
Journal of Artificial Intelligence in Electrical Engineering, Vol.12, No.48, March 2024

 19

Page Replacement Algorithms in Memory
Management: a survey

Saeid Taghavi Afshord*, Mehdi Ayar
Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran

Email :taghavi@iau.ac.ir (Corresponding Author); mehdi.ayar@iau.ir
Receive Date: 7 May 2023, Revise Date: 19 June 2023, Accept Date:16 July 2023

Abstract
One of the most important resources in a computer system is memory. Processes cannot run

unless their code and data structures are in RAM. Memory management is important and is
the most complex task for an operating system. Page replacement policies have been under
extensive study over the years. A large number of different page replacement algorithms have
been proposed and many of them have been implemented in operating systems and database
management systems. The page fault rate has critical criteria for choosing suitable page
replacement algorithms. In this paper, we describe algorithms that are widely simulated and
utilized in practice. Then, we indicate the effective and efficient algorithm among them.
Keywords: memory, operating system, page replacement, performance and page faults

1. Introduction
Virtual memory refers to the technology

in which some space in the hard disk is
used as an extension of main memory so
that a program need not worry if its size
exceeds the size of the main memory. If It
does happen, only a part of the program
will reside in the main memory and other
parts will remain on the hard disk and may
be switched into memory later.

This mechanism is similar to the two-
level memory hierarchy discussed in [1],
including cache and main memory because
the principle of locality is also a basis here.
With virtual memory, if a piece of the
process needed is not in the main memory,
another piece will be swapped out and the
former be brought in. If the latter is used
immediately, then it will load back into the
main memory right away. As we know,

access to a hard disk is time-consuming
compared to access to the main memory,
Thus the reference to the virtual memory
space on hard disks will deteriorate the
system performance significantly. Fortunately,
the principle of locality holds. It is the
instruction and data references during a
short period that tend to be bound to one
piece of the process. So, access to hard
disks will not be frequently requested and
performed. Thus, the same principle, on
the one hand, enables the caching
mechanism to increase system performance,
and on the other hand, avoids the
deterioration of performance with virtual
memory.

With virtual memory, there must be some
facility to separate a process into several
pieces so that they may reside separately
either on hard disks or in main memory.
Paging and/or segmentation are two

mailto::taghavi@iau.ac.ir
mailto:mehdi.ayar@iau.ir

S. Taghavi Afshord , M. Ayar , A.Koochari: Page Replacement Algorithms in Memory …

 20

methods that are usually used to achieve
the goal.

2. Replacement Policies
The replacement policy deals with the

selection of a memory page to be replaced
after a page fault occurs and a new page
must be brought in. The goal of any
replacement algorithm includes two
aspects: (1) The algorithm itself should be
simple to implement and efficient to run;
and (2) the selection of page should not
harm the performance of the virtual system
as a whole, or more specifically, the page
that is removed should be the page least
likely to be referenced shortly.
2.1. Algorithms

The most important page replacement
algorithms have been considered in the
literature explained in this survey.
2.1.1. Optimal

The Optimal algorithm says that we
should always replace the page that will
not be used for the longest period, which
means we have to be able to predict the
future. It is possible that we can predict the
future for certain applications with
extremely regular page access patterns.
However, in general, the complexity of
applications, the dynamic environment of
machines especially multiprocessing systems,
and other random factors such as user
interactions make the future very
unpredictable.

The value of discussing this algorithm is
that it may be a benchmark to evaluate the
performance of other algorithms.
2.1.2. Least recently used (LRU)

Although we do not know the future
exactly, we can predict the future to some
extent based on the history. Based on the
principle of locality, the page that has not

been used for the longest time is also least
likely to be referenced. The LRU algorithm
thus selects that page to be replaced. And
experience tells us that the LRU policy
does nearly as well as the optimal policy.
However, since the decision-making is
based on history, the system has to keep
the references that have been made from
the beginning of the execution. The
overhead would be tremendous.
2.1.3. First in first out (FIFO)
The FIFO policy treats the page frames
allocated to a process as a circular buffer,
and pages are removed in a round-robin
style. It may be viewed as a modified
version of the LRU policy, and this time
instead of the least recently used, the
earliest used page is replaced since the
page that has resided in main memory for
the longest time will also be least likely
used in the future.

This logic may be wrong sometimes if
some part of the program is constantly
used, which thus may lead to more page
faults. The advantage of this policy is that
it is one of the simplest page replacement
policies to implement since all that is
needed is a pointer that circles through the
page frames of the process.

The Table 1 shows the comparison of
these page replacement algorithms on
various parameters made in the survey.
The parameters considered are principle,
performance, page faults and memory usage.

2.1.4 Second Chance
The second-chance algorithm is very

similar to FIFO. However, it interferes
with the accessing process: Every page
has, in addition to its ‘dirty bit’, a
‘referenced bit’ (r-bit). Every time a page
is accessed, the r-bit is set. The
replacement process works like FIFO,

Journal of Artificial Intelligence in Electrical Engineering, Vol.12, No.48, March 2024

 21

except that when a page's r-bit is set,
instead of replacing it, the r-bit is unset, the
page is moved to the list's tail (or the
pointer moves to the next page) and the

next page is examined. Second Chances
performs better than FIFO, but it is still far
from optimal.

Table1-Comparison of three page replacement algorithms

Parameter

Methods
FIFO LRU Optimal

Principle Replaces the oldest
page in memory

Replaces the least
recently used page

Replaces the page not
needed for the longest

time in the future

Complexity Simple implementation

Moderate complexity
due to tracking recency

High complexity,
requires future

knowledge

Data Structures Queue Stack, linked list, or
counters

Not applicable in real-
world scenarios

Performance Generally suboptimal,
suffers from Belady's

anomaly

Better than FIFO, does
not suffer from

Belady's anomaly

Best theoretical
performance, lowest

page faults

Memory Usage Low Moderate, additional
space for tracking

usage history

Low(theorical)

Page Faults High Moderate to low Lowest possible

Predictability Poor, unpredictable
due to anomaly

Predictable, stable
performance

Theoretically
predictable

Temporal Locality Not considered

Considers temporal
locality

Assumes perfect
knowledge of future

references

Optimal Conditions Suitable for simple,
predictable patterns

Suitable for varied,
realistic access patterns

Serves as a benchmark,
not used in practical

systems

2.1.5 Aging

The aging algorithm is somewhat tricky:
It uses a bit field of w bits for each page to
track its accessing profile. Every time a
page is read, the first (most significant) bit
of the page's bit field is set. Every n
instructions all pages bit fields are right-
shifted by one bit.

The next page to replace is the one with
the lowest (numerical) value of its bit field.
If several pages are having the same value,
an arbitrary page is chosen.

The aging algorithm works very well in
many cases, and sometimes even better
than LRU because it looks behind the last
access. It furthermore is rather easy to

implement, because there are no expensive
actions to perform when reading a page.
However, finding the page with the lowest
bit field value usually takes some time.
Thus, it might be necessary to
predetermine the next page to be swapped
out in the background.

2.1.6 Clock
Each of the above policies has its

advantages and disadvantages. Some may
need less overhead, and some may produce
better results. Thus here is an issue of
balance. People have proposed all kinds of
algorithms based on different considerations
of balance between overhead and

S. Taghavi Afshord , M. Ayar , A.Koochari: Page Replacement Algorithms in Memory …

 22

performance. Among them, the clock
policy is one of the most popular ones.

The clock policy is a variant of the FIFO
policy, except that it also considers to
some extent the last accessed times of
pages by associating an additional bit with
each frame, referred to as the use bit. And
when a page is referenced, its use bit is set
to 1.

As Figure 1 illustrates, the set of frames
that might be selected for replacement is
viewed as a circular buffer, with which a
pointer is associated. When a free frame is
needed but not available, the system scans
the buffer to find a frame with a use bit of
0 and the first frame of this kind will be
selected for replacement. During the scan,
whenever a frame with a use bit of 1 is
met, the bit is reset to 0. Thus if all the

frames have a use bit of 1, then the pointer
will make a complete cycle through the
buffer, setting all the use bits to 0, and stop
at its original position, replacing the page
in that frame. After a replacement is made,
the pointer is set to point to the next frame
in the buffer.

Figure 1 gives an example of this clock
policy. Figure 1 shows the status of the
buffer at some moment. Suppose page 727
is referenced but is not available in the
buffer which is already full. Thus a page
fault occurs and a page needs to be
replaced. According to the clock policy,
page 556 is replaced. The other updates
include the use of bits of frame and 3 are
set to 0 and the pointer is made pointing to
frame 5.

Fig.1. Example of clock policy operation

2.1.7. Not Recently Used (NRU)

The NRU (Not Recently Used) algorithm
uses an r-bit for every page. Every time a
page is read, the r-bit is set. Periodically,

all r-bits are unset. When a page fault
occurs, an arbitrary page with r-bit unset is
swapped out.NRU is actually Aging with a
bit field width of 1, and it does not perform
very well.

Journal of Artificial Intelligence in Electrical Engineering, Vol.12, No.48, March 2024

 23

2.1.8 Not Frequently Used (NFU)

Is a software approximation to LRU: a
perframe counter is incremented every
clock tick if the frame has been referenced
since the last clock tick; the frame with the
lowest count is evicted on page fault. NFU
does not accurately reflect temporal
locality; a frame frequently accessed a long
time ago will be kept while a frame
accessed more recently but fewer times
will be evicted.

2.1.9. LRU-K
The algorithm is called the LRU-K

method and reduces to the well-known
LRU (Least Recently Used) method for
K=1. At first, it has shown the
effectiveness of K > 1 by simulation [3],
especially in the most common case of K =
2. The basic idea in LRU-K is to keep
track of the times of the last K references
to the memory pages and to use this
statistical information to rank-order the
pages as to their expected future behavior.

Based on this, the page replacement
policy decision is made: which memory-
resident page to replace when a newly
accessed page must be read into memory.
In [3] proved, under the assumptions of the
independent reference model, that LRU-K
is optimal among all replacement
algorithms that can be based on
information about K most recent
references to each page. The proof uses the
Bayesian formula to relate the space of
actual page probabilities of the model to
the space of observable page numbers on
which the replacement decision is made.

In [3] had analyzed the LRU-K
algorithm.

 The use of Bayesian methods in that
analysis is, to our knowledge, a new and

entirely appropriate way of handling the
real lack of knowledge of page identity at
the memory buffer level of the software.

2.2 MS, Application-specific algorithm

Different applications have different
memory reference patterns. Most operating
systems, however, are oblivious to this
simple truth. Some algorithms are highly
suitable for certain kinds of applications
but inadequate for other kinds of
workloads. Some of the operating system
designers and theoreticians such as [4]
believe there is a range of applications can
benefit from application-specific memory
management policies. Further, It observed
that reference patterns do change during
process execution, suggesting that
applications can further benefit from
dynamic selection of a suitable VM
(Virtual Machine) policy [4].

For more information about this type of
algorithm and as a sample, refer to [4]
where they described the algorithm called
MS, with full expressions of architecture,
implementation, and test and performance
evaluation of it.

3. Linux Mechanism

Linux uses a hybrid of LFU and LRU
algorithms, but it behaves approximately
like LRU. Linux keeps a page age counter
for each physical page in memory to
inform the Kernel Page Swap Daemon
(KSWAPD) whether a page is worth
swapping out. The page age can be
between 0 and 20 where 0 is the oldest and
20 is the youngest. When initially
allocated, a page is given an age of 3, and
each time the page is referenced, its age
increases by 3 to a maximum of 20.
KSWAPD round robins through each virtual

S. Taghavi Afshord , M. Ayar , A.Koochari: Page Replacement Algorithms in Memory …

 24

page of each process. If a virtual page
resides in physical memory and has not been
referenced since the last KSWAPD scan, it
will decrease its age by 1 to a minimum of 0.
Pages with 0 age are candidates for
swapping, and a further test on the dirty bit
in its page table entry and its page priority
will decide if the page should be swapped
out. By using this page replacement
mechanism, Linux favors, and, is likely to
keep in memory the pages that have been
accessed recently and frequently during a
past period.

4. Conclusion and Discussion
Unfortunately, there is no way to

determine which page will be last, so, the
optimal algorithm cannot be used
practically. However, it is useful as a
benchmark against which other algorithms
can be measured. The NRU algorithm
divides pages into four classes depending
on the state of the R and M bits. A random
page from the lowest-numbered class is
chosen. This algorithm is easy to
implement, but it is very crude. Better ones
exist. FIFO keeps track of the order of
pages loaded into memory by keeping
them in a linked list. Removing the oldest
page then becomes trivial, but that page

might still be in use, so FIFO is a bad
choice.

The second chance is a modification to
FIFO that checks if a page is in use before
removing it. If it is, the page is spared.
This modification greatly improves the
performance. The clock is simply a
different implementation of the second
chance. It has the same performance
properties but takes less time to execute
the algorithm. LRU is an excellent
algorithm, but it cannot be implemented
without special hardware. If this hardware
is not available, it cannot be said. NFU is a
crude attempt to approximate LRU. It is
not very good. However, aging is a much
better approximation to LRU and can be
implemented efficiently. It is a good
choice.

Consider the reference string 7, 0, 1, 2, 0,
3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1. The
page replacement algorithms of FIFO,
LRU and Optimal will be applied using 3
frames and number of page faults will be
calculated (M=miss and H= hit). With
these assumptions, the number of page
faults in FIFO, LRU, and Optimal
algorithms using three frames is calculated
as follows:

Number of page faults in FIFO using 3 frames: 15
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
7 7 7 2 2 2 2 4 4 4 0 0 0 0 0 0 0 7 7 7
 0 0 0 0 3 3 3 2 2 2 2 2 1 1 1 1 1 0 0
 1 1 1 1 0 0 0 3 3 3 3 3 2 2 2 2 2 1
M M M M H M M M M M M H H M M H H M M M

Number of page faults in LRU using 3 frames: 12
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
7 7 7 2 2 2 2 4 4 4 0 0 0 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 3 3 3 3 3 3 0 0 0 0 0
 1 1 1 3 3 3 2 2 2 2 2 2 2 2 2 7 7 7
M M M M H M H M M M M H H M H M H M H H

Journal of Artificial Intelligence in Electrical Engineering, Vol.12, No.48, March 2024

 25

Number of page faults in Optimal using 3 frames: 09
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
7 7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 7 7 7
 0 0 0 0 0 4 4 4 0 0 0 0 0 0 0 0 0 0 0
 1 1 1 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1
M M M M H M H M H H M H H M H H H M H H

Consider the reference string 7, 0, 1, 2, 0,
3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1. The
page replacement algorithms of FIFO,

LRU and Optimal will be applied using
four frames and number of page faults will
be calculated. M=miss and H= hit.

Number of page faults in FIFO using 4 frames: 10
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
7 7 7 7 7 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2
 0 0 0 0 0 4 4 4 4 4 4 4 4 4 4 4 7 7 7
 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
M M M M H M H M H H M H H M M H H M H H

Number of page faults in LRU using 4 frames: 08
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
7 7 7 7 7 3 3 3 3 3 3 3 3 3 3 3 3 7 7 7
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 1 1 1 1 4 4 4 4 4 4 1 1 1 1 1 1 1
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
M M M M H M H M H H H H H M H H H M H H

Number of page faults in Optimal using 4 frames: 08
7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1
7 7 7 7 7 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 7 7 7
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
M M M M H M H M H H H H H M H H H M H H

Considering the above sequence of 20

pages reference string 7, 0, 1, 2, 0, 3, 0, 4, 2,
3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1 for memory
frames of three and four pages, the page
trace is given to the three replacement
algorithms namely FIFO, LRU and optimal
page replacement and the page faults are
observed. The process is implemented on
Windows 10 64-bit operating system using
Java. The results obtained for page faults
using FIFO, LRU and Optimal algorithms
using 3, 4 and 5 frames is shown in Table 2.

The comparative analysis of FIFO, LRU,
and Optimal page replacement algorithms
demonstrates that while the optimal
algorithm provides the best theoretical
performance, LRU offers a practical and
efficient alternative. FIFO, though easy to
implement, generally performs worse due to
its simplistic approach. Optimal emerges as
the best-suited algorithm for real-world
applications, balancing performance and
practicality effectively.

S. Taghavi Afshord , M. Ayar , A.Koochari: Page Replacement Algorithms in Memory …

 26

Table 2- Page Faults Obtained using FIFO,
LRU and Optimal Algorithms

Frame Size

Methods
FIFO LRU Optimal

3 15 12 09
4 10 08 08
5 09 07 07

Some other algorithms based on counting
mechanisms that we did not introduce in this
paper (see [2] for detailed information), such
as Least Frequently Used (LFU) and Most
Frequently Used (MFU) algorithms, have
also been studied but not very widely used
due to both their poor performance and large
space requirement. The Most Recently Used
(MRU) algorithm has been shown to
perform well for a certain class of
applications, such as database systems with
large sequential access.

The Linux LRU algorithm performs well
for many general applications. However,
other algorithms have their specialty area of
applications. One obvious example is MRU,

which always swaps out the just referenced
pages. In cases of sequential access or
random access to pages that nowadays don’t
reference, MRU performs much better than
the common LRU algorithm. LRU-K, which
keeps track of the last K accesses in history
instead of just the last access as in normal
LRU for each page. It has been shown to be
optimal under the assumption of the
independent reference model, given the same
amount of information about past page
accesses.

Finally, the two best algorithms are aging
and WSClock (This algorithm is described in
[1] and we do not discuss it in this paper).
They are based on LRU and the working set,
respectively. Both give good paging
performance and can be implemented
efficiently. A few other algorithms exist, but
these two are probably the most important in
practice. We summarized the discussed
algorithms in Table 3.

Table 3-Summary of the Page replacement algorithms discussed in the text
Algorithm Comment
Optimal Not implementable, but useful as a benchmark

NRU (Not Recently Used) Very crude
FIFO (First-In, First-Out) Might throw out important page

Second chance Big improvement over FIFO
Clock Realistic

LRU (Least Recently Used) Excellent, but difficult to implement exactly
sNFU (Not Frequently Used) Fairly crude approximation to LRU

Aging Efficient algorithm that approximates LRU well
LRU-K The best, more difficult to implement of LRU

Journal of Artificial Intelligence in Electrical Engineering, Vol.12, No.48, March 2024

 27

References
[1] A. S. Tanenbaum,, Modern Operating Systems,

Prentice Hall; Second edition, 2001.
[2] W. Stallings. Operating Systems Internals and

Design Principles, Fifth Edition, Prentice Hall,
2004.

[3] E. J. O'Neil, P. E. O'Neil, and G. Weikum, An
Optimality Proof of the LRU-K Page
Replacement Algorithm, Journal of the ACM,
Vol. 46, No. 1, January 1999, pp. 92-112.

[4] S. Chang, K. Zhang, Application Specific
Memory Management, Electrical Engineering
and Computer Science Department, University
of California, Berkeley.

[5] S. H. Abbas, W. A. K. Naser, and L. M.
Kadhim, “Study and Comparison of
Replacement Algorithms,” Int. J. Eng. Res. Adv.
Technol., vol. 08, no. 08, pp. 01–06, 2022, doi:
10.31695/ijerat.2022.8.8.1.

[6] M. Waqar, A. Bilal, A. Malik, and I. Anwar,
“Comparative analysis of replacement
algorithms techniques regarding to technical
aspects,” Eur. J. Eng. Technol., vol. 4, no. 5, pp.
60–82, 2016.

[7] B. A. Tingare and V. L. Kolhe, “Analysis of
Various Page Replacement Algorithms in
Operating System,” Int. J. Sci. Res., vol. 5, no.
12, pp. 578–584, 2016, [Online]. Available:
https://www.ijsr.net/archive/v5i12/ART201634
05.pdf.

[8] G. Rexha, E. Elmazi, and I. Tafa, “A
Comparison of Three Page Replacement
Algorithms: FIFO, LRU and Optimal,” Acad. J.
Interdiscip. Stud., vol. 4, no. 2, pp. 56–62, 2015,
doi: 10.5901/ajis.2015.v4n2s2p56.

[9] H. M. H. Owda, M. A. Shah, A. I. Musa, and M.
I. Tamimy, “A Comparison of Page
Replacement Algorithms in Linux Memory
Management,” Int. J. Comput. Inf. Technol.,
vol. 03, no. 03, pp. 565–569, 2014, [Online].
Available: www.ijcit.com565.

https://www.ijsr.net/archive/v5i12/ART201634
http://www.ijcit.com565.

