سنتز و شناسایی هیدروکسیآپاتیت به روش درجا و بررسی تأثیر جایگزینی آهن برای کاربرد در مهندسیبافت استخوان
محورهای موضوعی : شیمی معدنیمریم مسکنتی 1 * , حمیدرضا آقابزرگ 2 * , معصومه مسکین فام 3 * , فرشته مطیعی 4 *
1 - دانشجوی دکتری شیمی معدنی، دانشکده شیمی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
2 - استاد شیمی معدنی، دانشکده شیمی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
3 - استادیار شیمی معدنی، دانشکده شیمی، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران.
4 - استادیار شیمی کاربردی، دانشکده شیمی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران.
کلید واژه: آهن, کیتوسان, مهندسی بافت, هیدروکسیآپاتیت, درجا,
چکیده مقاله :
در این پژوهش، پودر نانوبلور هیدروکسیآپاتیت اصلاحشده با آهن (FeHAp) از ترکیب یونهای آهن، کلسیم نیترات و پنتوکسیدفسفر با روش درجا تهیهشد. این نانوچندسازه برای تهیه داربستی بر بستر کیتوسان و سازگار با بافت استخوان، به کار گرفته شد. نمونه های تهیه شده با روشهای پراش پرتو ایکس (XRD)، طیف سنجی فروسرخ تبدیل فوریه (FTIR)، مغناطیس سنج نمونه ارتعاشی (VSM)، میکروسکوپ الکترونی روبشی (SEM) و طیفشناسی تفکیک انرژی (EDS) شناسایی شدند. نتیجه های بهدست آمده تهیه هیدروکسیآپاتیت اصلاحشده با آهن را تایید کردند. ریختشناسی داربستها نشان داد که ذره های FeHAp به خوبی بر بستر متخلخل کیتوسان (CS) پراکنده شده اند. نمونههای بهدست آمده از نظر سمیت در برابر سلولهای فیبروبلاست و نیز برای ارزیابی کمی سلولهای زنده متصل و رشدیافته بر داربستها مورد آزمون برون تنی MTT قرارگرفتند. نتیجه ها نشان دادند که داربست تهیه شده، نمونه مناسبی برای بازسازی بافتاستخوانی، می تواند باشد.
In the present study, calcium hydroxyapatite-Fe (Fe-HAp) nanocrystalline powder was prepared from a combination of iron ions, calcium nitrate and phosphorus pentoxide by in-situ method. The properties and structure of the synthesized nanocomposite were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibrating sample magnetometry (VSM), and scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The obtained results confirmed that the produced powder was hydroxyapatite-iron. The morphological properties of the scaffolds also confirmed that Fe-HAp particles distributed properly in the porous structure of chitosan (CS). The obtained samples were subjected to MTT in vitro test in terms of toxicity against fibroblast cells and also for quantitative evaluation of live cells attached and grown on the scaffolds. Therefore, according to the obtained results, this scaffold can be a suitable candidate for bone tissue reconstruction applications.
[1] Kim, C.W.; Talac, R.; Lichun, Lu.; Moore, M.; Bradford, L.; Currier, M.J.; Yaszemski, J ; Biomed. Mater. Res. A 85, 1114–9, 2008.
[2] Shi, X.; Sitharaman, B.; Pham, Q.P.; Liang, F.; Wu, K.; Billups, W.E.; Wilson, L.J.; Mikos, A.G.; J. Biomaterials. 28, 4078-90, 2007.
[3] Song, K.; Liu, T.; Cui, Z.; Li, X.; Ma, X.; J. Biomed. Mater. Res. A. 86, 323-32, 2008.
[4] Cengiz, B.; Gokce, Y.; Yildiz, N.; Aktas, Z.; Calimli, A.; Colloid Surface 32, 29-33, 2008.
[5] Wakamura, M.; Kandori, K.; Ishikawa, T.; Colloids and Surfaces 164, 297-305, 2000.
[6] Zhu, Y.; Zhou, D.; Zan, X.; Sheng, S. and Ye, Q.; Colloids and Surfaces B: Biointerfaces. In Press, 112319, 2022.
[7] Beattie, J.H.; Avenell, A.; Nutrition Rexarch Rrvien.s 5, 167-188, 1992.
[8] Li, Y.; Nam, C.T.; Ooi, C.P.; Journal of Physics: Conference Series 187 012024, 2009.
[9] Kramer, E.R.; Morey, A.M.; Staruch, M.; Suib, S.L.; Jain, M.; Budnick, J.I.; Wei, M.; Materials Science and Engineering 48, 665- 673, 2013.
[10] Kim, S.S.; Park, M.S.; Gwak, S.J.; Choi, C.Y.; Kim, B.S.; Tissue Eng 12, 2997-3006, 2006.
[11] Nie, H.; and Wang, C.H.; J. Control. Release 120, 111-121, 2007.
[12] Ren, J. Ren, T.; Zhao, P.; Huang, Y.; Pan, K.; J. Biomater. Sci. Polym. Ed 18, 505-517, 2007.
[13] Saravanan, S.; Leena, R.S.; Selvamurugan, N.; J. Biol. Macromol 93, 1354-1365, 2016.
[14] Aslani, M.; Meskinfam, M.; Aghabozorg, H.R.; Passdar, H.; Motiee, F.; Journal of Applied Research in Chemistry 10(4), 41-48, 2017.
[15] Yang, L.; Jin, S.; Shi, L.; Ullah, I.; Yu, K.; Zhang, W.; Bo, L.; Zhang, X. and Guo, X.; Chemical Engineering Journal 431(4), 133459, 2022.
[16] Khan, M.N.; Islam, J.M. and Khan, M.A.; J. Biomed. Mater. Res. 100, 3020-3028, 2012.
[17] Oliveira, S.M.; Ringshia, R.A.; Legeros, R.Z.; Clark, E.; Yost, M.J.; Terracio, L.; Teixeira, C.C.; J Biomed Mater Res A. 94, 371-379, 2010.
[18] Valente, J.F.A.; Valente, T.A.M.; Alves, P.; Ferreira, P.; Silva, A. and Correia, I.J.; Mater. Sci. Eng. C. 32, 2596-2603, 2012.
[19] Kim, J.; Kim, I.S.; Cho, T.H.; Lee, K.B.; Hwang, S.J.; Tae, G., Noh, I.; Lee, S.H.; Park, Y. and Sun, K.; Biomaterials 12, 2997-3006, 2007.
[20] Park, K.H.; Kim, S.J.; Lee, W.Y.; Song, H.J. and Park, Y.J.; Ceram. Int. 43, 2786-2790, 2017.
[21] Xianmiao, C.; Yubao, L.; Yi, Z., Li, Z.; Jidong, L.; Huanan, W.; Materials Science and Engineering: C. 29, 29-35, 2009.
[22] Sarath Chandra, V.; Baskar, G.; Suganthi, R.V.; Elayaraja, K.; Ahymah Joshy, M.I.; Sofi Beaula, W.; Mythili, R.; Venkatraman, G.; Narayana Kalkura, S.; ACS Applied Materials & Interfaces 4, 1200-1210, 2012.
[23] Heidari, F.; Razavi, M.; Bahrololoom, M.E.; Yazdimamaghani, M.; Tahriri, M.; Kotturi, H. and Tayebi, L.; Ceramics International 44, 275-281, 2018.
[24] Silva, D.M.; Caseiro, A.R.; Amorim, I.; Pereira, I.; Faria, F.; Pereira, T.; Santos, J.D.; Gama, F.M.; Maurício, A.C.; Biomedical Materials 11, 065004, 2016.
[25] Sarath Chandra, V.; Baskar, G.; Suganthi, R.V.; Elayaraja, K.; Ahymah Joshy, M.I.; Sofi Beaula, W.; Mythili, R.; Venkatraman, G. and Narayana Kalkura, S.; ACS Applied Materials & Interfaces 4, 1200-1210, 2012.
[26] Panseri, S.; Cunha, C.; D’Alessandro, T.; Sandri, M.; Giavaresi, G.; Marcacci, M.; Hung, C.T.; Tampieri, A.; Journal of Nanobiotechnology 10, 1-10, 2012.
[28] Sarath Chandra, V.; Baskar, G.; Suganthi, R.V.; Elayaraja, K.; Ahymah Joshy, M.I.; Sofi Beaula, W.; Mythili, R.; Venkatraman, G. and Narayana Kalkura, S.; ACS Applied Materials & Interfaces 4, 1200-1210, 2012.
_||_[1] Kim, C.W.; Talac, R.; Lichun, Lu.; Moore, M.; Bradford, L.; Currier, M.J.; Yaszemski, J ; Biomed. Mater. Res. A 85, 1114–9, 2008.
[2] Shi, X.; Sitharaman, B.; Pham, Q.P.; Liang, F.; Wu, K.; Billups, W.E.; Wilson, L.J.; Mikos, A.G.; J. Biomaterials. 28, 4078-90, 2007.
[3] Song, K.; Liu, T.; Cui, Z.; Li, X.; Ma, X.; J. Biomed. Mater. Res. A. 86, 323-32, 2008.
[4] Cengiz, B.; Gokce, Y.; Yildiz, N.; Aktas, Z.; Calimli, A.; Colloid Surface 32, 29-33, 2008.
[5] Wakamura, M.; Kandori, K.; Ishikawa, T.; Colloids and Surfaces 164, 297-305, 2000.
[6] Zhu, Y.; Zhou, D.; Zan, X.; Sheng, S. and Ye, Q.; Colloids and Surfaces B: Biointerfaces. In Press, 112319, 2022.
[7] Beattie, J.H.; Avenell, A.; Nutrition Rexarch Rrvien.s 5, 167-188, 1992.
[8] Li, Y.; Nam, C.T.; Ooi, C.P.; Journal of Physics: Conference Series 187 012024, 2009.
[9] Kramer, E.R.; Morey, A.M.; Staruch, M.; Suib, S.L.; Jain, M.; Budnick, J.I.; Wei, M.; Materials Science and Engineering 48, 665- 673, 2013.
[10] Kim, S.S.; Park, M.S.; Gwak, S.J.; Choi, C.Y.; Kim, B.S.; Tissue Eng 12, 2997-3006, 2006.
[11] Nie, H.; and Wang, C.H.; J. Control. Release 120, 111-121, 2007.
[12] Ren, J. Ren, T.; Zhao, P.; Huang, Y.; Pan, K.; J. Biomater. Sci. Polym. Ed 18, 505-517, 2007.
[13] Saravanan, S.; Leena, R.S.; Selvamurugan, N.; J. Biol. Macromol 93, 1354-1365, 2016.
[14] Aslani, M.; Meskinfam, M.; Aghabozorg, H.R.; Passdar, H.; Motiee, F.; Journal of Applied Research in Chemistry 10(4), 41-48, 2017.
[15] Yang, L.; Jin, S.; Shi, L.; Ullah, I.; Yu, K.; Zhang, W.; Bo, L.; Zhang, X. and Guo, X.; Chemical Engineering Journal 431(4), 133459, 2022.
[16] Khan, M.N.; Islam, J.M. and Khan, M.A.; J. Biomed. Mater. Res. 100, 3020-3028, 2012.
[17] Oliveira, S.M.; Ringshia, R.A.; Legeros, R.Z.; Clark, E.; Yost, M.J.; Terracio, L.; Teixeira, C.C.; J Biomed Mater Res A. 94, 371-379, 2010.
[18] Valente, J.F.A.; Valente, T.A.M.; Alves, P.; Ferreira, P.; Silva, A. and Correia, I.J.; Mater. Sci. Eng. C. 32, 2596-2603, 2012.
[19] Kim, J.; Kim, I.S.; Cho, T.H.; Lee, K.B.; Hwang, S.J.; Tae, G., Noh, I.; Lee, S.H.; Park, Y. and Sun, K.; Biomaterials 12, 2997-3006, 2007.
[20] Park, K.H.; Kim, S.J.; Lee, W.Y.; Song, H.J. and Park, Y.J.; Ceram. Int. 43, 2786-2790, 2017.
[21] Xianmiao, C.; Yubao, L.; Yi, Z., Li, Z.; Jidong, L.; Huanan, W.; Materials Science and Engineering: C. 29, 29-35, 2009.
[22] Sarath Chandra, V.; Baskar, G.; Suganthi, R.V.; Elayaraja, K.; Ahymah Joshy, M.I.; Sofi Beaula, W.; Mythili, R.; Venkatraman, G.; Narayana Kalkura, S.; ACS Applied Materials & Interfaces 4, 1200-1210, 2012.
[23] Heidari, F.; Razavi, M.; Bahrololoom, M.E.; Yazdimamaghani, M.; Tahriri, M.; Kotturi, H. and Tayebi, L.; Ceramics International 44, 275-281, 2018.
[24] Silva, D.M.; Caseiro, A.R.; Amorim, I.; Pereira, I.; Faria, F.; Pereira, T.; Santos, J.D.; Gama, F.M.; Maurício, A.C.; Biomedical Materials 11, 065004, 2016.
[25] Sarath Chandra, V.; Baskar, G.; Suganthi, R.V.; Elayaraja, K.; Ahymah Joshy, M.I.; Sofi Beaula, W.; Mythili, R.; Venkatraman, G. and Narayana Kalkura, S.; ACS Applied Materials & Interfaces 4, 1200-1210, 2012.
[26] Panseri, S.; Cunha, C.; D’Alessandro, T.; Sandri, M.; Giavaresi, G.; Marcacci, M.; Hung, C.T.; Tampieri, A.; Journal of Nanobiotechnology 10, 1-10, 2012.
[28] Sarath Chandra, V.; Baskar, G.; Suganthi, R.V.; Elayaraja, K.; Ahymah Joshy, M.I.; Sofi Beaula, W.; Mythili, R.; Venkatraman, G. and Narayana Kalkura, S.; ACS Applied Materials & Interfaces 4, 1200-1210, 2012.