کاهش کربن مونوکسید به هیدروکربن ها با نانوذره های فوتوکاتالیستی پلاسمونی طلا
محورهای موضوعی : شیمی فیزیکمریم سلیمانی 1 , مریم درگاهی 2 , مهدی پورفتح 3 *
1 - پژوهشگر پسادکترا، دانشکده مهندسی برق و کامپیوتر، دانشگاه تهران، تهران، ایران.
2 - استادیار گروه شیمی، دانشکده علوم پایه، دانشگاه بینالمللی امام خمینی (ره)، قزوین، ایران.
3 - دانشیار مهندسی برق دانشکده مهندسی برق و کامپیوتر، دانشگاه تهران، تهران، ایران.
کلید واژه: فوتوکاتالیست, متان, پلاسمون, کربن مونوکسید, جذب نوری,
چکیده مقاله :
بررسی برهم کنش بین نانوذره های پلاسمونی و گونه جذب شده بر آن برای کاربردهای فوتوکاتالیستی-پلاسمونی بسیار مهم است. شناسایی سازوکار واکنش ها در حالت پایه و تعیین ویژگی نوری در حالتهای تحریکشده، به دلیل مسیرهای پیچیده حاملها، چالش برانگیز است. در این پژوهش، کاهش فوتوکاتالیستی کربن مونوکسید (CO) به هیدروکربن ها بر سطح نانوذره های طلا با استفاده از نظریه تابع چگالی بررسی شد. بررسی انرژیهای آزاد گیبس و سدهای انرژی فعالسازی واکنش ها نشان داد که نخستین گام در کاهش مولکول CO تشکیل *CHO به جای *COH است که از راه سازوکار ترجیحی انتقال مستقیم هیدروژن به CO پیش می رود. افزون براین، با محاسبه های نظریه تابع چگالی وابسته به زمان، جذب نوری وابسته به اندازه نانوذره های طلا (ساختار بیست وجهی) با توجه به تشدید پلاسمونی سطحی جای گیر بررسی شد. تجزیه جذب نوری، نوسان گروهی الکترونهای ظرفیت را در لایه جذب شده مولکول های CO بر نانوذره طلا نشان داد. این مطالعه راهگشای تولید پایدار سوخت با انرژی خورشیدی است.
Investigation of interactions between plasmonic nanoparticles and the adsorbate is critically important for photocatalytic-plasmonic applications. However, identifying a specific reaction mechanism in the ground state and explore the optical properties in the excited states is challenging, because of complicated pathways of carriers. In this study, photocatalytic reduction of carbon monoxide (CO) to hydrocarbons on Au nano-particles (NP) surface was investigated using the density functional theory (DFT) calculations. Reaction Gibbs free energies and activation barriers revealed that the first step in CO reduction via direct hydrogen transfer mechanism on Au was to form *CHO instead of *COH. Moreover, the size enhanced optical response of Au and Au-CO NPs (icosahedral structure) as a localized surface plasmon resonance (LSPR) were investigated, by using time-dependent DFT (TDDFT) calculations. The analysis of photo-absorption revealed a collective dipole oscillation of valance electrons in the Au NP and CO layer. This study paves the way for realizing sustainable production of fuels by solar power harvesting.
[1] Novotny, L.; Hecht, B.; “Principles of nano-optics”, Cambridge University Press, UK, 2006.
[2] Brongersma, M.L.; Halas, N.J.; Nordlander, P.; Nature Nanotechnology 10, 25–34, 2015.
[3] Gieseking, R.L.M.; Materials Horizons 9, 25–42, 2022.
[4] Mayer, K.M.; Jason, H.H.; Chemical Reviews 111(6), 3828-3857, 2011.
[5] Kim, M.; Lin, M.; Son, J.; Xu, H.; Nam, J.M.; Advanced Optical Materials 5(15), 1700004, 2017.
[6] Yu, S.; Wilson, A.J.; Heo, J.; Jain, P.K.; Nano Letters 18(4), 2189-2194, 2018.
[7] Zugermeier, M.; Gruber, M.; Schmid, M.; Klein, B.P.; Ruppenthal, L.; Müller, P.; Einholz, R.; Hieringer, W.; Berndt, R.; Bettinger, H.F.; Gottfried, J.M.; Nanoscale 9(34), 12461-12469, 2017.
[8] Chen, L.; Tang, C.; Jiao, Y.; Qiao, S. Z.; ChemSusChem. 14(2), 671-678, 2021.
[9] Barzaga, R.; Hernández, M.P.; Aguilar-Galindo, F.; Dĺaz-Tendero, S.; The Journal of Physical Chemistry C, 124(18), 9924-9939, 2020.
[10] Peng, H.; Tang, M. T.; Liu, X.; Schlexer Lamoureux, P.; Bajdich, M.; Abild-Pedersen, F.; Energy & Environmental Science 14(1), 473-482, 2021.
[11] Chen, L.; Medlin, J.W.; Grönbeck, H.; ACS Catalysis 11(5), 2735-2745, 2021.
[12] Nguyen, T.N.; Guo, J.; Sachindran, A.; Li, F.; Seifitokaldani, A.; Dinh, C.T.; Journal of Materials Chemistry A 9(21), 12474-12494, 2021.
[13] Blöchl, P.E.; Physical Review B 50(24), 17953–17979, 1994.
[14] Kresse, G.; Furthmüller, J.; Physical Review B 54, 11169-11186, 1996.
[15] Perdew, J.P.; Burke, K.; Ernzerhof, M.; Physical Review Letters 77, 3865–3868, 1996.
[16] Monkhorst, H.J.; Pack, J.D.; Physical Review B 13, 5188–5192 (1976).
[17] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H.; the Journal of Chemical Physics 132, 154104, 2010.
[18] Grimme, S.; Ehrlich, S.; Goerigk, L.; Journal of Computational Chemistry 32(7), 1456-1465, 2011.
[19] Jacobs, P.; “Thermodynamics”, Imperial College Press, UK, 2013.
[20] Kuisma, M.; Ojanen, J.; Enkovaara, J.; Rantala, T.T.; Physical Review B 82, 115106, 2010.
[21] Larsen, A.H.; Vanin, M.; Mortensen, J.J.; Thygesen, K.S.; Jacobsen, K.W.; Physical Review B 80, 195112, 2009.
[22] Enkovaara, J.; Rostgaard, C.; Mortensen, J.J.; Chen, J.; Dułak, M.; Ferrighi, L.; Gavnholt, J.; Glinsvad, C.; Haikola, V.; Hansen, H.A.; Kristoffersen, H.H.; Kuisma, M.; Larsen, A.H.; Lehtovaara, L.; Ljungberg, M.; Lopez-Acevedo, O.; Moses, P.G.; Ojanen, J.; Olsen, T.; Petzold, V.; Romero, N.A.; Stausholm-Møller, J.; Strange, M.; Tritsaris, G.A.; Vanin, M.; Walter, M.; Hammer, B.; Häkkinen, H.; Madsen, G.K.H.; Nieminen, R.M.; Nørskov, J.K.; Puska, M.; Rantala, T.T.; Schiøtz, J.; Thygesen, K.S. ; Jacobsen, K.W. ; Journal of Physics: Condensed Matter 22(25), 253202, 2010.
[23] Yabana, K.; Bertsch, G.; Physical Review B 54, 4484–4487, 1996.
[24] Ran, J.; Jaroniec, M.; Qiao, S.Z.; Advanced Materials 30, 1704649, 2018.
[25] Li, X.; Sun, Y.; Xu, J.; Shao, Y.; Wu, J.; Xu, X.; Pan, Y.; Ju, H.; Zhu J.; Xie, Y.; Nature Energy 4(8), 690–699, 2019.
[26] Bradley, M.K.; Kreikemeyer Lorenzo, D.; Unterberger, W.; Duncan, D.A.; Lerotholi, T.J.; Robinson, J.; Woodruff, D.P.; Physical Review Letters 105, 086101, 2010.
[27] Busch, D.G.; Ho, W.; Physical Review Letters 77, 1338–1341, 1996.
[28] Linic, S.; Christopher, P.; Xin, H.; Marimuthu, A.; Accounts of Chemical Research 46, 1890–1899 (2013).
[29] Zhang, X.G.; Zhang, L.; Feng, S.; Qin, H.; Wu, D. Y.; Zhao, Y.; The Journal of Physical Chemistry Letters 12, 1125-1130, 2021.
[30] Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C.; De Arquer, F.P.G.; Safaei, T.S.; Mepham, A.; Klinkova, A.; Kumacheva, E.; Filleter, T.; Sinton, D.; Kelley, S.O.; Sargent, E.H.; Nature 537, 382–386, 2016.
[31] Peterson, A.A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J.K.; Energy & Environmental Science 3, 1311–1315, 2010.
[32] Hirunsit, P., The Journal of Physical Chemistry C 117, 8262–8268, 2013.
[33] Durand, W.J., Peterson, A.A.; Studt, F.; Abild-Pedersen, F.; Nørskov, J.K.; Surface Science 605, 1354–1359, 2011.
[34] Nie, X.; Luo, W.; Janik M.J.; Asthagiri, A.; Journal of Catalysis 312, 108-122, 2014.
[35] Schouten, K.J.P.; Kwon, Y.; Van Der Ham, C.J.M.; Qin, Z.; Koper, M.T.M.; Chemical Science, 2, 1902–1909, 2011.
[36] Cave, E.R.; Montoya, J.H.; Kuhl, K.P.; Abram, D.N.; Hatsukade, T.; Shi, C.; Hahn, C.; Nørskov, J.K.; Jaramillo, T. F.; Physical Chemistry Chemical Physics 19, 15856–15863, 2017.
[37] Gameel, K.M.; Sharafeldin, I.M.; Abourayya, A.U.; Biby, A.H.; Allam, N.K.; Physical Chemistry Chemical Physics 20, 25892–25900, 2018.
[38] Figueiredo, M.C.; Hiltrop, D.; Sundararaman, R.; Schwarz, K.A.; Koper, M.T.M.; Electrochimica Acta 281, 127-132, 2018.
[39] Sauter, E.; Gilbert, C.O.; Morin, J.F.; Terfort, A.; Zharnikov, M.; The Journal of Physical Chemistry C 122, 19514–19523, 2018.
[40] Roman, T.; Groß, A.; Physical Review Letters 110, 156804, 2013.
[41] Michaelides, A.; Hu, P.; Lee, M.H.; Alavi, A.; King, D.A.; Physical Review Letters 90(24), 246103, 2013.
[42] Bagus, P.S.; Woll, C.; Wieckowski, A.; Surface Science 603(2), 273-283, 2009.
[43] Häberlen, O.D.; Chung, S.C.; Stener, M.; Rösch, N.; The Journal of Chemical Physics 106(12), 5189-5201, 1997.
[44] Koga, K.; Sugawara, K.; Surface Science 529(1-2), 23-35, 2003.
[45] Alvarez, M.M.; Khoury, J.T.; Schaaff, T.G.; Shafigullin, M.N.; Vezmar, I.; Whetten, R.L.; The Journal of Physical Chemistry B 101, 3706–3712, 1997.
[46] Malola, S.; Lehtovaara, L.; Enkovaara, J.; Häkkinen, H; ACS Nano 7, 10263–10270, 2013.
[47] Casida, M.E.; "Recent Advances in Density Functional Methods: (Part I)", World Scientific, USA, 1995.
[48] Piccini, G.; Havenith, W.; Broer, R.; Stener, M.; The Journal of Physical Chemistry C 117(33), 17196-17204, 2013.
[49] Conley, K.M.; Nayyar, N.; Rossi, T.P.; Kuisma, M.; Turkowski, V.; Puska, M.J.; Rahman, T.S.; ACS Nano 13(5), 5344-5355, 2019.
[50] Rossi, T.P.; Kuisma, M.; Puska, M.J.; Nieminen, R.M.; Erhart, P.; Journal of Chemical Theory and Computation 13, 4779–4790, 2017.
[51] Yannouleas, C.; Broglia, R.A.; Brack, M.; Bortignon, P.F.; Physical Review Letters 63(3), 255-258, 1989.
[52] Xiang, H.; Zhang, X.; Neuhauser, D.; Lu, G.; The Journal of Physical Chemistry Letters 5, 1163–1169, 2014.
[53] Malola, S.; Kaappa, S.; Häkkinen, H.; The Journal of Physical Chemistry C 123, 20655–20663, 2019.
[54] Yang, H.; Wang, Y.; Chen, X.; Zhao, X.; Gu, L.; Huang, H.; Yan, J.; Xu, C.; Li, G.; Wu, J.; Edwards, A. J.; Dittrich, B.; Tang, Z.; Wang, D.; Lehtovaara, L.; Häkkinen, H.; Zheng, N.; Nature Communications 7(1), 1-8, 2016.
[55] Malola, S.; Lehtovaara, L.; Häkkinen, H.; The Journal of Physical Chemistry C 118(34), 20002-20008, 2014.
_||_[1] Novotny, L.; Hecht, B.; “Principles of nano-optics”, Cambridge University Press, UK, 2006.
[2] Brongersma, M.L.; Halas, N.J.; Nordlander, P.; Nature Nanotechnology 10, 25–34, 2015.
[3] Gieseking, R.L.M.; Materials Horizons 9, 25–42, 2022.
[4] Mayer, K.M.; Jason, H.H.; Chemical Reviews 111(6), 3828-3857, 2011.
[5] Kim, M.; Lin, M.; Son, J.; Xu, H.; Nam, J.M.; Advanced Optical Materials 5(15), 1700004, 2017.
[6] Yu, S.; Wilson, A.J.; Heo, J.; Jain, P.K.; Nano Letters 18(4), 2189-2194, 2018.
[7] Zugermeier, M.; Gruber, M.; Schmid, M.; Klein, B.P.; Ruppenthal, L.; Müller, P.; Einholz, R.; Hieringer, W.; Berndt, R.; Bettinger, H.F.; Gottfried, J.M.; Nanoscale 9(34), 12461-12469, 2017.
[8] Chen, L.; Tang, C.; Jiao, Y.; Qiao, S. Z.; ChemSusChem. 14(2), 671-678, 2021.
[9] Barzaga, R.; Hernández, M.P.; Aguilar-Galindo, F.; Dĺaz-Tendero, S.; The Journal of Physical Chemistry C, 124(18), 9924-9939, 2020.
[10] Peng, H.; Tang, M. T.; Liu, X.; Schlexer Lamoureux, P.; Bajdich, M.; Abild-Pedersen, F.; Energy & Environmental Science 14(1), 473-482, 2021.
[11] Chen, L.; Medlin, J.W.; Grönbeck, H.; ACS Catalysis 11(5), 2735-2745, 2021.
[12] Nguyen, T.N.; Guo, J.; Sachindran, A.; Li, F.; Seifitokaldani, A.; Dinh, C.T.; Journal of Materials Chemistry A 9(21), 12474-12494, 2021.
[13] Blöchl, P.E.; Physical Review B 50(24), 17953–17979, 1994.
[14] Kresse, G.; Furthmüller, J.; Physical Review B 54, 11169-11186, 1996.
[15] Perdew, J.P.; Burke, K.; Ernzerhof, M.; Physical Review Letters 77, 3865–3868, 1996.
[16] Monkhorst, H.J.; Pack, J.D.; Physical Review B 13, 5188–5192 (1976).
[17] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H.; the Journal of Chemical Physics 132, 154104, 2010.
[18] Grimme, S.; Ehrlich, S.; Goerigk, L.; Journal of Computational Chemistry 32(7), 1456-1465, 2011.
[19] Jacobs, P.; “Thermodynamics”, Imperial College Press, UK, 2013.
[20] Kuisma, M.; Ojanen, J.; Enkovaara, J.; Rantala, T.T.; Physical Review B 82, 115106, 2010.
[21] Larsen, A.H.; Vanin, M.; Mortensen, J.J.; Thygesen, K.S.; Jacobsen, K.W.; Physical Review B 80, 195112, 2009.
[22] Enkovaara, J.; Rostgaard, C.; Mortensen, J.J.; Chen, J.; Dułak, M.; Ferrighi, L.; Gavnholt, J.; Glinsvad, C.; Haikola, V.; Hansen, H.A.; Kristoffersen, H.H.; Kuisma, M.; Larsen, A.H.; Lehtovaara, L.; Ljungberg, M.; Lopez-Acevedo, O.; Moses, P.G.; Ojanen, J.; Olsen, T.; Petzold, V.; Romero, N.A.; Stausholm-Møller, J.; Strange, M.; Tritsaris, G.A.; Vanin, M.; Walter, M.; Hammer, B.; Häkkinen, H.; Madsen, G.K.H.; Nieminen, R.M.; Nørskov, J.K.; Puska, M.; Rantala, T.T.; Schiøtz, J.; Thygesen, K.S. ; Jacobsen, K.W. ; Journal of Physics: Condensed Matter 22(25), 253202, 2010.
[23] Yabana, K.; Bertsch, G.; Physical Review B 54, 4484–4487, 1996.
[24] Ran, J.; Jaroniec, M.; Qiao, S.Z.; Advanced Materials 30, 1704649, 2018.
[25] Li, X.; Sun, Y.; Xu, J.; Shao, Y.; Wu, J.; Xu, X.; Pan, Y.; Ju, H.; Zhu J.; Xie, Y.; Nature Energy 4(8), 690–699, 2019.
[26] Bradley, M.K.; Kreikemeyer Lorenzo, D.; Unterberger, W.; Duncan, D.A.; Lerotholi, T.J.; Robinson, J.; Woodruff, D.P.; Physical Review Letters 105, 086101, 2010.
[27] Busch, D.G.; Ho, W.; Physical Review Letters 77, 1338–1341, 1996.
[28] Linic, S.; Christopher, P.; Xin, H.; Marimuthu, A.; Accounts of Chemical Research 46, 1890–1899 (2013).
[29] Zhang, X.G.; Zhang, L.; Feng, S.; Qin, H.; Wu, D. Y.; Zhao, Y.; The Journal of Physical Chemistry Letters 12, 1125-1130, 2021.
[30] Liu, M.; Pang, Y.; Zhang, B.; De Luna, P.; Voznyy, O.; Xu, J.; Zheng, X.; Dinh, C. T.; Fan, F.; Cao, C.; De Arquer, F.P.G.; Safaei, T.S.; Mepham, A.; Klinkova, A.; Kumacheva, E.; Filleter, T.; Sinton, D.; Kelley, S.O.; Sargent, E.H.; Nature 537, 382–386, 2016.
[31] Peterson, A.A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J.K.; Energy & Environmental Science 3, 1311–1315, 2010.
[32] Hirunsit, P., The Journal of Physical Chemistry C 117, 8262–8268, 2013.
[33] Durand, W.J., Peterson, A.A.; Studt, F.; Abild-Pedersen, F.; Nørskov, J.K.; Surface Science 605, 1354–1359, 2011.
[34] Nie, X.; Luo, W.; Janik M.J.; Asthagiri, A.; Journal of Catalysis 312, 108-122, 2014.
[35] Schouten, K.J.P.; Kwon, Y.; Van Der Ham, C.J.M.; Qin, Z.; Koper, M.T.M.; Chemical Science, 2, 1902–1909, 2011.
[36] Cave, E.R.; Montoya, J.H.; Kuhl, K.P.; Abram, D.N.; Hatsukade, T.; Shi, C.; Hahn, C.; Nørskov, J.K.; Jaramillo, T. F.; Physical Chemistry Chemical Physics 19, 15856–15863, 2017.
[37] Gameel, K.M.; Sharafeldin, I.M.; Abourayya, A.U.; Biby, A.H.; Allam, N.K.; Physical Chemistry Chemical Physics 20, 25892–25900, 2018.
[38] Figueiredo, M.C.; Hiltrop, D.; Sundararaman, R.; Schwarz, K.A.; Koper, M.T.M.; Electrochimica Acta 281, 127-132, 2018.
[39] Sauter, E.; Gilbert, C.O.; Morin, J.F.; Terfort, A.; Zharnikov, M.; The Journal of Physical Chemistry C 122, 19514–19523, 2018.
[40] Roman, T.; Groß, A.; Physical Review Letters 110, 156804, 2013.
[41] Michaelides, A.; Hu, P.; Lee, M.H.; Alavi, A.; King, D.A.; Physical Review Letters 90(24), 246103, 2013.
[42] Bagus, P.S.; Woll, C.; Wieckowski, A.; Surface Science 603(2), 273-283, 2009.
[43] Häberlen, O.D.; Chung, S.C.; Stener, M.; Rösch, N.; The Journal of Chemical Physics 106(12), 5189-5201, 1997.
[44] Koga, K.; Sugawara, K.; Surface Science 529(1-2), 23-35, 2003.
[45] Alvarez, M.M.; Khoury, J.T.; Schaaff, T.G.; Shafigullin, M.N.; Vezmar, I.; Whetten, R.L.; The Journal of Physical Chemistry B 101, 3706–3712, 1997.
[46] Malola, S.; Lehtovaara, L.; Enkovaara, J.; Häkkinen, H; ACS Nano 7, 10263–10270, 2013.
[47] Casida, M.E.; "Recent Advances in Density Functional Methods: (Part I)", World Scientific, USA, 1995.
[48] Piccini, G.; Havenith, W.; Broer, R.; Stener, M.; The Journal of Physical Chemistry C 117(33), 17196-17204, 2013.
[49] Conley, K.M.; Nayyar, N.; Rossi, T.P.; Kuisma, M.; Turkowski, V.; Puska, M.J.; Rahman, T.S.; ACS Nano 13(5), 5344-5355, 2019.
[50] Rossi, T.P.; Kuisma, M.; Puska, M.J.; Nieminen, R.M.; Erhart, P.; Journal of Chemical Theory and Computation 13, 4779–4790, 2017.
[51] Yannouleas, C.; Broglia, R.A.; Brack, M.; Bortignon, P.F.; Physical Review Letters 63(3), 255-258, 1989.
[52] Xiang, H.; Zhang, X.; Neuhauser, D.; Lu, G.; The Journal of Physical Chemistry Letters 5, 1163–1169, 2014.
[53] Malola, S.; Kaappa, S.; Häkkinen, H.; The Journal of Physical Chemistry C 123, 20655–20663, 2019.
[54] Yang, H.; Wang, Y.; Chen, X.; Zhao, X.; Gu, L.; Huang, H.; Yan, J.; Xu, C.; Li, G.; Wu, J.; Edwards, A. J.; Dittrich, B.; Tang, Z.; Wang, D.; Lehtovaara, L.; Häkkinen, H.; Zheng, N.; Nature Communications 7(1), 1-8, 2016.
[55] Malola, S.; Lehtovaara, L.; Häkkinen, H.; The Journal of Physical Chemistry C 118(34), 20002-20008, 2014.