نانوچندسازه مزوحفره مغناطیسی شده پوسته-هسته پوشیدهشده با تیتانیم دیاکسید و اصلاح شده با ماده سطح فعال برای حذف رنگدانه متیلن بلو از نمونه آبهای محیطی
محورهای موضوعی : شیمی تجزیهمریم عزالدین 1 * , لاله عدل نسب 2
1 - استادیار گروه شیمی، دانشگاه پیام نور تهران، ایران
2 - استادیار گروه شیمی و پلیمر، دانشکده شیمی و مهندسی پتروشیمی، پژوهشکده استاندارد، کرج، ایران
کلید واژه: سدیم دودسیل سولفات, متیلن بلو, حذف, نانو چندسازه, مزوحفره مغناطیسیشده,
چکیده مقاله :
در این پژوهش، یک نانوچندسازه مزوحفره مغناطیسی شده پوسته-هسته پوشیده شده با تیتانیم اکسید Fe3O4@MCM@TiO2 بهعنوان جاذب تهیه و با یک ماده سطحفعال آنیونی برای حذف یک رنگدانه کاتیونی (متیلن بلو) از نمونههای آب چاه و آب فاضلاب اصلاح شد. آهن اکسید بر مزوحفره MCM-41 قرار گرفت و با تیتانیم اکسید بهعنوان یک پوسته پوشیده شد. سدیم دودسیل سولفات بهعنوان ماده سطحفعال آنیونی (SDS) از راه فرایند نیمریشال/ برجذبریشال جاذب را اصلاح و از تجمع و کلوخهشدن جاذب جلوگیری کرد. ویژگیهای جاذب با روشهای پراش پرتو ایکس (XRD)، طیفسنجی فروسرخ تبدیل فوریه (FTIR) و جذب و واجذب نیتروژن و نیز بهکارگیری میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) بررسی شدند. حذف متیلن بلو در نمونههای آب محیطی در حضور جاذبتهیه شده و تاثیر عاملهای متفاوت برای حذف مورد مطالعه قرار گرفت. دادههای جذبی با مدل لانگمویر همخوانی داشت و زمان تعادل کوتاهی را با حداکثر ظرفیت جذب 227/27 میلیگرم بر گرم نشان داد. حذف متیلن بلو در حضور جاذبتهیه شده با بازیابی مناسب در گستره 89 % و 94/2 % صورت گرف
In this study, a core–shell TiO2 coated magnetic mesoporous nanocomposite (Fe3O4@MCM@TiO2) was synthesized and modified with an anionic surfactant for the removal of a cationic dye, (methylene blue) from well and wastewater samples. Fe3O4 was loaded on mesopore (MCM-41) and coated with TiO2 as a nano platelet shell. An anionic surfactant, sodium dodecyl sulfate (SDS), was used to modify the adsorbent through hemimicelles/admicelles process and also to prevent the agglomeration of the adsorbent. The surface chemical characteristics and morphology of the prepared Fe3O4@MCM@TiO2were studied by the Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), and Brunauer-Emmett-Teller (BET) analytical techniques. The effect of effective parameters for the removal of methylene blue was also studied. The adsorption data fitted with the Langmuir model showed a short equilibrium time with the maximum capacity uptake of 227.27 mg g-1. This method was successfully applied for removal of methylene blue in environmental water samples with an appropriate recovery in the range of 89.0 and 94.2%.
[1] Lei, Y.; Cui, Y.; Huang, Q.; Dou, J.; Gan, D.; Deng, F.; Liu, M.; Li, X., Zhang, X.; Wei, Y.; Ceram Int. 45, 17653-17661, 2019.
[2] Pan, X.; Cheng, S.; Su, T.; Zuo, Ga.; Zhao, W.; Qi, X.; Wei, W.; Dong, W.; Colloid Surface B 181, 226-233, 2019.
[3] Wu, X. L.; Shi, Y.; Zhong, S.; Lin, H.; Chen, J.R.; Appl Surf Sc. 37880–86, 2016.
[4] Ghaemi, N.; Safari, P.; J. Hazard. Mater. 358, 376-388, 2018.
[5] Rajeshwar, K.; Osugi, M.E.; Chanmanee, W.; Chenthamarakshan, C.R.; Zanoni, M.V.; Kajitvichyanukul, P.; Krishnan-Ayer R.; J. Photochem. Photobiol. C 9, 171-192, 2008.
[6] Han, F.; Kambala, V.S.R.; Srinivasan, M.; Rajarathnam, D.; Naidu R.; Appl. Catal. A 359, 25-40, 2009.
[7] He, Y.; Jiang, B.; Chen, J.; Jiang, Y.; Zhang, Y.X.; J Colloid Interface Sci. 510, 207-220, 2018.
[8] Zanjanchi, M.A.; Sajjadi, H.; Arvand, M.; Mohammad‐Khah, A.; Ghalami‐Choobar, B.; Clean–Soil, Air, Water. 39, 1007-1013, 2011.
[9] Gholivand, M.B.; Yamini, Y.; Dayeni, M.; Shokoohinia, Y.; J. Iran. Chem. Soc. 12, 707-714, 2015.
[10] Jiaqi, Z.; Yimi, D.; Danyang, L.; Shengyun,W.; Liling , Z.; Yi, Z.; Colloid Surface A 572, 58-66, 2019.
[11] Al-Sabagh, A.M.; Moustafa, Y.M.; Hamdy, A.; Killa, H.M.; Ghanem, R.T.M.; Morsi, R.E.; Egypt. J. Pet. 27(3), 403–413, 2018.
[12] Shao, M.; Ning, F.; Zhao, J.; Wei, M.; Evans, D.G.; Duan, X.; J. Am. Chem. Soc. 134, 1071-1077, 2012.
[13] Habila, M.A.; Alothman, Z.A.; El-Toni, A. M.; Labis, J. P.; Soylak, M.; Talanta 154, 539-547, 2016.
[14] Cheng, J.P.; Yu, J.; Shi, D., Wang, D.S.; Liu, Y.F.; Liu, F.; Zhang, X.B.; Appl. Phys. A Mater.106, 837-842, 2012.
[15] Sun, B.; Reddy, E.P.; Smirniotis, P.G.; J. Catal. 237(2), 314-321, 2006.
[16] Han, B.; Zhang, F.; Feng, Z., Liu S.; Deng, S.; Wang, Y.; Wang, Y. A.; Ceram. Int. 40, 8093–8101, 2014.
[17] Costa, J.A.S.; de Jesus, R.A.; da Silva, C.M.P.; Romão, L.P.C.; Powder Technol. 308, 434-441, 2017.
[18] Sharma, M.P.; Kumari, V.D.; Subrahmanyam M.; Chemosphere 272, 644-651, 2008.
[19] Lihitkar, N.B.; Abyaneh, M.K.; Samuel, V., Pasricha, R., Gosavi, S.W.; Kulkarni, S.K.; J. Colloid Interface Sci. 314, 310–316, 2007.
[20] Chen, D.; Hu B.; He, M.; Huang, C.; Microchem J, 95, 90–95, 2010.
[21] Zhao, X.; Liu, S.; Wang, P.; Tang, Z.; Niu, H.; Cai, Y.; Wu, F.; Wang, H.; Meng, W.; Giesy, J.P.; J. Chromatogr. A 1414, 22-30, 2015.
[22] Adlnasab, L.; Ezoddin, M.; Karimi,M.A.; Hatamikia,N.; Res. Chem. Intermed. 44, 3249-3265, 2018.
[23] Khorshidi, A.; Shariati, S.; RSC Adv. 4, 41469–41475, 2014.
[24] Adlnasab, L.; Ezoddin, M.; Shabanian, M.; Mahjoob, B.; Microchem. J. 146, 1–11, 2019.
[25] Enayati Ahangar, L.; Movassaghi, K.; Emadi, M.; Yaghoobi, F.; Nano. Chem. Res. 1, 33-39 2016.
[26] Tartaj, P.; Chem. Comm. 47, 256-258, 2011.
[27] Allafchian, A.; Mousavi, Z.S.; Hosseini, S.S. Int. J. Biol. Macromol. 136, 199-208, 2019.
[28] Abdolmohammad-Zadeh, H.; Rezvani, Z.; Sadeghi, G.H.; Zorufi, E.; Anal. Chim. Acta 685, 212–219, 2011.
[29] Amin, N.K.; Desalination 223, 152–161, 2008.