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Abstract–The spread of the smart grid has led to the widespread penetration of small-scale 
distributed energy resources. Distributed generations (DGs) include conventional small-scale 
power plants and renewable energies with no pollutant emission. This paper presents two-stage 
stochastic planning for the participation of a virtual power plant (VPP) in energy and reserve 
markets in the presence of demand response (DR) programs. The designed VPP enables 
participation in these markets by aggregating DERs. Probability distribution functions are applied 
to generate scenarios based on the existing uncertainties in renewable energy generation, energy 
price, and consumer demand. The number of possible scenarios is reduced using a scenario 
reduction technique. Two-stage stochastic planning is proposed to manage the designed VPP. The 
results suggest that participation in DR programs leads to a considerable increase in optimal 
operational profit of the VPP.  
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NOMENCLATURE 

Input parameters 

Expected and real-
time electrical/thermal 
demand sat hour t 
(kW) 

���, ����, ��,�� , ��,��� 
Expected and real-
time output of PVs 
and wind turbines at 
hour t (kW) 

��	
 , ���, ��,�	
, ��,�� 
Natural gas price 
($/kWh) 

�
� 
Hourly price of 
scheduled reserve 
provided by the grid at 
hour t ($/kWh) 

���,���� 
Retail electricity price 
at hour t ($/kWh) 

����� 
Hourly price for 
supplying thermal 
demands ($/kWh) 

���� 
Minimum/maximum 
percentage of load 
shifting at hour t 

�������,���, �������,��� 
Minimum/maximum 
output of MT and 
boiler units (kW) 

����,���, ����,��� , ���,���, ���,��� 

Startup/shutdown cost 
of MT, CHP, FC and 
boiler units ($) 

����	,� , ����	, , ����,� , ����, , ���,�, ���,  
Price of selling/buying 
electrical power 
to/from the PHEVs 
(charging/discharging) 
in hour t ($/kWh) 

��!"",��
 , �#$%,��
  

Maximum 
charge/discharge rate 
of PHEV 
batteries(kW) 

�&,'��
,��� , �&,('��
,��� 

Electricity 
consumption of 
PHEVs(mile) 

��,&�
,�)& 
 

1. Introduction 

The electrical energy generation methods are 

distinguished based on various factors, including the 

reliability criteria, energy generation cost, and the quality of 

delivered energy. Distributed energy resources (DERs) is a 

newly emerged concept in power systems that refers to the 

deployment of renewable energy sources (RESs), small-

scale generators, and energy storage systems. DERs offer 

several benefits, including energy transmission loss 

reduction, increased reliability of power systems, and 

operating cost reduction. With their high potential structure, 

virtual power plants (VPPs) can be proposed for maximal 

exploitation of distributed resources and generations to 

realize these benefits. VPP is an aggregator concept in the 

power system that integrates the distributed generations 

(DGs) of energy storage systems and internal consumers to 

form a unit profile and links the resulting coalition to the 
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power system as an interconnected unit. Thus, it is called 

“VPP” because its capacity is not generated in a centralized 

manner. Instead, its capacity arises from the aggregation of 

multiple distributed resources.  

Despite the benefits of renewable DGs in power systems, 

their excessive presence may compromise the security and 

stability of energy supply for consumers due to their 

uncertain nature. Thus, given the implication of RESs in the 

VPP concept, the uncertainty parameters need to be 

identified and accurately modeled to ensure the optimal 

operation of these resources [1]. Other factors contributing 

to uncertainty in VPP include the consumers’ demand and 

electricity price.  

Ref [4] defined VPP as a group of combined heat and 

power (CHP) units based on fuel cell technology for 

domestic consumers. Ref. [8] introduced the VPP as an 

aggregation of DERs that can create a single profile in 

which various technologies can be utilized. In Ref. [9], the 

VPP is regarded as a number of DERs with different 

technologies which can be connected to various bus bars of 

the distribution network to form a VPP. In Ref. [10], the 

DGs involved in creating a VPP are beyond the generating 

resources and include the controllable loads and energy 

storage systems as well. The technical and economic 

impacts of VPP on its components are evaluated in Ref [11]. 

Authors in Ref. [12] presented the design and operational 

planning of a commercial VPP consisting of DGs. The 

participation level of DGs is determined based on weekly 

contracts considering the risk of market involvement. The 

proposed planning framework is a two-stage optimization, 

where the first stage decides on the optimal coalition of 

DERs and bilateral contracts, and the second stage 

implements the optimal operational planning of the VPP to 

maximize its weekly profit. Ref [1] analyzed and discussed 

the various aspects of DER utilization in microgrids and 

VPPs, including modeling approaches, uncertainties, 

reliability issues, and participation in different energy 

markets such as reactive power markets and demand 

response (DR) programs.  

Ref [13] proposed a method to cover the prediction 

errors associated with variations in loads and outputs of 

non-controllable DGs in the VPP. Ref [14] aimed to deal 

with the unbalanced load flow in the VPP system to 

minimize the energy purchase cost from the upstream 

market. Ref [15] developed a day-ahead scheduling scheme 

for a VPP consisting of conventional generation units, 

including wind power plants and pumped storage plants, 

taking into account the uncertain parameters and emissions 

of the conventional generation. Day-ahead scheduling of a 

VPP consisting of conventional DGs like wind turbines and 

electrical storage systems is proposed in Ref. [16]. The 

model considered the uncertainties in the wind speed and 

hourly price of electrical energy and was implemented 

using a robust stochastic approach. Ref [17] proposed an 

optimization algorithm for electrical and thermal 

scheduling of a VPP, including combined heat and power 

generation (CHP) units and electrical and thermal energy 

storage systems. The optimization objective in Ref. [21] 

was to maximize the profit from the VPP involvement in 

energy markets and reactive power markets. In Ref. [22], 

the optimal scheduling of a VPP for participation in the 

energy and reserve market was performed considering the 

uncertainty in wind speed and the electrical energy 

consumption. The uncertainty parameters were modeled 

using the fuzzy chance-constrained programming approach. 

Ref [23] presented two-stage stochastic programming of a 

VPP for participation in the energy and balancing markets, 

taking into account the uncertainties of energy price and 

renewable sources.  

This paper presents the operational planning of a VPP 

containing renewable DGs and CHP units for participation 

in the energy and reserve market to achieve maximum 

profit. The uncertainties of wind speed, solar radiation, 

electricity market price and heat and power demand are 

considered in the model. The number of possible scenarios 

is reduced by a scenario reduction method. Electrical and 

thermal energy storage systems and electric and hybrid 

vehicles are utilized in this VPP. 

 

2. Mathematical modeling of uncertainties in 

VPP 

The environmental factors, including wind speed, solar 

radiation, and heat and power demands, are the most 

significant uncertain parameters in a VPP. The presence of 

uncertainty converts the optimization problem into a 

stochastic one. The wind speed and solar radiation vary at 

different hours of the day and on different days of the year 

and are not constant. Consequently, the power generation of 

wind turbines and PV panels will be variable and a function 

of these environmental factors. Consumers' energy 

consumption and responsiveness are also variable and 

cannot be predicted accurately in advance. These 

parameters are the model inputs, and their stochastic 

behavior should be captured in the modeling. A common 

approach to model uncertain parameters is to use their 

probability distribution function. The data collected from 

the uncertain parameters can be used to approximate their 

behavior closely to a probability distribution function. The 

Weibull probability distribution function can effectively be 

applied to model the wind speed uncertainty [36].  
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In this paper, based on the distribution function of each 

stochastic parameter, a limited number of possible scenarios 

are obtained from the scenario generation method and used 

for optimization and modeling problems. Solar radiation 

and wind speed are modeled with five scenarios, while the 

electrical energy consumption and electricity price are 

modeled with seven scenarios. The number of possible 

scenarios considering all the combinations of the five 

stochastic parameters is equal to 5*5*5*7*7. Dealing with 

such a large number of possible scenarios in the 

optimization problem appears impossible in practice and 

increases the computational time and load. Thus, the 

number of possible scenarios needs to be reduced to an 

acceptable level to lower the time and volume of 

computations while properly considering the effective 

scenarios in scheduling problems. The scenario reduction 

technique applied in this paper is based on linear 

optimization with an objective to minimize the number of 

possible states for combined scenarios without changing 

their probability vector. The objective function and 

constraints of the optimization problem are extracted from 

the study in Ref. [38].  

 

2.1. Modelling the objective function and VPP 

equipment 

The studied VPP is equipped with wind turbines and 

photovoltaic (PV) systems as renewable sources and 

microturbines and CHP units as non-renewable sources. 

Moreover, batteries and heat tanks are utilized as electrical 

and thermal energy storage systems in the VPP. The 

electric-hybrid vehicles are considered and modeled as both 

consumers and mobile storage.  

 

2.1.1. Objective function 

The considered objective function of this paper is to 

maximize the VPP profit in the presence of uncertainties, as 

shown in relation (1): 

(1)  

*+, ./ =  1 2 �3���� − ���−���� − ����	 − ���+��6��
 − ����� − ����789
�:;

+ 1 1 <�

�

�:;
89

�:;
×  > �3��,���� − ���,��−���,���	 − ���,��� − ���,�� ? 

  S.t. 

(2)  �3���� = @����� × ���A + @���� × ����A 

(3)  
�3��,���� = ������ × B��,�� − ���C + ����

× B��,��� − ����C 

 

(4)  
�D,� = ����� × ��� 

(5)  ���,�� = ������ × ��,��  

(6)  −0.3 × ��,��� ≤ ��,�� ≤ 0.3 × ��,��� 

(7)  ��,�� − ��� = ��,��  

 

(8)  ��,��,�����!( = ��,�� + I��,��
 

(9)  I��,�� = ��,����� × ��,��
 

(10)  1 I��,�� = 089
�:;  

(11)  �������,��� ≤ ��,������ ≤ �������,���
 

(12)  
J(D,� � − J(D,�K; � ≤ LJ(D,� �

 

(13)  J(D,�K; � − J(D,� � ≤ LJ(D,� �
 

(14)  J(D,� � − J(D,�K; � = LJ(D,� � − LM(D,� �
 

(15)  LJ(D,� � + LM(D,� � ≤ 1 

(16)  O*PQR. STRUPV3W�X�WY.PZ3RW [ ∈ M]W 

(17)  

���� = 1 >@�
� × ��,���^���  + B����,� × LJ�,���C
_`

�:;
+ B����, × LM�,���C? 

(18)  ���,��� = 1 B�
� × ��,�,��� C
_`

�:;  

(19)  ��,�,��� − ��,��� = ��,�,���
 

(20)  −0.1 ∗ ����,��� ≤ ��,�,��� ≤ −0.1 ∗ ����,���
 

(21)  ������ × J�,��� ≤ 2 ��,�����,�,�����,��� + ��,�,��� 7 ≤ ������ × J�,���
 

(22)  
���	,���@���	A × J��	 ≤ ���	≤ ���	,���@���	A × J��	

 

(23)  
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(24)  
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� × ��,���	 + ��,���	
^���	 c
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�:; + B����	,� × LJ�,���	C
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(25)  ��,���	@S, WA = 1 b�
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�:;  

(26)  ��,�,���	 − ��,���	 = ���,�,���	
 

(27)  ��,�,���	 − ��,���	 = ���,�,���	
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(29)  −0.1 ∗ ����	,��� ≤ ���,�,���	 ≤ −0.1 ∗ ����	,���
 

(30)  2 ��.���	, ��.���	��,�.���	, ��.�.���	
��.���	 + ���,�,���	 , ��.���	 + ���,�,���	7 ∈ 6g�� 

(31)  
��� = 1{
i
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� × ��,��^�� c + B���,� × LJ�,�� C
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(32)  ��,�� = 1 b�
� × ��,�,��^�� c
i

k:;  

(33)  ��,�,�� − ��,�� = ��,�,��
 

(34)  −0.1 ∗ ���,��� ≤ ��,�,�� ≤ −0.1 ∗ ���,���
 

(35)  ���,��� × J�,�� ≤ 2 ��,��
��,�,��

��,�� + ��,�,�� 7 ≤ ���,��� × J�,��
 

(36)  ��,�� = ��,�l − ��l 

(37)  ��,�,��� = ��,�,��� − ��,���
 

(38)  ���,�,���	 = ��,�,���	 − ��,���	
 

(39)  ���,�,���	 = ��,�,���	 − ��,���	
 

(40)  ��,�� = ��,�,�� − ��,��
 

(41)  
��	
 + ��� + 1 ��,���
_`

�:; + 1 ��,���	
def

�:; + �('�,��
,�m��"
− �'�,��
,�m��" + ��l ≥ ��� 

(42)  

@��,�	
 − ��	
A + @��,�� − ��,��A + 1 ��,�,���
_`

�:;
+ 1 ���,�,���	
def

�:; + ��,�� ≥ ��,�� − ��� 

 

The first part of the objective function includes the income 

from electrical and thermal energy supply to consumers, 

VPP’s revenue and cost from energy and reserve exchange 

with upstream network and market, and the operating cost 

of controllable DGs, including CHP units, microturbines, 

and heat-only units, the scheduled income from electric 

vehicles, and operating cost of electrical and thermal energy 

storage systems. The second part of the cost function is 

related to the scenario-based income from heat and power 

supply to the VPP’s consumers, scenario-based cost and 

income from exchanges with the main grid, and scenario-

based cost of controllable DGs like microturbines to 

maintain the power balance in each scenario. The VPP 

operator is responsible for supplying power to the 

consumers based on their contracts. This energy selling is 

the primary source of income for the VPP. Relation 

(2)expresses the planned income of VPP from energy 

selling to end-consumers. The scenario-based income is 

given in relation (3) and equals the difference between 

scheduled and instantaneous income. Equations (4)and (5) 

describe the scheduled and scenario-based cost and income 

of VPP exchanges with energy and reserve markets. 

Relation (4)shows the cost and income from energy and 

reserve exchanges with the main grid. The income obtained 

from selling reserves to the market in each scenario is 

presented in relation (5). The spinning reserve value of each 

unit is confined to 30 percent of the line’s transmission 

capacity, as shown in constraint (6). Relation (7) describes 

the relationship between the scheduled and scenario-based 

power exchange with the line and the spinning reserve of 

each scenario. The scenario-based load shifting is shown in 

relation (8). According to this relation, the consumers who 

participate in the DR programs shift a portion of their 

consumption from hours with high electricity prices to the 

low price hours. The amount of the consumer’s load that 

can be increased or decreased per hour is a percentage of 

the consuming load, and this constraint is given by equation 

(9). Furthermore, relation (10) assumes that no load 

curtailment occurs during the day, i.e., the sum of load 

shifted within 24 hours is equal to zero. Likewise, the load 

shift is bounded within the minimum and maximum values 

as given by relation (11).  

The DGs considered in this paper include microturbines, 

CHP units, and heat boilers. Microturbines are low-capacity 

gas power plants, with their output power ranging from 

several kW to several hundred kW. CHP units are heat and 

power cogeneration plants participating in electrical and 

thermal load supply. The boilers also provide a portion of 

the heat load to the VPP’s consumers. Relations (12)-(15) 

demonstrate the operating conditions of these units and are 

nearly the same for all DG units. The generation variables 

of these units are not scenario-dependent and are related to 

the first programming stage. Relation (16) gives the 

operating cost of these units, including the fuel cost and 

startup and shut down cost. Moreover, the hourly reserve 

cost of these units is presented in relation (17). The 

constraint on the reserve delivered by microturbines is 

considered in equation (19). Relation (20) displays the 

constraints on the generated electrical power and the 

scheduled and instantaneous reserve of microturbines. CHP 

units are capable of concurrent electrical and thermal 

energy generation. The electrical and thermal outputs of 

these units form a closed curve known as FOR curve in the 

power-heat plane (Figure 1). Therefore, the heat and power 

generation of these units are interdependent. The operating 

constraints of CHP units and the equations describing the 

FOR curve are provided as follows. Equation (23)shows the 
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operating cost of CHP units in scheduled mode, and relation 

(24) gives the reserve generation cost of these units. 

Additionally, equations (25)to (29) formulate the boundary 

lines forming the FOR of cogeneration units along with 

their electrical and thermal constraints. The scheduled 

operating cost of heat-only units is obtained from relation 

(30), which contains the fuel cost and startup and shut down 

costs of the boiler. The reserve cost of the boiler is also 

shown in relation (31). The relation (34)is also added to the 

boiler’s operating constraints to ensure the sum of the 

boiler's heat generation and the reserve does not exceed its 

nominal capacity. The RESs utilized in the VPP 

configuration include PV systems and wind turbines. The 

power generation from renewable sources is a function of 

environmental conditions and varies during different hours 

and days of the year. The energy storage systems, to some 

extent, can compensate for these power fluctuations at 

various hours. The mathematical models of PV systems and 

wind turbines are formulated following the equations 

presented in Ref. [39]. The surge in fuel consumption for 

transportation is a major factor contributing to increased air 

pollution, which poses significant challenges to humans in 

today's society. Electric vehicles can offer an effective 

solution to this growing problem. However, the utilization 

of electric vehicles in developed countries has led to a 

remarkable increase in the electrical energy demand of 

power systems. VPP aggregates various DG sources to 

satisfy the power demands of these vehicles and mitigate 

the impact of their presence in the distribution network. 

Due to their electrical energy storage capability, electric 

vehicles can increase the storage capacity of the distribution 

system. Thus, the VPP operator can use bilateral contracting 

to encourage electric vehicle owners to participate in VPP 

planning. The mathematical model of electric vehicles is 

taken from the study in Ref. [39].  

The energy storage system can help establish the 

instantaneous power balance in VPP and enhance the power 

system's flexibility. This equipment can further be 

beneficial to renewable distributed generation resources in 

that it can partly reduce the increase or decrease in 

renewable resource generation based on their storage 

capacity. The pumped storage systems have the highest 

electrical energy storage capacity. The mathematical 

modeling of electrical and thermal energy storage systems 

is derived from Ref. [39]. Microturbines, CHP units, and 

the exchanged power with the main grid are the sources that 

can resolve the unbalanced production and consumption 

arising from the uncertainty in VPP. Similarly, the heat 

generation by CHP and boiler units can have a major role in 

thermal energy imbalance. The reserve capacity of each 

source covers the maximum difference between the pre-

assumed and instantaneous values. Under these 

circumstances, even with the worst-case scenario, the 

system reliability improves, and the appropriate 

performance is guaranteed. Relations (34)-(38)demonstrate 

the reserve value supplied by the mentioned sources. 

Another important equation that should be considered in the 

VPP operation is the instantaneous power balance as 

described in relations (41) and (42). 

 
Figure 1. Feasible operation region of the CHP unit 

 

 

3. Simulation 

This section evaluates and discusses the effectiveness and 

performance of the proposed model in terms of two case 

studies under different conditions. The proposed mixed-

integer programming (MIP) model is solved in the GAMS 

software environment using the CPLEX solver.  

3.1. Input data 

The hourly price of electrical and thermal energies, heat and 

power demand, wind speed, solar radiation, and natural gas 

price during the day are extracted from Ref. [41]. The daily 

price of electrical energy is taken from the data provided in 

Ref. [40] for August 2016. The electrical energy price is 

assumed fixed and equal to 100 dollars/MWh. The reserve 

energy price is also considered equal to 30 percent of the 

hourly energy price. Data related to wind turbines, PVs, and 

electric vehicles are extracted from Ref. [44]. Moreover, 

scenario generation and scenario reduction methods are also 

adopted from Ref. [44]. The highest power exchange 

between the main grid and VPP is taken as 900 kW.  

3.2. Case studies 

Two case studies are analyzed in this paper: 

E

D

B

A

FOR
E
le
ct
ri
ca
l 
P
o
w
er
 (
k
W
)

Thermal Power (kWth)



 Two-stage Operational Planning of a Virtual Power Plant in the Presence of a Demand Response Program 
 

 

16

• Case study 1: operational planning of a VPP 

without DR program 

• Case study 2: operational planning of a VPP with 

DR program 

 

3.2.1. Case study 1 

In this case study, the DR program effect is not considered 

in VPP operation. The optimal operational profit obtained 

in this case is $1235.4992. Figure 3 illustrates the power 

generation of each unit, the power exchange with the grid, 

the charge and discharge of storage systems, and electric 

vehicles’ connection to the network. According to the 

hourly electrical demand table and overall power generation 

and consumption in this figure, the power balance is 

entirely satisfied. Figure 4 depicts the thermal power supply 

in the VPP. Due to the low energy price at 1-6 a.m., the 

operator buys the required energy for its consumers from 

the main grid. Given the high wind speed and renewable 

generation, microturbines are off during these hours, 

whereas CHPs and boilers are operating to meet the heat 

demand. Thus, a portion of electrical energy is supplied by 

CHPs according to their operating point. With a rise in 

energy prices between 7-17 o’clock, the microturbines start 

operating. The resulting increased generation allows for 

selling a portion of produced power to the grid to achieve 

higher profit. As the electrical demand increases at 6-10 

p.m., the power generation of VPP units alone is not 

sufficient to supply the electrical demand. Thus, the 

operator purchases the power from the main grid to 

compensate for this deficiency. With load drop at 22-24 

o’clock, VPP lowers the power generation of microturbines 

and provides the required load from the main grid.  

Storage systems are charged at hours with low energy 

prices and deliver the stored energy to the grid at high 

energy price hours. Electric vehicle owners charge their 

batteries at low price hours to minimize their costs and sell 

their surplus energy to the grid at high price hours. Given 

that these vehicles travel their predicted distance during the 

day, their energy charge level is higher than their 

discharged level. Thus, they cannot optimally charge and 

discharge like a storage system. The 3D plot of reserve vs. 

time and scenario is drawn to analyze the reserve exchange 

between the power plant components. For simplicity, the 

plot is divided into two positive and negative segments. As 

shown in Figure 5, the reserve of components is zero or 

very small for scenario 4 because the uncertainty values are 

close to their predicted values. As electrical load increases 

in scenarios 5 to 7, the combination of the purchased 

reserve from the main grid and units’ power with a 10 

percent increase is utilized to supply the added load. 

Likewise, the load reduction in scenarios 1-3 is 

compensated for by reducing the power generation of units 

and selling reserves to the main grid to maintain the power 

balance. 

 

 
Figure 3. Electrical power balance. 
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3.2.2. Case study 2

A 20 percent DR program is added to the model in this case 

study. Given that a portion of the load is shifted from high 

price to low price hours, the optimal operational profit

the VPP increases to $1292.1719. Figure 6 plots the 

variations in electrical demand by applying the 20 percent 

DR program for scenario 4. Figure 7 displays the amount of 
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study. Given that a portion of the load is shifted from high 

price to low price hours, the optimal operational profit of 

the VPP increases to $1292.1719. Figure 6 plots the 

variations in electrical demand by applying the 20 percent 

DR program for scenario 4. Figure 7 displays the amount of 

shifted load per hour. As shown, the electrical demand has 

increased at low price 

hours. Figure 8 illustrates the reserve amount of each 

component after implementing the 20 percent DR program. 

As can be observed, the required reserve level has 

decreased in the worst

has become smoother. 
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A) The positive segment of reserves. B) The negative segment of reserves.

shifted load per hour. As shown, the electrical demand has 

increased at low price hours and decreased at high price 

hours. Figure 8 illustrates the reserve amount of each 

component after implementing the 20 percent DR program. 

As can be observed, the required reserve level has 

decreased in the worst-case scenario, and the reserve curve 

has become smoother. 

 

A) The positive segment of reserves. B) The negative segment of reserves. 

shifted load per hour. As shown, the electrical demand has 

hours and decreased at high price 

hours. Figure 8 illustrates the reserve amount of each 

component after implementing the 20 percent DR program. 

As can be observed, the required reserve level has 

case scenario, and the reserve curve 

 
17 

 

shifted load per hour. As shown, the electrical demand has 

hours and decreased at high price 

hours. Figure 8 illustrates the reserve amount of each 

component after implementing the 20 percent DR program. 

As can be observed, the required reserve level has 

case scenario, and the reserve curve 

shifted load per hour. As shown, the electrical demand has 

hours and decreased at high price 

hours. Figure 8 illustrates the reserve amount of each 

component after implementing the 20 percent DR program. 

As can be observed, the required reserve level has 

case scenario, and the reserve curve 



4. Conclusion

The power systems are evolving toward the growing 

utilization of distributed energy resources as one of the 

main components of the smart grid. Due to the small scale 

of DGs, these sources emit less pollution and provide more 

flexibility. DGs include small

 Two18

4. Conclusion 

The power systems are evolving toward the growing 

utilization of distributed energy resources as one of the 

main components of the smart grid. Due to the small scale 

of DGs, these sources emit less pollution and provide more 

flexibility. DGs include small

Two-stage Operational 

 

The power systems are evolving toward the growing 

utilization of distributed energy resources as one of the 

main components of the smart grid. Due to the small scale 

of DGs, these sources emit less pollution and provide more 

flexibility. DGs include small

P
o
w
er
 (
k
W
)

Operational Planning of a 

Figure 6.

Figure 8. A) The positive segment of reserves. B) The negative segment of reserves.

The power systems are evolving toward the growing 

utilization of distributed energy resources as one of the 

main components of the smart grid. Due to the small scale 

of DGs, these sources emit less pollution and provide more 

flexibility. DGs include small-scale conventional power 

Planning of a Virtual 

Figure 6. The effect of DR program on electrical load curve.

Figure 7.

A) The positive segment of reserves. B) The negative segment of reserves.

The power systems are evolving toward the growing 

utilization of distributed energy resources as one of the 

main components of the smart grid. Due to the small scale 

of DGs, these sources emit less pollution and provide more 

scale conventional power 

Virtual Power Plant in the 
 

 

The effect of DR program on electrical load curve.

Figure 7. The shifted load per hour.

A) The positive segment of reserves. B) The negative segment of reserves.

The power systems are evolving toward the growing 

utilization of distributed energy resources as one of the 

main components of the smart grid. Due to the small scale 

of DGs, these sources emit less pollution and provide more 

scale conventional power 

plants and renewable energies with zero

paper, two

VPP in energy and reserve markets in the presence of the 

DR program was presented. The designed VPP enabled 

par

The generated reserve of each power production source that 

Plant in the Presence of a 

The effect of DR program on electrical load curve.

The shifted load per hour. 

A) The positive segment of reserves. B) The negative segment of reserves.

plants and renewable energies with zero

paper, two-stage stochastic planning for the participation of 

VPP in energy and reserve markets in the presence of the 

DR program was presented. The designed VPP enabled 

participation in these markets by aggregating the DERs. 

The generated reserve of each power production source that 

Presence of a Demand 

The effect of DR program on electrical load curve. 

A) The positive segment of reserves. B) The negative segment of reserves.

plants and renewable energies with zero

stage stochastic planning for the participation of 

VPP in energy and reserve markets in the presence of the 

DR program was presented. The designed VPP enabled 

ticipation in these markets by aggregating the DERs. 

The generated reserve of each power production source that 

Demand Response 

 

 

A) The positive segment of reserves. B) The negative segment of reserves. 

plants and renewable energies with zero-emission. In this 

stage stochastic planning for the participation of 

VPP in energy and reserve markets in the presence of the 

DR program was presented. The designed VPP enabled 

ticipation in these markets by aggregating the DERs. 

The generated reserve of each power production source that 

P
o
w
er
 (
k
W
)

Response Program 

 

 

emission. In this 

stage stochastic planning for the participation of 

VPP in energy and reserve markets in the presence of the 

DR program was presented. The designed VPP enabled 

ticipation in these markets by aggregating the DERs. 

The generated reserve of each power production source that 

emission. In this 

stage stochastic planning for the participation of 

VPP in energy and reserve markets in the presence of the 

DR program was presented. The designed VPP enabled 

ticipation in these markets by aggregating the DERs. 

The generated reserve of each power production source that 



Journal of Applied Dynamic Systems and Control, Vol.5, No.1, 2022: 11-20 

 
19 

 

 

was considered to compensate for the existing imbalances 

in different scenarios was also analyzed and discussed. Two 

case studies were developed to verify the effect of the DR 

program on optimal operational profit and reserve exchange 

of VPP. The results suggested that the DR program can 

result in a 4.58 percent increase in the optimal operational 

profit. Further suggestions for future studies are presented 

as follows: 

1. Operational planning of a virtual power plant 

considering to a peer-to-peer energy trading 

2. Two-stage operational planning of a virtual power 

plant considering to a peer-to-peer energy trading 

3. Robust optimization based Operational planning of a 

virtual power plant with/without considering to a 

peer-to-peer energy trading 
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