بررسی آزمایشگاهی کاهش نقطه ریزش و روانسازی نفت خام با مایعات یونی بر پایه ایمیدازولیم
محورهای موضوعی : شیمی تجزیهعلی اصغر پاسبان 1 , علی اکبر میران بیگی 2 , مجید عبدوس 3
1 - مربی و کارشناس ارشد مهندسی شیمی، پژوهشکده توسعه فناوریهای پالایش نفت، پژوهشگاه صنعت نفت، تهران، ایران
2 - استادیار شیمی تجزیه، پژوهشکده توسعه فناوریهای پالایش نفت، پژوهشگاه صنعت نفت، تهران، ایران
3 - استاد شیمی آلی، دانشکده شیمی، دانشگاه صنعتی امیرکبیر، تهران، ایران
کلید واژه: مایعات یونی, نفت خام, مواد کاهشدهنده نقطه ریزش و دمای ظهور واکس,
چکیده مقاله :
در این پژوهش، روانسازی نفت خام در دمای پایین بر نمونههای نفت خام ایران با دو مایع یونی [NTF2][C12mim] و [NTF2][C14mim] که بر پایه ایمیدازول هستند، بررسی شد. هر دو ترکیب مورد بررسی از حلالیت بسیار خوبی در انواع نفتهای خام برخوردار هستند. بررسیها نشان داد که[NTF2][C14mim] توانایی بالایی در کاهش نقطه ریزش به مقدار C° 12 در غلظت ppm 2000 را دارد. همچنین، تشکیل بلورهای واکس در نفت خام با و بدون افزودنی با روشهای گرماسنجی پویشی تفاضلی و میکروسکوپی نوری قطبیده، بررسی شد. با توجه به نتایج بهدست آمده، مشخص شد که هر دو مایع یونی با تغییر در فرایند تشکیل بلورهای واکس، رسوبشدن آنها را به تعویق میاندازند. همچنین، سیالیت نفت خام در حضور[NTF2][C14mim] بهبود یافت و گرانروی در دمای 23/5 و C° 15 به ترتیب 73 و 87 % کاهش پیدا کرد.
In this research, fluidity of crude oil at low temperatures was investigated on several Iranian oil samples by using two imidazolium-based ionic liquids (ILs). Both ILs have high solubility in crude oil. A 2000 ppm solution of [C14 mim][NTf2] exhibited more ability in decreasing pour point down to 12 °C. Wax crystals nucleation and growth were studied before and after of the addition of ILs. The results revealed that both the studied ILs could significantly decrease pour point of samples via delay in nucleation mechanism of wax crystals. Furthermore, in the presence of ILs rheological behavior of tested crude oils was improved. Besides, the viscosity at 23.5 °C and 15 °C was decreased 73% and 87%, respectively.
[1] Farimani, S.K.; Vafaie Sefti, M.; Masoudi, S.; Journal of Petroleum Research 24, 89-99, 2014.
[2] Jafari Behbahani, T.; Miran Beighi, A.A.; Ghanbari, B.; Iranian Chemical Engineering Journal 14(80), 22-28, 2015.
[3] Yip, Y.H.; Soh, A.K.; Foo, J.J.; Chemical Engineering Research and Design 126, 172-187, 2017.
[4] Rehan, M.; Nazami, A.; Taylan, O.; Al-Sasi, B.O.; Demirbas, A.; Petroleum Science and Technology 34(9), 799-804, 2017.
[5] Huang, H.; Wang, W.; Peng, Z.; Ding, Y.; Li, K.; Li, Q.; Gong, J,; Fuel 221, 257-268, 2018.
[6] Ehsani, M.R.; Farazmand, S.; Shadman, M.M.; Iranian Journal of Chemical Engineering 35(3), 115-126, 2016.
[7] Moradi, A.M.; Heravi, M.M.; Oskoee, A.H.; Mahmoodi, A.S.; Eskandari, M.; Journal of Petroleum Research 23(74), 144-150, 2013.
[8] Liu, T.; Fang, L.; Liu, X.; Zhang, X.; Fuel 143, 448-454, 2015.
[9] Xie, M.; Chen, F.; Liu, J.; Yang, T.; Yin, S.; Lin, H.; Xue, Y.; Han,; S.; Fuel 255, 1-9, 2019.
[10] Sanchez-Minero, F.; Ancheyta, J.; Silva-Oliver, G.; Flores-Valle, S.; Fuel 110, 318-321, 2013.
[11] Duncke, A.C.; Marinho, T.O.; Barbato, C.N.; Freitas, G.B.; Oliveira, M.C.K.; Nele, M.; Energy and Fuels 30, 3815-3820, 2016.
[12] Suryanarayana, I.; Rao, S.R.; Duttachaudhury, B.; Saikia, B.K.; Fuel 69(12), 1546-1551, 1990.
[13] Sharma, S.; Mahto, V.; Sharma, V.P.; I&EC research 53(12), 4525-4533, 2014.
[14] Mendes, R.; Vinay, G.; Ovarlez, G.; Coussot, P.; Journal of Rheology 59 (3), 703–732, 2015.
[15] Soto-Castruita, E.; Ramirez-González, P.V.; Martinez-Cortés, S.E.; Energy and Fuels 29(5), 2883-2889, 2015.
[16] Ashbaugh, H.S.; Radulescu, A.; Prud’Homme, R.K.; Schwahn, D.; Richter, D.; Fetters, L.J.; Macromolecules 35(18), 7044–7053, 2002.
[17] Japper-Jaafar, A.; Bhaskoro, P.T.; Mior, Z.S. ; J. Pet. Sci. Eng. 147, 672–681, 2016.
[18] Taheri-Shakib, A.M.; Shekarifard, A. ; Naderi, H.; J. Pet. Sci. Eng. 161, 530–540, 2018.
[19] Al-Sabagh, A.M.; Betiha, M.A.; Osman, D.I.; Hashim, A.I.; El-Sukkary, M.M.; Mahmoud, T,; Energy and fuels 30(9), 7610–7621, 2016.
[20] Ren, Y.; Fang, L.; Chen, Z.; Du, H.; Zhang, X.; I&EC research 57(25), 8612-8619, 2018.
[21] Yang, F.; Zhao, Y.; Sjöblom, J.; Lu, L.; Paso, K.G.; J. Dispers. Sci. Technol. 36(2), 11161–11166, 2015.
[22] Lei, Y.; Han, S.; Zhang, J.; Bao, Y.; Yao, Z.; Xu, Y.; Energy and fuels 28(4), 2314–2321, 2016.
[23] He, C.; Ding, Y.; Chen, J.; Wang, F.; Gao, C.; Zhang, S.; Yang, M.; Fuel 167, 40-48, 2016.
[24] Soliman, E.A.; Elkatory, M.R.; Hashem, A.I.; Ibrahim, H.S.; Fuel, 216, 898-907, 2018.
[25] Zhao, Z.; Xue, Y.; Xu, G.; Zhou, J.; Lian, X.; Liu, P.; Chen, D.; Han, S.; Lin, H.; Fuel 193, 65-71, 2017.
[26] Yang, F.; Yao, B.; Li, C.; Shi, X.; Sun, G.; Ma. X.; Fuel 207, 204-213, 2017.
[27] Goossens, K.; Lava, K.; Bielawski, C.W.; Binnemans, K.; Chem. Rev. 116(8), 4643-4807, 2016.
[28] Ahmadi, A.; Fateminassab, F.; Mehdizadeh, A.; Journal of Applied Reserarch in Chemistry 10(4), 49-58, 2017.
[29] Yousefi, M.; Goodarzi, V.; Abdouss, M.; Miran Beigi, A.A.; Journal of Applied Reserarch in Chemistry 12(2), 89-99, 2018.
[30] Kuzmić, A.; Radošević, M.; Bogdanić, G.; Srića, V.; Vuković, R.; Fuel 87(13-14), 2943-2950, 2008.
[31] Li, L.; Guo, X.; Adamson, D.H.; Pethica, B.A.; Huang, J.S.; Prud’homme, R.K.; Ind. Eng. Chem. Res. 50, 316-321, 2011.
[32] Hazrati, N.; Abdouss, M.; Miran Beigi, A.A.; Pasban, A.A.; Rezaei, M.; J. Chem. Eng. Data. 62(10), 3084-3094, 2017.
[33] Parajó, J.J.; Teijeira, T.; Fernández, J.; Salgado, J.; Villanueva, M.; The Journal of Chemical Thermodynamics 112, 105-113, 2017.
[34] Xu, J.; Xing, S.; Huiqin, Q.; Chen, S.; Wei, X.; Zhang, R.; Li, L.; Guo, X.; Fuel 103, 600-605, 2013.
[35] Pedersen, K.S.; Rønningsen, H.P.; Energy Fuels 17(2), 321-328, 2003.
[36] Wu, Y.; Ni, G.; Yang, F.; Li, C.; Dong, G.; Energy Fuels 26(2), 995-1001, 2012.
[37] Liu, T.; Fang, L.; Liu, X.; Zhang, X.; Dong, G.; Fuel 143, 448-454, 2015.