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Abstract – In this paper, a novel reconfiguration approach for distribution network incorporating distributed 
generation is introduced aiming to minimize power losses and energy supply costs. Given the temporally variable 
consumption of residential, industrial and commercial loads and the time-variant energy prices, an hourly 
reconfiguration scheme for an entire daily cycle is proposed. Also considering the privately-owned nature of distributed 
sources, the energy supply is carried out within a competitive market. The optimization is based on grey wolf algorithm 
(GWO), implemented in MATLAB software on an IEEE 33-bus test network. The simulation is done for four scenarios 
with respective objective functions for the evaluations of the results thereof. By comparing the obtained results it is 
concluded the configuration of network will be the unique for each of objective function. Finally, the effects of 
switching at different hours of day are compared in terms of loss minimization and supply costs against single daily 
switching scheme. 

 
 

Keywords:    Reconfiguration, Distribution network, Energy supply cost reduction, Power loss, Grey wolf algorithm 
  

 
 

1. Introduction 

 
Distribution network reconfiguration is an ideal 

inexpensive solution in which the states of grid breakers are 
regularly manipulated so as to achieve grid operation goals. 
Accordingly, reconfiguration improves the objective 
functions while taking account of network limitations [1]. 
In recent years, distribution grids have migrated from 
conventionally passive into active parts of the power 
system through utilization of distributed generation sources 
which bring about improved reliability and voltage profile 
as well as lower losses and energy supply costs. Given their 
common objectives, simultaneous application of 
reconfiguration and distributed generation will result in a 
significantly-improved network arrangement for DG 
operation and, therefore, a more optimal network operation. 
Several papers have focused on this subject each 
distinguished by their developed objective functions. In [2], 
a network reconfiguration approach based on bee colony 
algorithm is introduced aimed at minimized losses and 
improved voltage profile as well as load balance. The work 
in [3], employs mixed integer linear programming for 
distribution network reconfiguration problem in the 

presence of distributed generation with the attempt to 
minimize power losses and improve voltage profile. 
Besides reconfiguration, the work in [4] focuses on the 
optimal DG location aimed at minimized active power 
losses as well as improved voltage stability through CSA 
approach. The results indicate the high performance of 
simultaneous reconfiguration and DG placement. Network 
reconfiguration has also been employed in [5], through 
micro-genetic algorithm, to lower feeder losses and get 
better average interruption index. The authors of [6] have 
implemented reconfiguration using GA with a unique 
objective function incorporating power quality and 
reliability criteria in optimizing power losses, voltage 
deviation, average interruption frequency index and average 
energy not supplied. Further, the work in [7] focuses on 
reconfiguration in an active distribution system with the 
objectives of lower losses and optimized reactive power 
(VAR). The effect of DG penetration level with minimum, 
medium and maximum capacity are considered through 
big-M and linear division techniques. However, load 
diversity and time variations are not taken into account. 
Two different models of static and dynamic reconfiguration 
are considered in [8] to achieve lower losses and improved 
DG efficiency in an active network with nonlinear integer 
programming. The authors in [9] apply PSO algorithm to 
solve network reconfiguration problem and improve grid 
reliability and the energy-not-supplied indices. In [10], TFN 
technique and mixed big-bang multi-objective approach are 
employed for reconfiguration and DG location in an 
attempt to lower losses, operation costs and emissions and 
improve voltage stability index. However, the load type is 
ignored and a flat profile is assumed throughout the day. 
Reducing the energy loss and costs via capacitor placement 
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are the objectives sought through GA-based reconfiguration 
in [11]. The authors take account of different load types and 
employ a forecasting technique to model the daily load 
behavior. However, a constant energy price is considered 
throughout the day. In [12], maximum DG owner benefits 
and minimum utility costs are sought through distribution 
network reconfiguration though with constant load. A 
reconfiguration-based multi-objective optimization along 
with optimal sizing and placement of DGs is presented in 
[13] which attempts to minimize power losses, annual 
operation costs and gas emissions. Despite considering 
variations in load, wind velocity and solar radiation, energy 
price variations and load diversity are ignored. 

Although objectives such as lower losses and improved 
voltage profile have been frequently addressed in the 
literature, the load type and load fluctuations have mostly 
been overlooked. As the network’s technical objective, 
lower losses are always desirable though the costs and/or 
benefits are the main deciding factors in planning and 
optimizations. 

In this paper, two main objectives of energy supply cost 
and power losses are addressed through reconfiguration of 
an active distribution network and the results are discussed. 
In order to make the approach more practical, the variations 
of different load types, e.g. residential, commercial and 
industrial, along with the 24-hour price variations are 
considered. Energy purchased by the utility from DG 
owners is based on contracts with hourly purchase intervals. 
The optimal reconfiguration problem is solved through 
GWO in a sample network to achieve the defined objectives.  

The rest of the paper is organized as follows. Section 2 
presents problem formulation including the objective 
function and associated constraints. In section 3, the GWO 
approach is presented. The sample network along with the 
simulation results and discussion are given in section 4. 
Finally, the conclusions are drawn in section 5. 

 

2. Problem formulation 
Utility grids are committed to supply electrical energy to 

their customers regardless of the time and duration the 
energy is required. Since the energy usage by customers is 
not constant throughout day, the network losses resulting 
from the flow of energy flow will also have an uneven 
profile. Also, the energy purchasing price of the utility 
varies with the demand level. Therefore, the utility tries to 
supply the customers’ demand with the lowest cost and 
minimum losses. To this end, the optimal network 
configuration and supply of the electricity from local 
markets and the associated cost minimizations demand an 
efficient modeling approach which is mathematically 
presented below. 

 
2.1. Objective Functions 

Due to low voltage and, therefore, high current, power 
losses in distribution systems are high. In fact, minimizing 
the losses has always been a main objective for distribution 

utilities. In this section, power loss minimization is 
presented as the primary objective function as: 

 (1) F����� = min E���� = 
 
 r�,�
�

���
I�,��

��

���
 

Where E���� is the lost energy, r�,� is the resistance of 

branch l  at time t  and I�,� is the current of branch l at 

time t. 
As previously mentioned, the second interesting goal for 

the utility is lowering, to the extent possible, the operation 
costs and supply of the customers’ electricity at the least 
cost. This is considered as the second objective and 
expressed as: 

 (2) F���� = min 
�C��� + C��� !
��

���
 

Where F���� is the supply cost of energy in the entire 
daily cycle and includes the cost of supply from DG 

sources  C��� and power market C��� .  C���  is obtained 
as: 

(3) C��� = 
 
 (ρ$,�. E$,�)
�'(

$��

��

���
 

Where ρ$,� is the energy price purchased from mth DG 

at time t. Also, E$,�is the energy delivered by the mth DG 

to the grid at time t calculated by: 

 (4) E$,� = S$,� × pf$,� 
In the above equation, ،S$,� is the capacity and pf$,� is 

the power factor of the mth DG at time t. 
Further, the price of energy purchased from power 

market (C��� ) at time t for an entire day is expressed as: 

(5) C��� = 
(ρ�� ,�. E�� ,�)
��

���
 

Where ρ�� ,� is the energy price purchased from power 

market at time t  and E�� ,�  is the amount of energy 

purchased during this period. 
 
2.2. Problem constraints 

2.2.1. Radiality constraint 

 

For many reasons including simplicity and avoiding 
complex and costly protection system, distribution 
networks are designed and operated radially. During 
reconfiguration, some ring(s) may be created within the 
network. Therefore, in order to take into account the 

radiality, matrix A is defined as the bus propagation matrix. 
The network is radial only when the matrix determinant is 
+1 or -1.  This constraint is mathematically modeled as:  

(6) . det(A) = 1 or − 1 ∶   Radial system           
     det(A) = 0 ∶  Not Radial                                     

 
2.2.2. Branch capacity limitation 

Power limitation of the distribution lines is highly 
significant for safe operation. The energy flow in each line 
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for each hourly interval is limited by (7) to equal or less 
than the branch maximum capacity. 

 (7) ;S�,�; ≤ S�,�$=> 

Where S�,�  and S�,�$=>  are the actual and maximum 

power flow of line l at time t, respectively. 
 
2.2.3. Grid voltage constraint 

Distribution network voltage shall be maintained within 
an acceptable band for different load levels as expressed by: 

 
(8) V@$@A ≤ ;V@,�; ≤ V@$=> 

Where V@,�, V@$@Aand V@$=> are the voltage of bus i at 

time t and the minimum and maximum voltage levels, 
respectively. 

 
2.2.4. Load flow constraint 

In order to get the most suitable configuration, load flow 
constraint should be taken into account to safely and 
optimally decide on active and reactive power as well as 
voltage phase and amplitude and branch currents. Equations 
(9) and (10) represent the nonlinear load flow constraint. 

(9) 

P@,� = ;V@,�; 
;VC,�;
�

C��
Dg@C,� cos�θ@,� − θC,�!

+ b@C,� sin�θ@,� − θC,�!I           
(10) 

Q@,� = ;V@,�; 
;VC,�;
�

C��
Dg@C,� sin�θ@,� − θC,�!

+ b@C,� cos�θ@,� − θC,�!I 
 

Where P@,� and Q@,� are the active and reactive powers 

of bus i at time t, respectively. Also, V@,�  and VC,�  are 

voltages of buses i and k at time t. The real and imaginary 
components of the admittance between buses i and k are 

denoted by b@C,� and g@C,�, respectively. Finally, θ@,� and 

θC,� are, respectively, the voltage phases of buses i and k at 

time t. 
 
3. Grey Wolf Optimization Algorithm 

 

Grey Wolf Optimization (GWO) was introduced in 2014 
as a nature-inspired metaheuristic approach. Grey wolves 
have a hierarchical society and their social behavior is the 
underlying principle of this method. 

Grey wolf leaders are categorized within four levels, 

namely α ,β ,δ and ω in order of their strength. Their 
hunting process consists of three stages of social hierarchy, 
prey encirclement and attacking the prey, as described 
below. 

   
3.1. Social hierarchy 

α, β  and δ  are respectively considered as the first, 
second and third best solutions and the rest of the wolves 

are categorized as ω.  
 

3.2. Prey encirclement 

The wolves take siege and surround the prey. This is 
formulated as [14]: 

 
  (11) XNNO(t + 1) = XNNOP − ANNO. DNNO 
 (12) DNNO = ;CNO. XNNOP(t) − XNNO(t); 

 

Where t  is the iteration number, XNNOP  is the) prey 

coordinate vector and  XNNO is the spatial position  of each 

grey wolf. ANNO  and CNO  are the coefficient vectors as 
expressed in (13) and (14), respectively: 

 
 (13) ANNO = 2aNO. rO� − a NNO 
 (14) CNO = 2. rO� 

Where a is diminished linearly from 2 to zero through the 

iterations. rO�  and rO�  are stochastic vectors within the 
interval[14]. 

 
3.3. Attacking the Prey 

Grey wolves are capable of estimating the prey location. 

After surrounding the prey, wolf groups  α, β and δ are 
considered to have the best estimation of the prey location, 
i.e. the best solution. Other estimates are put into category 

ω. The associated relations are as follows[14]: 
 

(15) DNNOS = ;CNO�. XNNOS − XNNO; 
(16) DNNOT = ;CNO�. XNNOT − XNNO; 

 (17) DNNOU = ;CNOV. XNNOU − XNNO; 
 (18) XNNO� = XNNOS − ANNO�. �DNNOS! 

(19) XNNO� = XNNOT − ANNO�. �DNNOT! 

(20) XNNOV = XNNOU − ANNOV. �DNNOU! 

(21) XNNO(t + 1) = XNNO� + XNNO� + XNNOV
3  

Due to the nonlinear and complex nature of the 
reconfiguration problem, the metaheuristic GWO technique 
is implemented in MATLAB software to solve the related 
objective function equations. The effect of each objective 
function in different scenarios will be evaluated on a 
sample test network. 

 

4. Simulation Results 
A standard 33-bus IEEE test system including 37 

branches, 32 disconnects and 5 tie switches, as shown in 
Fig. 1, is considered for simulation and evaluation of the 
proposed method [15]. As indicated by different researches 
in the literature, the power loss of the network in its initial 
configuration is 202.71 kW. Also the minimum bus voltage 
belongs to bus 18 at 0.9131 P.U. which is below its allowed 
range. 
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Figure 1: IEEE 33 bus-Network [15] 

 
For simulation purposes, three DG sources are 

considered at buses 14, 18 and 31 each with a fixed 
capacity of 500 kVA and PF=0.8. Also, three different load 
categories, namely residential, commercial and industrial 
are assumed whose profiles are given in Fig. 2. Also, load 
coefficients in 24 hours a day are considered different 
according to Fig. 2 [16]. It is also assumed that the network 
operator is allowed to perform switching operations only 
once during the day. 

 
Figure 2: Mean daily load profile for different consumer categories [16] 

 

As shown in Fig. 2, different behaviors are witnessed in 
different load categories. The demand level for each load 
category is depicted as a fraction of its daily peak level. 
Thus, the peak period for commercial and residential loads 
is during hours 19 and 20 and that of industrial consumers 
is from hours 9 to 12 a.m.  

The utility purchases the required power from power 
market on an hourly basis. The hourly energy price is 
illustrated in Fig. 3[17]. In addition, the purchasing price 

from DGs at all periods is considered constant at 0.05 
$

CYZ.  

 

 
Figure 3: Hourly energy price [17] 

 
4.1. Results Validation 

 
In order to validate the proposed approach and evaluate 

the GWO performance for the reconfiguration problem, the 
power loss minimization objective is primarily addressed 
and the results are compared to those of reference [18], as 
given in Table 1. 

 
Table1: Validation of proposed reconfiguration approach: power loss 

minimization objective 

Result of reconfiguration   

PSO 
[15] 

Proposed 
method 

Initial 
(Peak 
Load) 

Validation of 
method 

8-14-
28-32-
33 

7-9-14-32-
37 

33-34-35-
36-37 

Open 
switches 

139.5 139.5 202.6 Power Loss 
[kW] 

 
Based on Table 1, the proposed reconfiguration approach 

using GWO algorithm helps reduce the power loss from the 
initial 202.6 kW to 139.5 kW. The 31% decrease is similar 
to the result in [18] and thus validates the efficient 
performance of the grey wolf technique. 

 
4.2. Scenarios 

In this section the reconfiguration problem takes two 
objective functions, namely power loss reduction and least 
energy cost, into account. Also, the effect of DGs in the 
objective functions are assessed through considering two 
scenarios of reconfiguration with/ and without DGs in the 
network.  

Given the results presented in Table 2, reconfiguration 
without taking account of DGs (scenario 1) leads to 31.7 
percent reduction in power losses. Also, the energy 
purchased from the grid and their related costs have 
reduced 1.2 percent and 6.4 percent, respectively. Hence, 
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the proposed loss-oriented reconfiguration framework has 
significantly achieved the optimization goals.  

Next, in order to evaluate the effect of DGs, the 
reconfiguration technique is applied to the 2nd scenario. 
With the default location of DGs, as in section 4, the 
reconfiguration leads to daily energy losses to decrease a 
remarkable 84.55 percent from its initial value down to 
430.04 kWh. Also in this scenario, the total energy 

purchased by the utility from the power market and DGs is 
$3848.54. This is indeed a 20.31 percent reduction from the 
purchase cost in the initial network configuration. By 
comparing the first and second scenarios, it is observed that 
the combination of reconfiguration and utilizing DGs units 
can significantly reduce losses and, therefore, the purchase 
energy and the related cost. 

 
 

Table 2: Results of Reconfiguration with / without DGs 

 
 
 
When the main objective function of the reconfiguration 

is the reduction in the costs of energy supply to the 
consumers, the results indicate (scenario 3) that the 
reconfiguration leads to 29.4 percent reduction in daily 
energy loss. The switching of breakers 28, 32, 9, 33, 13 has 
reduced the amount of purchased energy and its cost 1.1 
percent and 7.3 percent, respectively. 

Finally, the reconfiguration of the active distribution 
network in scenario 4, with the main objective of reducing 
energy costs, has resulted in 70.3 percent reduction in 
energy losses during a 24-hour cycle. The optimal 
reconfiguration, obtained by opening breakers 7, 9, 14, 17, 
37, resulted in the least cost reduction (0.4%) compared to 
other scenarios. However, the energy cost imposed to the 
utility is the best among all 4 cases with a 20.7% saving 
compared to the initial configuration with no DGs. 

Considering the results of all 4 scenarios, it can be said 
that reconfiguration itself can have positive impacts on the 
energy losses as well as energy purchase quantity and cost. 
When combined with DG utilization, however, it can more 
significantly reduce the mentioned losses and costs. Also, 
given the results of scenarios 2 and 4, it is observed that the 
solution, i.e. the new network configuration, is unique for 
each type of problem and scenario. Thus, when the loss 
minimization is the primary objective, scenario 2 has the 
highest reduction of 84.5 percent and when priority is given 
to the cost reduction, scenario 4 with 20.7% cost reduction 
yields the best result. 

It should be noted that the voltage constraint should be 
observed across all scenarios with voltage of all buses being 
within 0.95 and 1.05 P.U. For this purpose, the voltage 
profile for all buses at the peak hour of 19 is illustrated in 
Fig. 4 for scenarios 2 and 4. 

 

 
Figure 4: Voltage profile for network buses at hour 19 

 
 
 
 
 
 
 

 

With Reconfiguration Initial 

Network 
 

Cost of purchased Energy Energy Loss 

Scenario 4 Scenario 3 Scenario 2 Scenario 1 
∆(%) With DG ∆(%) No DG ∆(%) With DG ∆(%) No DG -  
- 7-9-14-17-

37 
- 28-32-9-

33-13 
- 8-26-36-

34-7 
- 13-32-10-

28-7 
33-34-35-
36-37 

Open switches 

-70.3 761.3 -29.4 1962.85 -84.5 430.04 -31.7 1900.08 2783.70 Energy Loss 
[kWh] 

-0.4 72020.14 -1.1 71530.55 -3.2 69997.7 -1.2 71467.78 72351.4 Total 
Energy[kWh] 

-20.7 3829.4 -7.3 4472.8 -20.3 3848.5 -6.4 4516.8 4829.35 Energy Cost 
($) 
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Table 3: Results of continuous reconfiguration with two objectives of power loss and energy purchase cost minimization 

Cost Reduction  Energy Loss Reduction  Hour 

Open switch Cost[$] Loss [kW] Open switch Cost[$] Loss 

[kW] 

7-10-16-25-37 126.57 16.75 7-10-16-21-28 129.40 10.43 1 

7-10-15-21-28 110.67 13.85 7-10-15-21-27 118.03 7.47 2 

7-10-15-21-28 105.14 13.90 7-10-15-21-27 110.78 7 3 

7-10-15-21-28 103.27 13.90 7-10-15-21-27 110.45 7 4 

7-8-11-16-28 102.46 13.90 7-10-15-21-27 109.20 7 5 

7-8-11-16-28 101.49 13.14 7-10-15-21-27 110.44 7.32 6 

7-8-9-17-37 101.49 13.04 7-10-15-21-28 110.45 7.51 7 

7-10-29-34-37 115.84 15.04 6-10-15-21-28 120.05 7.8 8 

7-10-29-34-37 118.97 14.74 6-8-11-16-28 127.95 8.75 9 

7-10-29-34-37 146.81 18.61 7-8-9-15-37 155.74 13.9 10 

7-9-14-17-37 159.17 21.33 7-8-10-16-37 168.51 16.68 11 

7-9-14-17-37 176.90 27.74 7-8-9-16-37 183.37 21.6 12 

7-9-14-17-37 166.85 27.89 7-8-9-16-37 189.57 25.71 13 

7-9-17-27-34 161.18 23.64 7-8-9-17-28 170.69 18.1 14 

7-9-17-27-34 152.60 21.99 7-8-9-17-37 160.97 15.75 15 

7-8-9-16-37 136.31 19.21 7-9-17-27-34 147.46 13.19 16 

7-8-9-16-37 159.81 20.64 7-8-9-16-37 163.85 18.17 17 

7-9-14-17-37 163.47 29.68 7-8-9-16-37 175.68 24.1 18 

7-9-14-17-37 235.12 47.26 7-10-29-34-37 240.44 39.44 19 

7-9-14-17-37 229.37 47.02 7-8-9-17-37 232.50 39 20 

7-9-14-17-37 207.29 42.29 7-8-9-17-37 217.16 29 21 

 
 

From Fig. 4 it is observed that prior to the 
reconfiguration and DG utilization, i.e. when the initial 
configuration is applied; buses 6 to 19 and 26 to 33 have 
voltages below the acceptable limit at hour 19. With the 
reconfiguration, with both objectives of loss and cost 
reductions, the voltages are all within the allowed band. 
Since the profiles are related to the peak demand hour, it 
can be inferred that the voltages during all hours are within 
constraints. 

 
4.3. Multiple Daily Reconfigurations  

In this section, the restriction in the number of 
reconfigurations during the day is removed and the operator 
can apply the best configuration at each hour. Accordingly, 
Table 3 shows the results obtained by the proposed 

approach with the two objectives and considering DGs 
when the reconfiguration is regularly implemented 
throughout the day. 

Based on Table 3, it can be observed that, for the loss-
minimization objective, the number of switchings has 
significantly increased compared to the previous case. It 
can be seen that some breakers do not change state in 
adjacent time intervals. In most of the configurations for 
this objective function, breakers 7, 8, 9 and 10 are 
frequently opened. In addition, the total energy loss is 
399.65 kWh which means a 40 kWh reduction compared to 
the result of scenario 2 (Table 2) when the reconfiguration 
was allowed once for an entire day. Also, the energy 
purchase cost has experienced a $93.39 decrease compared 
to scenario 2. Thus it is clearly seen that multiple 
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reconfigurations with the objective of loss minimization can 
lead to better results than a single daily reconfiguration. 

The increase in switching instances is also witnessed 
when the purchase cost reduction is the primary objective 
function. However, since the price changes are slow during 
the day, the number of switchings are lower than those 
when loss minimization is prioritized. With priority given to 
purchase cost minimization, no reconfiguration is required 
within some adjacent intervals. This is more the case when 
the load is relatively constant and at its off-peak levels. As 
predicted, the total cost with 24 daily reconfigurations is 
$3567.35 which is $262.05 lower than when just one daily 
reconfiguration is permitted. Thus, it can be concluded that 
for all types of objective functions, a dynamic 
reconfiguration scheme is more beneficial to the 
distribution utility. 

 

5. Conclusion 

 
In this paper, a novel approach based on GWO algorithm 

is introduced for reconfiguration of active distribution 
networks aimed to minimize both the power losses and the 
energy supply costs. The results on the test sample 
demonstrate that applying a suitable configuration on the 
active network leads to more optimal use of distributed 
generation sources including power loss reduction, 
improvement in voltage profile and lower energy supply 
costs for the consumers. The results further indicate that 
although the reconfiguration leads both power losses and 
supply costs to decrease, there is a unique resulting network 
configuration when each of these goals is prioritized. Thus, 
it can be confirmed that a configuration aimed at 
minimizing the power losses will not necessarily bring 
about the minimum supply costs and vice versa. Also, in 
this paper, the effect of a dynamic around-the-clock 
reconfiguration is assessed in comparison to once-per-day 
reconfiguration and concluded that the dynamic 
reconfiguration is more efficient in achieving the paper 
goals. The dynamic reconfiguration, however, may be 
limited in operation due to incurrence of additional costs 
related to circuit breaker degradation. 
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