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Abstract

The present work investigates an appropriate way to calculate the 1700 atomic density 

changes in the reactor operations. To automate this procedure, a computer program has been 

designed by C#. This program suggests a way to solve this problem which is based on the 

solution system of differential equations (Bitman) that it is designed according to Runge-Kutta 

Fehlberg method. The designed software is based on the high ability to calculate the material 

depletion with constant flux and constant power condition. The software inputs included, 

reactor power, computation time, initial and final time, determine of Taylor series order in 

calculation time depended flux, determination of  time unite, specifyingmaterial composition 

of the reactor core at initial condition consist of light radioactive material, heavy and fission 

products, determining the order in the accuracy of calculations, applying the decay constants 

library, cross section database, the amount of generated thermal energy by various material 

decay ,determining the type of calculations at point of view constant flux or constant power. 

Finally, the atomic density of light, heavy materials and fission products at various times of 

reactor operation were calculated with high accuracy as the out puts of this program. At last, 

it is worth to say that we proposed a new approach for the use the Runge-Kutta Fehlberg 

method to compute atomic density changes of material composition of the reactor core which 

lead us to achievement a high ability tool to solve the above problem.
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Introduction

The long-term changes in the properties of a 

nuclear reactor over its lifetime are determined 

by the changes in composition due to fuel 

burn-up and the manner in which these are 

compensated. [1]It is extremely important to 

monitor the isotopic composition in the core 

during reactor operation, since changes in core 

composition can affect core multiplication as 

well as flux and power distributions. Certainly, 

the prediction of fuel depletion and conversion 

in the core is essential for the determination of 

fuel loading requirements. Furthermore certain 

of the fission product nuclei, or their progeny 

following radioactive decay, are characterized 

by extremely large absorption cross sections 

and hence may significantly affect the reactivity 

of the core.  [1, 2, 3]

The initial composition of a fuel element will 

depend on the source of the fuel. for reactor 

operating on the uranium cycle , fuel developed 

directly from natural uranium will contain a 

mixture of 234U ,235U and 238U , with  the 

fissile 235U content varying from 0.72 % 

(from natural uranium) to more than 90% , 

depending on the enrichment. Recycle fuel 

from reprocessing plants will also contain the 

various isotopes produced in the transmutation- 

decay process of uranium. [1, 3] During the 

operation of a nuclear reactor a number of 

changes occur in the composition of the fuel. 

The various fuel nuclei are transmuted by 

neutron capture and subsequent decay. The 

fission event destroys a fissile nucleus. Of 

course and in the process produces two inter 

mediate mass fission products.

The most commonly used measure of fuel burn 

up is the fission energy release per unite mass of 

fuel. The fission energy release in megawatt-day 

divided by the total mass (in unite of 1000 kg 

or 1 tone) of fuel nuclei in the initial loading is 

referred to as megawatt-days per tone. [1, 2, 4]

Concentrations of the various fuelisotopes 

in a reactor are described by a coupled set 

of production-destruction equations. In 

determining the time dependence of nuclide 

concentrations, we solve the following 

equation: [1, 5]

= l N + f N ( + )N   (1) 

Where, lij is the fraction of constant decay of 

the isotope j-th that are eventuated to product 

the isotope i-th, fij is the fraction of the 

absorption cross section of isotope i-th, N is 

the number of isotope, λj,λi are constant decay 

of isotope i-th and j-th, σai is the absorption 

cross section of isotope i-th, Ni is atomic 

density of isotope i-th. Equation (1) can be 

integrated to determine composition changes 

over the life time of the reactor core loading if 

the dependence of the flux is known.a neutron 

flux distribution is calculated for the beginning 

of cycle composition and critical control 

rod position or soluble boron concentration, 
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and flux distribution is used to integrate the 

composition Eq.1 over a depletion time step. 

[1, 4, 6, 7, 8, 9, 10, 11]

This paper, Equation (1) is written for a 

homogeneous medium that contain a space-

energy-averaged neutron flux, ϕ, with flux-

weighted average cross sections, representing 

the reaction probabilities. In reality, the flux as a 

function of space, energy and time is depending 

on the nuclide concentrations. We assumed the 

space-energy-averaged flux can beconsidered 

constant over time steps, Δt. Similarly, we 

assumed a single set of flux-weighted neutron 

cross sections is adequate to use over the entire 

fuel exposure time. For a given time step, 

these assumptions are necessary if Eq.1 is to 

be treated as a first-order, linear differential 

equation. [5, 6, 12, 13]

Method of calculations

To solve the Equation.1, we used Runge-Kutta Fehlberg method:

1 1 3 4 6
37 250 125 512( )
378 621 594 1771i iy y k k k k h             (2) 

1 1 3 4 5 6
2825 18575 13525 277 1( )
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6 1 2 3 4 5
7 1631 175 575 44275 253( , )
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By changing the value of i = 0,1,2…in yi value, 

we achieved to approximate value of yi+1.

To calculate the value of the error, difference 

between the fourth and fifth order of relations 

is computed. Therefore, the error relation is 

demonstrated as follow: 
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It should to be mention that setting of the h 

value is based on equation.3 and the desired 

accuracy for this problem. Therefore, we 

explain this approach in Runge-Kutta Fehlberg 

method for different orders as below:

If the initial value of ‘a’ and the final value of 

‘b’ exists, therefore, at the first we consider a 

value of ‘h’. Then, we calculate the error and 

the new value of by. These values of the error 

are compared together to set the value of the 

‘h’. In this regard, n is order of Runge-Kutta 

Fehlberg method and ∆present,hpresent are the 

current step and error and ∆new,hnew are the new 

step and error, respectively [6].

                                          (4) 

1

present

new

n

present

new

h
h

In the Table 1, the error rate in the solution 

of ordinary differential equations consists of 

the Euler, Improved Euler, and Runge-Kutta 

Fehlberg method is shown.

Table 1. Comparison of computational methods for ordinary differential equations in terms of accuracy [13]. 

Method Function Evaluation Global Error Local Error

Euler 1 O(h) O(h2)

Improved Euler 3 O(h2) O(h3)

RK 4 O(h4) O(h5)

RKF 6 O(h5) O(h6)

It is worth to say that the Runge-Kutta Fehlberg 

method of order Fehlberg a local error of order 

h6 and general error of order h5 which has 

higher accuracy than other methods. [13]

The designed program has a high ability to 

calculate the depletion of material in flux and 

constant power condition. To find the flux 

dependent time in constant power condition, 

we employed flux relation as follow:

Inverting Eq. (5), the flux as a function of time 

is written as: [5]

18

1

6.242*10
N f f

i i ii

P
X R

        (5) 

where P is the specific power in MW/cm3, XP 

σf  is the total macroscopic fission cross section 

of the fuel in cm-1, and ϕ is the instantaneous 

value of the neutron flux in neutrons/cm2•s, Ri  

is released energy per fission reaction MeV/

fission  that  obtained from following  Eq . [5]
3 2 0.5( / ) 1.29927*10 ( ) 33.12R MeV fission Z A   (6) 

Where, Z is the atomic number and A is mass 

number. Taylor expansion of the fluxat t = 0 is
2 3

( ) (0) (0) (0) (0) ...
2 2
t tt t    (7) 
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To obtain the average of the flux over the time 

interval, t, Eq. 6 is integrated over the interval 

(0,1) and divided by t.

2 3

0

1( ) ( ) (0) (0) (0) (0) ...
2 6 24

t

avr
t t tt t dt

t
            (8)

Where 

2
18

1 1
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i i i i i i

i i
P X R X R                                                 (9) 
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The second and third derivative can also be expressed in terms of the nuclide concentrations as: 

2X AX A X         , 2 3X AX A X A X              (10)

To evaluate the Equation.8 are used Eqs.9 and 

10 that these equations provides the average 

flux as a vector that is sum of produced flux 

by various fission nuclides at the beginning of 

each time interval. In the computer program, 

the estimation for the average flux includes 

only the two terms of Equation (8) for all 

time intervals except the first them. At the 

first interval, the second derivative term will 

be significant because the first derivative term 

will be zero for many nuclides. [3, 4]

Results and discussions

In this paper, we extract decay constants and the 

reaction cross section of various elements from 

ORIGEN code different libraries. Therefore, 

we solved the problem by using the designed 

program to calculate the radioactive elements 

decay chain of differential equations. Also, we 

can calculate atomic density of the elements 

in the library for the initial conditions and the 

desired accuracy. In this section, the obtained 

results of the designed program to evaluate 

the calculation for Xe135 offcondition, with a 

density value about of 1.15 × 1015 and I135 with 

a density value about of 5× 1015, are shown in 

Figure.4.

Xenon-135 has thermal absorption cross 

section 2.6 *106 barns. It is produced directly 

from fission and from the decay of 135I .



M. Mohammadnia et al., J. Appl. Chem. Res., 7, 3, 57-66 (2013)62

Figure 4.  The rate of atomic density  of “off Xe135” in time for the reactor core, with a initial density value about of 
1.15 × 1015 and  I 135  with a initial  density value about of 5× 1015 in designed program. 

It should to be mentioned that by using the equation.11 and 12 as two analytical relations, with 

regard to the zero flux, we obtained the time depending of Xe135 and I 135 changes.

( ) (1 ) (0)I I

Te
f t t

II t e I e            (11) 

( ) ( ) ( )
( ) (0)

( ) (1 ) ( ) (0)
X X X X X XI

a a a

Te Xe Te I
f ft t tt

X X X X I
a a

I
X t e e e X e

( ) = (0) = 5 × 10 . × (12)

For example:

If t = 20291 then I(t) = 5 × 10 . × × = 2.76 + 15

Whereas, the atomic density of iodine at this 

time by the computational code is about of 

2.74 × 101 that the relative difference is about 

of 0.72%.
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X(t) =
I(0)

+ (0)

=
0.29 × 10 × 5 × 10

0.212 × 10 0.29 × 10
. × . × + 1.5

× 10 . × (9)

As second example:

If  t = 20291 s       thenX(t) = 2.75 + 15

Whereas, the atomic density of iodine at this 

time by the computational code is about of 

2.74e+15that the relative difference is about 

of 0.36%.

To evaluate more exact, we solved the decay 

chain of uranium238 in the constant flux is 

about of 5× 1013  by analytical and  Runge-

Kutta Fehlberg methods that the obtained 

results are shown in Figure 5.

Figure 5. The schematic decay chain of uranium 238. 
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Figure 6. The obtained results of atomic density changes calculations for the decay chain of uranium-238. 
We calculated the difference of density relative for 

nuclear material by analytical and Runge-Kutta 

Fehlberg methods for all point. The maximum 

difference relative is 0.176% and the least relative 

difference is 0.0068%. Changes in atomic density, 

uranium235, with the initial atomic density 

4.2E24, with approximate constant power, 5MW, 

and constant flux, 6.3E13, calculated for the 

period of 100 days. The obtained results in the 

Figures 7 and 8 are shown.

Figure 7. Atom density changes of uranium-236 in the constant flux or power approximation. 
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Figure 8. Atomic density changes of heavy nuclei that are produced by uranium-235 by using the approximate 
constant power and Runge-KuttaFehlberg method. 

Conclusions

In this research, we designed the computational 

code by C#   to solve the Bitman equations 

system by using Runge-Kutta Fehlberg method 

and approximations of flux, constant power 

and material power density calculation. The 

designed program is executed to different 

conditions that are fully explained in last 

section. The obtained results of this method are 

compared to the obtained results of analytical 

solutions for these conditions. These results 

showed a small difference between analytical 

solutions and Runge-Kutta Fehlberg method 

that are represented adequate accuracy of 

Runge-Kutta Fehlberg method by setting 

network pitch.      

Finally, we achieved to the computational 

codeto calculate the 1700 atomic density 

changes in the reactor operations with the high 

ability to calculate the material depletion with 

constant flux and constant power condition.
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