control the training process, structure, and 
properties of the model [49]. For example, 
a validation dataset is separated from the 
test and training sets using sampling 
strategies. 

The generic approach that was selecting 
the training sets is usually made by 
sampling 70% of all instances randomly 
throughout the available data. The 
remaining part is reserved for testing the 
model. 

4.2. Conventional machine learning 
methods for landslides susceptibility 
assessment 

Conventional machine learning 
algorithms have been applied to landslide 
susceptibility assessment and achieve 
outstanding performance and are mainly 
classified into single base learning 
algorithms and ensemble learning 
algorithms. 

4.2.1. Single base learning algorithms 

The most frequently traditional single 
algorithms applied for landslide 
susceptibility assessment include (1) LR, 
(2) SVM, (3) DT, and (4) ANN [50]. LR 
has a long tradition of application in 
landslide susceptibility assessment [51]. A 
study proved that the predictive model 
complexity and the size of the training 
dataset influence the accuracy and 
predictive power of LR models concerning 
landslide susceptibility. SVM can identify 
the optimal boundary between the training 
data from two classes. Compared with 
other algorithms, the SVM algorithm 
achieves slightly better accuracies in 
shallower landslide assessment 
applications.  

As an original tree-like structure, DT The 
standard ANN model comprises three 
layers, namely an input layer (i.e., 
landslide conditioning factors), hidden 
layers, and an output layer (i.e., landslide 
susceptibility). A case proved that ANN 
applied in landslide susceptibility 
assessment achieved fairly precise models. 
In summary, several drawbacks are usually 
identified when utilizing the 
aforementioned single base learning 
algorithms, such as overfitting and 
unstable performance [37]. 
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4.2.2. Ensemble learning algorithms 

Generally, ensemble learning algorithms 
can enhance the performance of the single 
base learning algorithms and improve the 
robustness and generalizability. A 
commonly used ensemble algorithm in 
landslide susceptibility assessment is RF. 
Usually, an RF model has a more 
predictive capability to identify landslide 
susceptibility zones than other models 
[52]. 

For example, Hong et al. indicated that 
three ensemble models (i.e., AdaBoost, 
bagging, and rotation forest) could 
significantly improve the performance of 
J48 DT as the base learner, and rotation 
forest can be considered a promising 
method for landslide susceptibility 
mapping in similar cases with better 
accuracy than other methods. 
Other ensemble methods have been 
developed for landslide susceptibility 
assessment, including GBDT [53], 
Random Subspace [48], Multiboot, and 
Regularized Greedy Forests. These 
ensemble methods can reduce both the bias 
and variance and avoid overfitting 
problems compared to the base classifiers 
to improve predictive capability. 

4.3. Landslides susceptibility assessment 

Recently, with the rapid development of 
deep learning, state-of-the-art learning 
approaches have been successfully applied 
in landslide susceptibility assessment in 
the field. Indeed, deep learning has also 
been commonly applied to feature 
extraction. Deep learning can find optimal 
features and handle indirect relationships 
between features and goals and can thus 
simplify the feature engineering and data 
preprocessing steps [37]. 

4.4. Prediction of landslide displacement 

Landslide prediction is important for 
mitigating geo hazards but is very 
challenging. In landslide evolution, 
displacement depends on the local 
geological conditions and variations in the 
controlling factors [54]. 

4.4.1. Conventional machine learning 
methods for predicting landslide 
displacement 

Recently, conventional machine learning 
methods, including the ANN, SVM [55], 
Gaussian process, and ELM, have been 
applied to produce models for landslide 
displacement prediction. Here, the input is 
the landslide displacement and the 
triggering factor. The output is the 
predicted landslide displacement. 

To optimize time-series data used as 
input, Li et al. [56] introduced a chaos 
theory-based Wavelet Analysis-Volterra 
filter model (chaotic WA-Volterra model) 
into SVM for cumulative landslide 
displacement prediction. The WAVolterra 
model aims to decompose the cumulative 
displacement data into different low- and 
high-frequency components. Chaos theory 
was used to reconstruct the phase space of 
each frequency component. Reconstructed 
phase spaces were selected as the input–
output data to train the SVM models. The 
predictive results (i.e., the predictive 
cumulative displacements) were obtained 
by summing the predictive displacements 
of each frequency component. This study 
indicates the potential for chaos 
characteristic identification of landslide 
displacements to be applied in machine 
learning. A certain optimization has been 
achieved in feature processing. 
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Most studies verified the superiority of 
their proposed methods by comparing 
unoptimized algorithms or a small number 
of state-of-the-art algorithms and using the 
prediction results of one operation of the 
models for comparison; they did not, 
however, repeatedly test their proposed 
method. Inadequate method comparison 
reduces conclusion credibility. Since 
machine learning methods have a certain 
degree of uncertainty, model training and 
predictions may differ each time. Using the 
prediction of one operation of the model 
for comparison, the excellent prediction 
performance claimed in the studies may be 
accidental and not repeatable. In addition, 
most studies on landslide displacement 
prediction based on machine learning only 
used one landslide case to verify the 
applicability and superiority of their 
proposed algorithm. This strategy may lead 
to unreliable conclusions because a 
prediction model that performs well on a 
site-specific landslide may not perform 
well on other landslides. Therefore, it is 
necessary to investigate the versatility, 
mean prediction accuracy, and prediction 
stability of machine learning methods 
through multiple landslide cases and 
repeated calculations. More importantly, 
there is still a lack of a comprehensive 
comparison of available machine learning 
methods in reservoir landslide 
displacement prediction [57]. 

4.4.2. Deep learning methods for 
predicting landslide Displacement 

The aforementioned approaches regard 
landslide displacement prediction as a 
static regression problem. On the other 
hand, landslides are considered a dynamic 
system in which the displacement 

continues to change. The influencing 
factors and displacement conditions in one 
moment affect the displacement and 
stability conditions in the next moment. To 
investigate the dynamic process, LSTM is 
an appropriate method since it is suitable 
for learning the temporal dynamics of 
sequential data. 

The general workflow for the application 
of LSTM in landslide displacement 
prediction is as follows. The measured 
accumulated displacement of the landslide 
is first divided into a trend term (i.e., a 
static component) and a periodic term (i.e., 
a dynamic component). Selected 
controlling factors and periodic terms will 
be considered input. Generally, LSTM 
adds loops to the architecture, receives 
these inputs, and outputs a predicted result. 
Finally, the LSTM model was validated 
and estimated by comparing the predicted 
total displacement with the monitoring 
results of the total displacements The 
LSTM model can establish connections 
between landslide conditions at different 
times and learn rules from previous 
deformation time steps. The results 
indicated that the LSTM model achieved a 
more satisfactory performance than static 
SVM methods [37]. 

5. Results 

The aim of this study was to evaluate the 
spatial prediction of landslides using 
ensemble ML classifiers. The current 
analysis exploited a hybrid ANFIS model 
that was optimized using PSO, GWO, and 
SFLA, three evolutionary algorithms. 
Three common models, MLP, RF, and 
SVM, were used to test and evaluate their 
performance on the same training and 
validation datasets, to build a LSM in 
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EAP, Iran. There was a total of ten 
conditioning factors which were 
investigated. The landslide inventory 
database had 766 locations which were 
split into two groups: one for training, with 
536 landslides, and another for evaluation 
of the model with 230 landslides. For 
analyzing the associations between 
landslides and landslide conditioning 
variables, the PCF model was exploited as 
a bivariate statistical test. Furthermore, in 
the present analysis, the Pearson 
correlation test was used to measure the 
predictive strength of ten landslide 
condition variables.  

Table 3. The performance of ML Models 
Item RF MLP  SVM   
True positive 418 512 426  
True negative 441 410 457  
False positive 118 24 110  
False negative 95 126 79  
PPV (%) 78.49 94.95 80.14  
NPV (%) 82.35 75.74 85.29  
Sensitivity (%) 81.48 81.05 84.36  
Specificity (%) 78.90 94.47 80.60  
Accuracy (%) 80.13 86.01 82.37  

Table 4. Evaluation of three ML models on 
training data 

Models AUC 95 % CI Kappa 
index 

SE 

MLP 0.934 0.878-
0.969 

0.721 0.021 

SVM 0.907 0.845-
0.950 

0.647 0.025 

RF 0.868 0.800-
0.920 

0.603 0.030 

Table 5. Evaluation of three ML models on the 
validation data 

models AUC 95 % CI Kappa 
index 

SE 

MLP  0. 
911 

0.798-
0.964 

0.633 0.038 

SVM 0.887 0.778-
0.954 

0.633 0.043 

RF 0.871 0.759-
0.944 

0.630 0.046 

Table 6. The validation of ML Models 
Item RF MLP  SVM   
True positive 176 199 184  
True negative 199 181 192  
False positive 54 31 46  
False negative 31 49 38  
PPV(%) 76.67 87.06 80.00  
NPV (%) 86.67 78.69 83.33  
Sensitivity (%) 85.02 80.24 82.88  
Specificity (%) 78.66 85.38 80.67  
Accuracy (%) 81.52 82.61 81.74  

 
Table 7. Performance result of the all model  

ANFIS-
GWO  

ANFIS-
SFLA  

ANFIS-
PSO  

RF  SVM  MLP     

0.88  0.88  0.89  0.871  0.887  0.911    AUC  

%81.24  %81.22  %82.34  %85.02  %82.88  %80.24    Sen.  

%82.64  %82.45  %81.62  %78.66  %80.67  %85.36    Spec.  

%81.63  %80.95  %83.28  %81.52  %81.74  %82.61    Acc.  

  

The fuzzy c-means clustering approach 
was then used to construct an initial fuzzy 

inference system for LSM. In addition, 
three wise algorithms, namely GWO, 
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SFLA, and PSO, were used to train the 
ANFIS in the current analysis. One of the 
most significant benefits of these 
approaches is that they improve precision 
by optimizing and calculating ANFIS 
parameters. Indeed, it has the potential to 
reduce dimension dangers and the 
problems of local minimum, thus 
improving the ANFIS model accuracy. 
Lastly, ROC curves were used to test the 
LSMs generated by ANFIS-GWO, 
ANFIS-SFLA, and ANFIS-PSO. 
According to the results, the AUC values 
for the ANFIS-PSO, ANGIS-SFLA, and 
ANFIS-GWO models were 0.89, 0.88, and 
0.88, respectively. 

In solving high-dimensional and non-
linear problems including landslide 
prediction, the fostered novel method 
effectively merged evolutionary 
algorithms, neuro-fuzzy inference 
mechanisms, and expert knowledge. The 
GWO, SFLA, and PSO usage in 
optimizing the structural parameters of 
ANFIS ensured that there would be lower 
rate of issues throughout the modeling 
processes owing to the local minimum and 
dimension dangers. 

Comparing the performance of the 
ensemble method reveals that, the stacking 
method had a more robust classification 
efficiency. The ensemble ML, despite its 
excellent efficiency, is primarily affected 
by the structural parameters tuning 
processes. 

Based on the optioned results, our future 
work will take place to apply the integrated 
approach of deep learning methods and 
object-based image analysis methods for 
semi/automate landsli’de detecting and 
delineation from earth observation satellite 
image. Application of remote sensing and 

ensemble ML techniques would help 
prudent planning for land development and 
assist engineers and authorities to adapt 
their decisions to take landslide hazard into 
account and to limit its consequences. The 
greater the ability of engineers and land-
use managers to understand which 
landscapes have a high susceptibility to 
landslide occurrences, the greater is their 
ability to improve mitigation and risk 
assessment strategies [58]. 

Predictive models developed by machine 
learning for landslides prevention can be 
under constrained. For instance, models 
that perform well in datasets and are 
consequently viewed as high quality 
probably deviate strongly for situations 
and data outside their valid local areas 
because of the complex physical earth 
system. The challenges and opportunities 
in the applications of machine learning for 
landslides prevention will be discussed 
below [37]. 

6. Discussion 

Meaningless or corrupted data in datasets 
is known as noise. This noise can result in 
errors in the predictions by the machine 
learning algorithms and can impact their 
performance in terms of accuracy, size of 
the model and the time taken to build the 
model. 

Zhu and Wu have conducted a 
quantitative study of impact of noise on 
machine learning classification algorithms. 
The authors have shown that with increase 
in feature noise the accuracy of the 
classification algorithms decreases 
linearly. In terms of attribute noise, the 
study shows that the lowest level of 
classification accuracy is given by 
classifiers trained using noisy dataset 
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compared to clean dataset on both clean 
and noisy target and the performance 
deteriorates linearly with addition in noise. 
 In another study, the effect of noise on 4 
classification algorithms with various 
degrees and types of noise is studied. Of 
the 4 algorithms used, the authors conclude 
that Naïve Bayes and C4.5 are resistant 
towards noise with the former being the 
strongest, and IBk and SMO the least 
resistant to noise with the latter the worst 
of all [59]. 

6.1. Dataset heterogeneity  

Climate and ecosystem processes reveal a 
high level of heterogeneity due to 
differences in geography, topography, and 
climatic conditions in diverse areas of the 
earth. For example, some regions are 
mountainous, some regions are dry and 
experience severe, long-term droughts, and 
some regions are quite wet and covered 
with dense forests. The patterns, 
mechanisms, and driving forces of 
landslides vary among these regions. 
Currently, this heterogeneity in the data 
emphasizes the idea that landslides 
prevention models primarily apply to local 
or regional zones. Various factors 
correspond to a homogeneous group of 
locations. Developing a universal model 
that can be applied to global regions 
remains a challenge. Moreover, another 
source of heterogeneity is presented in 
different multi-sensors, which exhibit 
different imaging geometries, spatial and 
temporal resolutions, physical meanings, 
contents, and statistics [37]. 

6.2. Challenges from class imbalance 

Machine learning methods require a vast 
amount of data to train a model. The data 

necessary for landslide susceptibility 
mapping is a collection of landslide 
causative factors as predictors and 
landslide inventory as a response variable; 
however, landslides do not occur 
everywhere, and the occurrence of 
landslides is limited in an area. This 
geophysical phenomenon leads to severely 
skewed class distribution, wherein the 
number of landslide samples (minority 
class) is significantly less than non-
landslide locations (majority class). The 
imbalance in landslide data hampers the 
predictive ability of learning algorithms, 
and hence, the final models show poor 
performance in the class with fewer 
samples [60]. 

The training areas into two classes (i.e., 
landslides and non-landslides).There are 
fewer areas in the training regions in which 
landslides appear than non-landslides. 
Such imbalances can cause a model to be 
biased towards classifying the susceptible 
areas as safe since there is a larger number 
of nonland slide samples. After 
investigating the mapping of landslides 
with an imbalanced training sample (i.e., 
the sample contained more examples of 
non-landslide areas than landslide areas), a 
study indicated that the RF method 
underestimated landslide occurrences. For 
overcoming this problem, some typical 
solutions can be divided into three 
categories: data-level techniques, 
algorithm-level methods, and hybrid 
approaches [61]. 

7. Conclusion 

The aim of this study was to evaluate the 
spatial prediction of landslides using 
ensemble ML classifiers. The current 
analysis exploited a hybrid ANFIS model 
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that was optimized using PSO, GWO, and 
SFLA, three evolutionary algorithms. 
Three common models, MLP, RF, and 
SVM, were used to test and evaluate their 
performance on the same training and 
validation datasets, to build a LSM in 
EAP, Iran. There was a total of ten 
conditioning factors which were 
investigated. The landslide inventory 
database had 766 locations which were 
split into two groups: one for training, with 
536 landslides, and another for evaluation 
of the model with 230 landslides. For 
analyzing the associations between 
landslides and landslide conditioning 
variables, the PCF model was exploited as 
a bivariate statistical test. Furthermore, in 
the present analysis, the Pearson 
correlation test was used to measure the 
predictive strength of ten landslide 
condition variables.  

The fuzzy c-means clustering approach 
was then used to construct an initial fuzzy 
inference system for LSM. In addition, 
three wise algorithms, namely GWO, 
SFLA, and PSO, were used to train the 
ANFIS in the current analysis. One of the 
most significant benefits of these 
approaches is that they improve precision 
by optimizing and calculating ANFIS 
parameters. Indeed, it has the potential to 
reduce dimension dangers and the 
problems of local minimum, thus 
improving the ANFIS model accuracy. 
Lastly, ROC curves were used to test the 
LSMs generated by ANFIS-GWO, 
ANFIS-SFLA, and ANFIS-PSO. 
According to the results, the AUC values 
for the ANFIS-PSO, ANGIS-SFLA, and 
ANFIS-GWO models were 0.89, 0.88, and 
0.88, respectively.  

In solving high-dimensional and non-
linear problems including landslide 
prediction, the fostered novel method 
effectively merged evolutionary 
algorithms, neuro-fuzzy inference 
mechanisms, and expert knowledge. The 
GWO, SFLA, and PSO usage in 
optimizing the structural parameters of 
ANFIS ensured that there would be lower 
rate of issues throughout the modeling 
processes owing to the local minimum and 
dimension dangers. 

Comparing the performance of the 
ensemble method reveals that, the stacking 
method had a more robust classification 
efficiency. The ensemble ML, despite its 
excellent efficiency, is primarily affected 
by the structural parameters tuning 
processes. 

Based on the optioned results, our future 
work will take place to apply the integrated 
approach of deep learning methods and 
object-based image analysis methods for 
semi/automate landslide detecting and 
delineation from earth observation satellite 
image. Application of remote sensing and 
ensemble ML techniques would help 
prudent planning for land development and 
assist engineers and authorities to adapt 
their decisions to take landslide hazard into 
account and to limit its consequences. The 
greater the ability of engineers and land-
use managers to understand which 
landscapes have a high susceptibility to 
landslide occurrences, the greater is their 
ability to improve mitigation and risk 
assessment strategies. 
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