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Abstract 

A series of new coumarin fused pyrrole derivatives were successfully synthesized through a one-pot 

multi-component reaction between 4-aminocoumarin, aryl glyoxals, and amides (thioacetamide) in 

the presence of Fe3O4@SiO2/Kit-6 in ethanol under reflux conditions. Further advantages to this 

synthesis include excellent yields, mild reaction conditions, atom economy, environment-friendly, 

magnetically reusable catalyst, and no need for chromatographic separations. 
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Introduction 

Coumarin and its derivatives are an important class of heterocyclic compounds, which constitute the 

key core of various natural products [1, 2]. The application of coumarin derivatives as bioactive 

molecules against different kinds of diseases has gained great interest from medicinal chemists. 

Coumarin derivatives demonstrate a wide spectrum of biological activities such as anticancer, 

anticoagulant, anti-HIV, antimalarial, and anti-inflammatory, and are usually associated with low 

toxicity [3-6]. 

Pyrrole derivatives are five-membered ring nitrogen-containing heterocyclic compounds and 

distributed structural units in a variety of natural and biologically important molecules such as 

porphyrins, bile pigments, coenzymes, and alkaloids [7,8]. 

Coumarin fused pyrrole derivatives comprise important classes of marine natural products, some of 

which display remarkable biological and pharmacological properties. The structure of some 

biologically important coumarin fused pyrrole derivatives are shown in Figure.1. For example 

compound A was also found to be efficient against tumor angiogenesis which is a key step for 

spreading out cancer cells [9]. 
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Figure 1.The structure of some biologically important coumarin fused pyrrole derivatives. 

 

Modern synthetic design demands high efficiency in terms of minimization of synthetic steps 

together with maximization of complexity [10]. One of the ways to fulfill these goals is the 

development and use of multi-component reactions (MCRs) which consist of several simultaneous 

bond-forming reactions and allow the highly efficient synthesis of complex molecules starting from 

simple substrates in a one-pot manner [11-13]. The use of heterogeneous catalysts with recyclability 

and reusability potential adds value to the one-pot reactions involving MCRs [14]. Furthermore, the 

use of magnetic nanoparticles (MNPs) as support in heterogeneous catalysis is a growing field of 

research. In this area, MNPs appear as ultimate nano support due to their ease of recovery [15, 16].  

Fe3O4 NPs for their strong magnetic properties, high chemical stability, abundance, effortless 
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preparation via co-precipitation and low toxicity is the most common MNPs that have been more 

extensively studied as the core magnetic support by researchers [17, 18]. It should be mentioned 

that pure Fe3O4 MNPs, with a high surface area to volume ratio, are highly chemically active and 

suffer from an inherent instability [19]. They are very sensitive to oxidation and tend to aggregate 

spontaneously when exposed to acids and aqueous solutions. To overcome the above mentioned 

limitations, the surface of MNPs must be covered by a protective agent such as silica, polymer, or 

carbon [20-23]. Among different supported MNPs, Kit-6 mesoporous silica-supported Fe3O4 MNPs 

(Fe3O4@SiO2@Kit-6) has also emerged as powerful catalyst because it has preferable properties 

such as small dimensions, uniform porosity, high chemical stability, and easy magnetic separability 

[24–28]. 

Considering the above reports and in continuation of our research at developing green and eco-

friendly multi-component reactions [29-30], herein we report Fe3O4@SiO2@Kit-6  nanoparticles as 

a highly efficient and heterogeneous catalyst for the synthesis of coumarin-fused pyrrole derivatives 

by a three-component condensation of 4-aminocoumarin, aryl glyoxals, and amides 

(thioacetamide). (Scheme 1). 
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Scheme 1. Synthesis of coumarin-fused pyrrole derivatives using Fe3O4@SiO2@Kit-6 

 

Experimental 

Melting points were determined with an electrothermal 9100 apparatus. Elemental analyses were 

performed using a Heraeus CHN-O-Rapid analyzer. Mass spectra were recorded on a FINNIGAN-

MAT 8430 mass spectrometer operating at an ionization potential of 70 eV. IR spectra were 

recorded on a Shimadzu IR-470 spectrometer. 1H and 13C NMR spectra were recorded on Bruker 

DRX-400 Avance spectrometer at a solution in CDCl3using TMS as an internal standard. The 

chemicals used in this work were purchased from fluka (Buchs, Switzerland) and were used without 

further purification. SEM was obtained using a Mira III. 
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Preparation of Fe3O4@SiO2@Kit-6 nanoparticles 

Fe3O4@SiO2-Kit-6 was used as a catalyst in this work prepared by literature procedure, which has 

been developed by Shariati et al. [31]. The IR, XRD, SEM, and EDS images for the synthesized 

nanocomposite have been presented previously in the published article [24]. The SEM image shows 

that the nanocomposite has a uniform and spherical shape with diameters smaller than 55 nm 

(Figure 2). 

 

 

Figure 2. FESEM images of the Fe3O4@SiO2-Kit-6. 

 

 

General procedure 

A mixture of aryl glyoxal (1 mmol), 4-aminocoumarin (1 mmol), amides (thioacetamide) (1 mmol), 

and Fe3O4@SiO2-Kit-6 nanoparticle (0.05g) in 10 ml ethanol was stirred and heated in reflux 

condition for the appropriate amount of time (3–4 h)[32]. The reaction progress was monitored by 

TLC (EtOAc/hexane, 1:2). The catalyst was collected with an external magnet, and the reaction 

mixture was then heated to obtain the crude product. After the purification process of the crude 

product by recrystallization from ethanol/acetone (v/v= 3:2), the corresponding compounds were 

obtained. 

 

Results and discussion 

Aryglyoxals 2 was prepared by the reaction between their corresponding acetophenone and SeO2 

according to the reported procedures [33]. 
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Firstly, to optimize the reaction conditions, the model reaction was carried out by using 4-

aminocoumarin, 4-chlorophenyl glyoxal, and acetamide under various reaction conditions, and the 

results are listed in Table 1. 

 

Table 1. Optimization of the reaction conditions for the synthesis of  N-(2-(4-chlorophenyl)-1,4-dihydro-4-

oxochromeno[4,3-b]pyrrol-3-yl)acetamide (4a) a. 

 

SiO
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SiO
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Non

Fe
3
O

4
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a Reaction conditions: 4-aminocoumarin (1.0 mmol), 

4-chloro-phenyl glyoxal (1.0 mmol), acetamide (1.1 mmol),  in

ethanol under reflux condition.

 b Isolated yield

Yieldb (%)Catalyst Catalyst (g) Time(h)

1

2

3

4

6

25

30

60

4

4

4

4

Entry

0.06

0.06

0.06

trace

0.06

4

25

-

0.057 803

Fe3O4@SiO2@Kit-6

Fe3O4@SiO2@Kit-6

5 350.06 4Fe3O4@SiO2

 

 

We examined this reaction in the presence of various catalysts in hand including SiO2, Fe3O4, 

Fe3O4@SiO2, and Fe3O4@SiO2@Kit-6 nanoparticles, (Table 1). It was shown that the 

Fe3O4@SiO2@Kit-6 nanoparticle was the most efficient of all tested catalysts (Table 1, entry 7). 

However, no product was formed in the absence of the catalyst (Table 1, entry 1).  

To improve the yield of the target product, the test reaction was carried out in presence of various 

solvents such as acetone, acetonitrile, water, tetrahydrofuran (THF), methanol, ethanol at reflux 

temperature, and the results are presented in Table 2. As can be seen from this table, in the presence 

of ethanol the products were obtained in high yields.  
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Table 2. Solvent effect on the reaction between 4-aminocoumarin (1eq), 4-chloro-phenyl glyoxal (1 eq) and acetamide 

(1 eq) catalyzed by Fe3O4@SiO2@Kit-6. 

 

Solvent- free

Yield(%)Temp(0C)Solvent

1

2

3

4

5

6

Entr

y

Reflux

Reflux

Reflux

Reflux

Reflux

H2O

Methanol

100

Time(h)

4

4

5

5

4

3

50

55

50

55

50

80Ethanol

THF

Acetonitrile

7

Acetone Reflux

5

65

 

 

Afterward, optimization of catalyst amounts was carried out in the model study by using different 

amounts of Fe3O4@SiO2@Kit-6. A higher yield was obtained by increasing the amount of catalyst 

from 0.03 g to 0.07 g.  However, a further increase of the molar amount of the catalyst from 0.05g 

to 0.07 did not significantly increase the yield of the product (Figure 3). Hence, the optimum 

concentration of Fe3O4@SiO2@Kit-6 NPs was chosen 0.05g in the model reaction. 

 

 

 

 

 

 

 

 

Figure 3. Influence of the amount of the catalyst on the model reaction. 

 

To study the scope of the reaction, a series of aryl glyoxals and a series of amides (thioacetamide)   

were employed. The results are shown in Table 3. In all cases, the aromatic ring of the aryl glyoxal 

substituted with either electron-donating or electron-withdrawing groups underwent the reaction 

smoothly and gave the products good yields. It could also be concluded that the aromatic ring of the 
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aryl glyoxal bearing electron-withdrawing groups required a shorter time and gave higher yields 

(Table 3).  

 
Table 3. The three-component reaction of 4-aminocoumarin, aryl glyoxals, and amides (thioacetamide) 

catalyzed by Fe3O4@SiO2@Kit-6. 

 

Ar

4a

4b

4d

4e

4f

78

4c

Entry Yield(%)aTime (h)

4g

3
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CH3

CH3

CH3

CH3
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O

4

4

3.3

3.5
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249

2442-thiophenyl

2-naphthalenyl

2-naphthalenyl

4-chlorophenyl

4-methylpheny

4-methylphenyl

248

a Isolated Yield
 

N-(2-(4-chlorophenyl)-1,4-dihydro-4-oxochromeno[4,3-b]pyrrol-3-yl)acetamide (4a) 

Yellow powder, m.p. 248 °C; IR (KBr): 3410, 3220, 1680, 1650 cm-1; 1H NMR (250 MHz, d6-

DMSO): δ = 2.10(3H, s, CH3), 7.23-8.44(9H, m, arom, and NH), 11.47 (1H, s, NH); 13C NMR 

(62.90 MHz, d6-DMSO): δ = 21.22, 102.83, 112.39, 118.20, 120.39, 121.99, 125.47, 126.16, 

128.21, 129.33, 129.80, 130.39, 131.96, 140.56, 144.51, 157.80, 168.96. Anal. Calcd. for 

C19H13ClN2O3: C, 64.69; H, 3.71; N, 7.94 %. Found: C, 64.74; H, 3.79; N, 7.82; %. 

 

N-(1,4-dihydro-4-oxo-2-p-tolylchromeno[4,3-b]pyrrol-3-yl)acetamide (4b) 

Yellow powder, m.p. 240°C; IR (KBr): 3403, 3220, 1690, 1676 cm-1; 1H NMR (250 MHz, d6-

DMSO): δ = 2.07 (3H, s, CH3), 2.30 (3H, s, CH3), 7.23-9.02 (9H, m, arom and NH), 11.46 (1H, s, 

NH); 13C NMR (62.90 MHz, d6-DMSO): δ = 21.12, 22.25, 103.20, 112.20, 115.21, 118.22, 120.37, 
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123.00, 125.52, 126.12,126.98, 129.83, 130.54, 131.95, 136.56, 140.52, 152.55, 169.52. Anal. 

Calcd. for C20H16N2O3: C, 72.28; H, 4.85; N, 8.43%. Found: C, 72.41; H, 4.65; N, 8.55 %. 

 

N-(1,4-dihydro-2-(naphthalen-3-yl)-4-oxochromeno[4,3-b]pyrrol-3-yl)acetamide (4c) 

Yellow powder, m.p. 248 °C; IR (KBr): 3403, 3205, 1694, 1678 cm-1; 1H NMR (250 MHz, d6-

DMSO): δ = 2.04 (3H, s, CH3), 7.39-9.29 (12H, m, arom, and NH), 11.23 (1H, s, NH); 13C NMR 

(62.90 MHz, d6-DMSO): δ = 22.25, 101.86, 110.06, 115.15, 118.30, 120.15, 123.15, 125.11, 

125.59, 127.01, 128.02, 129.07, 129.42, 130.12, 132.75, 134.63, 141.72, 152.69, 158.86, 168.86. 

Anal. Calcd. for C23H16N2O3: C, 74.99; H, 4.38; N, 7.60%. Found: C, 74.82; H, 4.26; N, 7.78 %. 

 

N-(1,4-dihydro-4-oxo-2-p-tolylchromeno[4,3-b]pyrrol-3-yl)ethanethioamide(4d) 

Yellow powder, m.p. 243 °C; IR (KBr): 3412, 3180, 1681, 1664 cm-1; 1H NMR (250 MHz, d6-

DMSO): δ = 1.95(3H, s, CH3), 2.26(3H, s, CH3), 7.39-9.27(9H, m, arom, and NH), 11.21(1H, s, 

NH); 13C NMR (62.90 MHz, d6-DMSO): δ = 21.93, 23.53, 101.86, 115.12, 118.22, 120.13, 123.70, 

125.09, 125.57, 126.99, 126.98, 128.00, 129.06, 132.71, 134.62, 141.69, 152.68, 192.44. Anal. 

Calcd. for C20H16N2O2S: C, 68.94; H, 4.63; N, 8.04; S, 9.20 %. Found: C, 68.81; H, 4.52; N, 8.32; 

S, 9.31 %. 

 

N-(1,4-dihydro-2-(naphthalen-3-yl)-4-oxochromeno[4,3-b]pyrrol-3-yl)ethanethioamide (4e) 

Yellow powder, m.p. 237 °C; IR (KBr): 3405, 3211, 1686, 1678 cm-1; 1H NMR (250 MHz, d6-

DMSO): δ = 2.29 (3H, s, CH3), 7.22-9.02 (12H, m, arom, and NH), 11.01(1H, s, NH); 13C NMR 

(62.90 MHz, d6-DMSO): δ = 22.24, 101.82, 111.62, 115.23, 118.20, 120.36, 123.00,123.96, 125.48, 

126.14, 128.96, 129.80, 130.52, 131.96, 136.54, 140.54,142,11 152.56, 158.94, 191.23. Anal. 

Calcd. for C23H16N2O2S: C, 71.85; H, 4.19; N, 7.29; S, 8.34%. Found: C, 71.74; H, 4.22; N, 7.40; S, 

8.45%. 

 

N-(1,4-dihydro-2-(naphthalen-3-yl)-4-oxochromeno[4,3-b]pyrrol-3-yl)benzamide (4f) 

Yellow powder, m.p. 249 °C; IR (KBr): 3403, 3221, 1689, 1676 cm-1; 1H NMR (250 MHz, d6-

DMSO): δ = 7.14-9.29 (17H, m, arom and NH), 11.25 (1H, s, NH); 13C NMR (62.90 MHz, d6-

DMSO): δ = 101.82, 112.72, 115.12, 118.29, 120.14, 123.13, 125.09, 125.60, 127.02, 128.02 

129.06, 129.42, 130.17, 132.71, 134.60, 141.68, 152.66, 159.66, 175.12. Anal. Calcd. for 

C28H18N2O3: C, 78.13; H, 4.21; N, 6.51%. Found: C, 78.32; H, 4.42; N, 6.64%. 

 

 



H. Anaraki-Ardakani, J. Appl. Chem. Res., 17, 4, 22-34 (2023) 

 

30 
 

N-(1,4-dihydro-4-oxo-2-(thiophen-2-yl)chromeno[4,3-b]pyrrol-3-yl)benzamide (4g) 

Yellow powder, m.p. 244 °C; IR (KBr): 3409, 3214, 1691, 1678 cm-1; 1H NMR (250 MHz, d6-

DMSO): δ = 7.10-9.29 (13H, m, arom, and NH), 11.21(1H, s, NH); 13C NMR (62.90 MHz, d6-

DMSO): δ = 103.02, 115.03, 115.85, 117.47,118.26, 122.74, 122.91, 124.41, 124.69, 125.57, 

128.33, 130.02, 132.25, 133.59, 139.78, 140.54, 152.63, 155.13, 157.05, 158.64, 163.09. Anal. 

Calcd. for C22H14N2O3S: C, 68.38; H, 3.65; N, 7.25; S, 8.30%. Found: C, 68.41; H, 3.73; N, 7.37; S, 

8.42%. 

 

A possible mechanism for the formation of the products 4a-g is proposed in Scheme 2. Initially, 

aryl glyoxal 2 reacts with amides 3 in the presence of Fe3O4@SiO2-Kit-6 as the catalyst to provide 

corresponding imine 5. The next attack of  4-aminocoumarin 1 to imine 5 provides intermediate 6, 

which undergoes intermolecular cyclization to afford intermediate 7 that subsequently loses water to 

produce final product 4.  
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Scheme 2.  Suggested pathway for the formation of compounds 4a-g 

 

The reusability of the catalyst was tested in the synthesis of coumarin-fused pyrrole derivatives, as 

shown in Figure 4. The catalyst was recovered after each run, washed with ethanol, dried in an oven 

at 90 oC for 25 min before use, and tested for its activity in the subsequent run. The catalyst was 

tested for 3 runs. It was seen that the catalyst displayed very good reusability (Figure 4). 
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Figure 4. Catalyst recycling experiment 

Conclusions 

In summary, we have tried to develop an efficient procedure for the synthesis of new coumarin 

fused pyrrole derivatives in high yields via a one-pot three-component reaction between 4-

aminocoumarin, aryl glyoxals and amides (thioacetamide) in the presence of a catalytic amount of  

Fe3O4@SiO2-Kit-6 nanocomposite in ethanol. The most important advantage of this protocol is that 

the materials used for this protocol are readily accessible. Furthermore, this method offers several 

advantages including a high yield of products, recyclability of the catalyst and the products being 

purified without resorting to chromatography. 
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