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Abstract

Phenolic compounds are considered as priority pollutants because of their high toxicity at low 

concentration. In the present study, the sorption of p-chlorophenol (p-CP) by dried activated 

sludge was investigated. Activated sludge was collected as slurry from the sludge return line 

of a municipal wastewater treatment plant. Sorption experiments were carried out in batch 

mode. In order to investigate the effect of operating parameters on the removal efficiency of 

p-CP, four independent variables, including pH, initial concentration of p-CP, contact time 

and adsorbent dosage were studied. Artificial neural network (ANN) and response surface 

methodology (RSM) were developed for modeling of biosorption process. Results indicated 

that, Dried activated sludge can efficiently remove p-chlorophenol from aqueous solutions. 

The RSM method suggested that pH is the most significant parameter for biosorption process. 

Finally, RSM technique gave a function and neural network gave a structure for prediction. 

Neural network have a higher degree of accuracy and ANN predicted outputs were closer to 

the actual outputs of experiments in comparison with RSM technique. 
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Introduction
Phenolic compounds are regarded as priority 

pollutants because of their high toxicity even 

at low concentration [1, 2]. Chlorophenols 

give an undesirable taste and odor to drinking 

water and can exert negative effects on 
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different biological processes [3]. Most of 

these compounds are known or suspected to 

be a health hazard. The main pollution sources 

containing chlorophenols are the wastewaters 

from pesticide, paint, solvent, pharmaceutics, 

wood, pulp and paper industries [3, 4]. 

According to the literature, various processes 

have been employed for the removal of 

chlorophenols from aqueous solution, such 

as activated carbon adsorption, chemical 

oxidation, aerobic/anaerobic biological 

degradation, coagulation, solvent extraction 

and liquid membrane permeation [5, 6]. 

However, due to the disadvantages such as 

relatively high cost and tedious procedures for 

its preparation and regeneration of activated 

carbon, there is a growing interest in the use of 

low cost and unconventional adsorbents [6, 7]. 

Among these biosorbent, activated sludge is a 

well-known biomass used for the removal of 

phenolic compounds. In addition, some fungal 

mycelia and bacterial biomass have also 

been utilized to remove phenolic compounds 

through adsorption [8, 9]. The accumulation 

of chemicals on the surface of the cell 

wall of microorganisms has been defined 

as biosorption. Since the physicochemical 

mechanisms in the biosorption are complex, no 

simple theory of adsorption could adequately 

describe experimental results. 

For a mono-component system Langmuir 

and Freundlich isotherms and pseudo first 

and second order models have been the 

most common adsorption models used for 

equilibrium and kinetic studies. However, these 

models may find to be deficient in describing the 

connection between the factors and evaluating 

their impact on the biosorption process. To 

overcome this problem multivariate statistical 

techniques have been used. Response surface 

methodology (RSM) and artificial neural 

network (ANN) are among the most popular 

used methods in research on biosorption 

literature [10, 11]. RSM is a collection of 

statistical and mathematical tools used to 

optimize the response controlled by several 

independent variables. Classically, response 

is optimized by changing one parameter at a 

time and keeping other parameters constant. 

By taking into account various independent 

parameters, optimization is achieved through 

RSM [12]. Artificial neural networks (ANN), 

have been used for representing non-linear 

relationships between variables. The ability of 

an ANN to learn and generalize the behavior 

of any complex and non-linear process makes 

it a powerful modeling tool [11, 13]. The 

neural network can be trained to perform a 

particular function by adjusting the values 

of connections (weights) between elements. 

Prediction of biosorption of heavy metals 

from aqueous solution has been attempted in 

the past by many researchers using ANN to a 

reasonably good degree of success [14, 15]. 

In the present study, the objectives were (i) to 

investigate the sorption of p-chlorophenol (p-
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CP) by dried activated sludge (ii) to develop 

RSM and ANN models for biosorption process 

(iii) to compare both RSM and ANN with each 

other 

Experimental

Chemicals

p-chlorophenol (>99% purity) was purchased 

from Merck Ltd., Germany, and was used 

without further purification. All other 

inorganic chemicals were of analytical grade 

and were purchased from Merck., Germany. 

The stock solution of 1000 mg/L was prepared 

by dissolving p-CP (M=128.56 g/mol) in 

deionized water. The p-CP concentrations 

of prepared solutions varied between 5 and 

30 mg/l in the sorption experiments and all 

working concentrations were obtained by 

diluting the stock solution with deionized 

water. The pH value of the solution in this 

study (2.0–11.0) was adjusted to the required 

value by adding 1M NaOH or 1M HCl 

solutions [16]. All solutions were stored in the 

dark at 4 oC prior to use.

Preparation of Biosorbent

Activated sludge was collected as slurry 

from the sludge return line of a municipal 

wastewater treatment plant in Isfahan, Iran. 

Activated sludge was dried at 105 oC for 24 h 

to reach a constant weight and then grounded 

and sieved to obtain particle size below 0.35 

mm. Thereafter, dried sludge was protonated 

by adding 50 g of the raw sludge biomass 

into 1L of HCL solution (0.1 mol/L) and then 

stirring the mixture at 250 rpm for 30 min at 

25±1 oC. Finally, the acid treated biomass was 

washed with deionized water several times to 

remove excess hydrogen ions and again dried 

at 105 oC for 24 h [17]. 

Experimental Procedures

Sorption experiments were carried out in batch 

mode. The 250-mL conical flasks were used 

for mixing the desired amount of the sludge 

biomass with 100 ml solution of known p-CP 

concentration. The effect of initial pH values, 

initial p-CP and biomass concentration as well 

as contact time on p-CP removal was studied 

as tabulated in Table 1. Flasks were agitated on a 

shaker at 250 rpm at room temperature 25±1 oC. 

After the adsorption period, the adsorbents 

were separated by filter papers. The residual 

concentration of p-CP was analyzed by 

measuring the absorbance of the red complex 

of p-CP solutions by a spectrophotometer 

(Milton Roy). The amount of adsorption at 

equilibrium, q (mg/g) was obtained as follows:

         (1)   

where C0 and Ce are the initial and equilibrium 

concentration (mg/L); V is the volume of the 

solution (L); and m is the weight of the dry 

biomass used (g).
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Table 1. Experimental parameters for p-CP removal process.

Tests Biomass con. (g/L) Initial p-CP con. (mg/L) pH Time (min)

Biomass dosage 5-30 5-30 4 240

Initial concentration 5-30 5-30 4 240

pH 5-10 5-10 2-11 90

Contact time 20 20-40 4 5-360

Response surface methodology
The RSM method is based on the fit of 
mathematical models (linear, square, 
polynomial functions and others) to the 
experimental results generated from the 
designed experiment and the verification of 
the model obtained by means of statistical 
techniques. In order to investigate the effect 
of operating parameters on the removal 
efficiency of p-CP, four independent variables 
were chosen: pH, initial p-CP concentration, 
time, adsorbent dosage. The next crucial step 
is design of experiments with the selection 
of points where the response should be 
estimated. Several design methods have 

been applied for biosorption experiments, 
but the central composite design (CCD) is 
widely used form of RSM [18]. This method 
is suitable for fitting a quadratic surface and 
it helps to optimize significant parameters 
with minimum number of experiments, as 
well as to analyze the interaction between the 
parameters. The total number of experiments 
by operating CCD of RSM in design expert 
software (Version 7.0.0, Stat. Ease. Inc, 
United States) was 30. Removal efficiency 
was selected as the observed response which 
was correlated with the coded values of the 
variables by means of the following general 
second-order polynomial equation [11, 13]: 

2
0

1 1 1 1

k k k k

i i ii i ij i j
i i i i j

y X X X X   
    

     
(2)

where y is the observed response, ß0 is a constant 

coefficient, ßi, ßii and ßij are the coefficients 

for the linear, quadratic and interaction 

effects, respectively. Xi and Xj represent the 

coded independent variables; k is the number 

of the independent variables (4 in this case). 

The least squares methods were used to verify 

the results and individual linear, quadratic 

and interaction terms were determined by the 

analysis of variance (ANOVA) with Stat-Ease 

V7 software.

 

Artificial neural network

In the present work, as it is shown in Figure 1 a 

typical three layer feed-forward neural network 

consists of input, output and a single hidden 

layer with a tangent sigmoid transfer function 

(tansig) at hidden layer and a linear transfer 

function (purlin) at output layer was used for 

modelling of the p-CP adsorption capacity. 
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Figure 1. Neural network architect for the removal of p-CP.

The input layer consists of four experimental 

parameters including the contact time (hour), 

initial p-CP concentration (mg/L), biosorbent 

dosage (g/L) and pH. The output layer was 

removal percentage (%). To determine the 

optimum number of nodes in the hidden layer 

1-20 neurons were used. All data derived 

from experiments (Xi) were scaled in 0.1-0.9 

range (Ai) using Eq. 3, and then divided into 

training, validation and test sets with a ratio of 

70%, 15% and 15%, respectively.

( )
( ) ( )

min
0.8 0.1

max min
i i

i
i i

X X
A

X X
 −

= +  − 
     (3)

where min(Xi) and max(Xi) are the extreme 

values of the input variables (Xi) and Ai is 

the normalized value. The performance of the 

network was evaluated by the mean squared 

error (MSE) and the coefficient of determination 

(R2) which can be defined as follows [19, 20]:

     (4)

    (5)

where yprd,i was the predicted value by ANN 

model, yexp,i was the experimental value, was 

the number of data and ym was the average of 

experimental values.

Results 

SEM and FT-IR

SEM and FT-IR techniques were used to 

investigate the morphological and functional 

groups of biosorbent surface. From the 

Figure 2, it can be implied that biosorbent 

surface has a high porosity texture. The FT-

IR analysis is important to specify different 

functional groups onto the biosorbent which 

are responsible for biosorption of p-CP. 
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Figure 2. SEM micrograph of DAS surface.

Figure 3 shows the FT-IR spectra of DAS before 

and after adsorption of p-CP. The bands appearing 

at about 469 cm-1 , 471 cm-1 and 467 cm-1 that are 

seen in all of the spectra, are related to bending 

vibrations of O—P—O in phosphate groups. 

The peaks located at 533 cm-1, 874 cm-1 and 

796 cm-1 assigned to C—Cl stretching vibrations 

of aromatic ring are the great evidence for the 

absorption of p-chlorophenol on the surface of 

the sludge. The absorptions around 1032 cm-1, 

1037  cm-1 are due to stretching vibrations of the 

P—O bond. The peaks at 1652 cm-1, 1639 cm-1, 

1428 cm-1 and 1450 cm-1 are attributed to C—C 

bonds vibration of aromatic rings. The increasing 

intensity of these peaks after the absorption 

confirms the existence of the p-CP.

Figure 3. FT-IR spectra of DAS (A) before adsorption (B) after adsorption.

The absorption peaks at 2854 cm-1 and 2925 

cm-1 are related to stretching vibrations of 

aliphatic C—H bonds. The small peaks at 

3277 cm-1, 3285 cm-1, 3374 cm-1, 3345 cm-1 are 

attributed to the vibrations of aromatic C—H 

bonds. The absorptions located at 3448 cm-

1, 3512 cm-1, 3565 cm-1, 3548 cm-1 and 3610 

cm-1 are assigned to O—H bonds of sludge 
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and aromatic rings. 

Response surface method

The coded levels of variables as the minimum 

(-1), zero (0) and maximum (+1) levels of the 

factors were shown in Table 2. All experiments 

were carried out and the results obtained 

according to design matrix were shown in 

Table 3. The final equation in terms of coded 

factors for the removal approximation of p-CP 

is presented below:

Removal (%) = +72.89 – 19.80 A – 6.54 B + 

11.31 C + 9.64 D + 3.33 AB – 0.95 AC – 6.15 

AD – 0.17BC – 3.06BD + 3.11CD – 6.90A2 – 

11.43B2 – 10.63C2 – 6.93D2           (6)                                     

Table 2. Independent variables and their coded values.

Factor Name Units minimum
actual

maximum
actual

zero minimum
coded

maximum
coded

zero
coded

A pH - 2 11 6.5 -1 +1 0
B Int.con mg/l 5 40 22.5 -1 +1 0
C Dosage g/l 5 30 17.5 -1 +1 0
D Contact time min 5 360 182.5 -1 +1 0

Table 3. Experimental data for CCD design.

Run Actual and coded levels of variables Removal
(%)pH Int.con (mg/L) Dosage (g/L) Contact time (min)

1 2 (-1) 5 (-1) 5 (-1) 360 (+1) 75.4
2 6.5 (0) 22.5 (0) 17.5 (0) 182.5 (0) 77.3
3 2 (-1) 5 (-1) 30 (+1) 360 (+1) 96.5
4 6.5 (0) 22.5 (0) 17.5 (0) 5 (-1) 41.2
5 11 (+1) 5 (-1) 5 (-1) 360 (+1) 14.3
6 11 (+1) 40 (+1) 5 (-1) 5 (-1) 10
7 2 (-1) 22.5 (0) 17.5 (0) 182.5 (0) 88.65
8 6.5 (0) 22.5 (0) 17.5 (0) 182.5 (0) 75.6
9 6.5 (0) 22.5 (0) 17.5 (0) 182.5 (0) 76.1
10 6.5 (0) 5 (-1) 17.5 (0) 182.5 (0) 62.3
11 11 (+1) 5 (-1) 5 (-1) 5 (-1) 11.1
12 11 (+1) 40 (+1) 30 (+1) 5 (-1) 18.88
13 11 (+1) 40 (+1) 30 (+1) 182.5 (+1) 22.4
14 2 (-1) 40 (+1) 5 (-1) 5 (-1) 32.8
15 6.5 (0) 22.5 (0) 30 (+1) 182.5 (0) 93.2
16 6.5 (0) 22.5 (0) 17.5 (0) 182.5 (0) 77.3
17 11 (+1) 5 (-1) 30 (+1) 360 (+1) 36.7
18 6.5 (0) 22.5 (0) 17.5 (0) 360 (+1) 80.2
19 6.5 (0) 22.5 (0) 17.5 (0) 182.5 (0) 77.4
20 2 (-1) 5 (-1) 30 (+1) 5 (-1) 50.8
21 2 (-1) 40 (+1) 30 (+1) 360 (+1) 73.9
22 2 (-1) 40 (+1) 30 (+1) 5 (-1) 41.2
23 6.5 (0) 22.5 (0) 5 (-1) 182.5 (0) 20.8
24 11 (+1) 5 (-1) 30 (+1) 5 (-1) 26.5
25 11 (+1) 22.5 (0) 17.5 (0) 182.5 (0) 32.8
26 11 (+1) 40 (+1) 5 (-1) 360 (+1) 11.14
27 2 (-1) 5 (-1) 5 (-1) 5 (-1) 42.8
28 6.5 (0) 40 (+1) 17.5 (0) 182.5 (0) 50.1
29 6.5 (0) 22.5 (0) 17.5 (0) 182.5(0) 77.9
30 2 (-1) 40 (+1) 5 (-1) 360 (+1) 38.2
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Analysis of variance (ANOVA) was applied to 

examine the model accuracy. The parameter 

coefficients, the associated standard errors 

and the effect of each term in Eq. 6 are 

presented in Table 4. In this case, all first 

order values (A, B, C, and D) are significant 

model terms. The value of the determination 

coefficient (R2=0.89) indicated that, 11% 

of the total variation is not explained by 

the regression model. The high value of the 

adjusted determination coefficient (Radj
2=0.83) 

implicates to the significance of the model. 

Figure 4 (a, b, c and d) shows the combined 

effect of pH and initial concentration, dosage 

and contact time, pH and dosage, initial 

concentration and contact time. It is clear 

from the figures that with increasing dosage 

and contact time, removal capacity will be 

increased and also pH degree ranges between 

2 and 4 improve the removal of p-CP by DAS.

Table 4. Statistical analysis and significance components in the quadratic model.

Term Coefficients Standard errors P-values
A -19.80 3.00 ≤ 0.0001
B -6.54 3.00 0.0454
C 11.31 3.00 0.0019
D 9.64 3.00 0.0058

AB 3.33 3.18 0.3122
AC -0.95 3.18 0.7684
AD -6.15 3.18 0.0724
BC -0.7 3.18 0.959
BD -3.06 3.18 0.3515
CD +3.11 3.18 0.3425
A2 -6.90 7.90 0.3963
B2 -11.43 7.90 0.1688
C2 -10.63 7.90 0.1988
D2 -6.93 7.90 0.3947

Intercept - 3.95 -
R2 = 0.89 R2

adj = 0.83

Figure 4. Effect of (a) pH and initial concentration (b) dosage and contact time (c) pH and dosage (d) initial
concentration and contact time on adsorption capacity of p-CP by DAS.
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Figure 4. Effect of (a) pH and initial concentration (b) dosage and contact time (c) pH and dosage (d) initial
concentration and contact time on adsorption capacity of p-CP by DAS.

Neural network

Specifying the number of hidden layer 

neurons in design of neural network is a very 

important step. Unfortunately, there is no 

specific method for determining the optimal 

number of hidden layer neurons and in most of 

the cases, trial and error approach have been 

used by researchers to select the number of  

neurons. In the present study, different number 

of neurons in the range of 1-20 was adopted 

in the hidden layer. According to Figure 5 the 

optimum number of neurons in the hidden 

layer is equal to 6 as the best case with the 

minimum value of MSE (8.41×10-4) and high 

value of R2= 0.98. Therefore a three layer feed 

forward neural network (4:6:1) was used for 

modeling of adsorption process. As it is shown 

in Figure 6, a comparison between actual and 

predicted data for test and validation data 

give a clearer insight to the neural network 

performance. It has been shown in Figure 6 

that the differences between experimental 

and predicted data are negligible and can be 

ignored. 
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Figure 5. Effect of number of hidden layer neurons on the performance of neural network.

Figure 6. (a) Comparison between actual and predicted validation data. (b) Comparison between actual and

predicted test data.

a

b
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Discussion

RSM technique has some advantages 

in comparison with ANN. For example, 

RSM method gives a regression equation 

for prediction and showing the effect of 

experimental parameters on the response. 

However, this method, assumes linear, 

quadratic and cubic form of correlation of 

any data set, but ANN can capture any form 

of non-linearity and doesn’t need standard 

experimental design to build up model [11, 

13]. In this study, the performance of the 

models, which was measured by determination 

coefficient (R2), indicated that, ANN method 

has better capability for prediction of removal 

capacity of DAS in comparison with RSM.  

Deniz bingol et al. evaluated the capability of 

RSM and ANN for prediction of heavy metals 

biosorption process. They concluded that the 

ANN has better performance for biosorption 

predictions in comparison with RSM [13]. 

Rahimpour et al. used light expended clay 

aggregate (LECA) for adsorption of Cu2+ 

and employed ANN and RSM for modeling 

of adsorption process. Results indicated 

that the determination coefficient for both 

models are close to each other and both 

models almost have the same capability for 

process prediction [21]. Coruh et al. used 

NARX neural network model for adsorption 

of zinc ion by almond shell [22]. The result 

showed that removal efficiencies produced by 

experiments and ANN model are close to each 

other and in an acceptable error limit. From 

the Figure 4, it is apparent that the removal 

of p-CP increase rapidly with an increase 

in the dosage of adsorbent due to greater 

availability of binding sites of the biosorbent. 

The initial pH of adsorption medium is one 

of the most important parameters affecting 

the adsorption process. pH primarily affects 

the surface properties of biosorbent and the 

degree of ionization of phenolic compounds. 

A wide range of pH values (2-11) were applied 

in this study to examine the effect of pH on 

sorption capacity. The overall surface charge 

on the cells became positive when pH is lower 

than the isoelectric point of biomass. The 

isoelectric point of activated sludge would be 

usually between pH 1 and 3 and this situation 

led to the interactions between the aromatic 

ring of p-CP activated by the OH- and Cl- and 

the groups of biosorbent surface. As the pH 

increased, the overall surface charge on the 

cells became negative and the biosorption 

between negatively charged phenolic 

compounds and binding sites of the biomass 

surface decrease. The degree of ionization is 

another determining factor. When pH is not 

more than one unit above pKa values of p-CP 

(9.41), Non-dissociated forms activated by the 

OH- and Cl- dominated the overall sorption 

of chlorinated phenols on organic sorbent. 

When pH is greater than pKa values of p-CP, 

negatively charged ionized forms dominate in 

the solution.
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Conclusion

Dried activated sludge was efficient as a 

biosorbent for the removal of p-chlorophenol 

from aqueous solutions. The p-CP biosorbent 

interactions were confirmed by FT-IR and 

heterogeneous, smooth and porous structure 

were observed by SEM technique. The present 

work suggests that, ANN predicted results 

were close to experimental values. The average 

mean square error was   0.95 × 10-4 which was 

sufficient to have an error within ± 1.0%. A 

high degree of correlation (R2=0.98) between 

actual and predicted sorption efficiency was 

observed for data set.

The RSM method gave a function for prediction 

of biosorption process and also this method 

suggested that pH is the most significant 

parameter. The value of the determination 

coefficient was 0.89 (R2=0.89). RSM graphs 

indicated that increasing in absorbent dosage 

and contact time lead to increase the removal 

efficiency, whereas by increasing initial 

concentration of p-CP the removal efficiency 

was reduced. pH in the range of 2-4 was 

the optimum for higher removal efficiency. 

Finally, ANN technique has higher value of 

the determination coefficient in comparison 

with RSM method. Therefore ANN technique 

can predict responses with a high degree of 

accuracy. 
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