بررسی عددی ضخامت و تعداد پرههای مختلف بر بهبود عملکرد کولرهای هوایی
محورهای موضوعی : یافته های نوین کاربردی و محاسباتی در سیستم های مکانیکیاحسان حسین زاده 1 , علی فلاوند جوزایی 2 *
1 - کارشناسی ارشد، گروه مهندسی مکانیک، واحد اهواز، دانشگاه آزاد اسلامی، اهواز، ایران
2 - گروه مهندسی مکانیک، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی، واحد اهواز، اهواز، ایران
کلید واژه: کولر هوایی, پره, انتقال حرارت, افت فشار, ضریب عملکرد,
چکیده مقاله :
کولرهای هوایی یکی از تجهیزات مهم در صنایع نفت و گاز و پتروشیمی میباشند. با توجه به اینکه مشخصات پرهها در طراحی بهینه کولرهای هوایی نقش زیادی دارند، لذا در این مقاله تاثیر سه نوع پره (دایرهای، مستطیلی و شش وجهی)، ضخامت پره و فاکتور مهم تعداد پره بر اینچ بر نرخ انتقال حرارت، افت فشار و ضریب عملکرد یک کولر هوایی بررسی گردید. برای شبیهسازی از مشخصات یکی از کولرهای هوایی پتروشیمیهای ماهشهر و برای حل معادلات حاکم و تجزیه و تحلیل نتایج، از نرمافزارهای استفاده شده است. نتایج نشان داد که میزان انتقال حرارت کولر هوایی با پرههای چندوجهی از میزان انتقال حرارت حرارت کولر هوایی با پره دایرهای بیشتر است، با افزایش تعداد پره بر اینچ از ۳ تا ۱۲ برای پره دایرهای انتقال حرارت در حدود 6/49 درصد افزایش و برای پره شش وجهی حدود 5/51 درصد میباشد. افزایش افت فشار برای هر سه حالت از تعداد پره بر اینچ ۳ تا 12 کم (حدود ۱٪) میباشد، ولی پس از آن و برای تعداد پره بر اینچ 12 تا 15 برای هر سه حالت مقدار افزایش افت فشار خیلی شدیدتر میشود. نتایج همچنین نشان داد که بیشرین ضریب عملکرد برای همه پرهها، در تعداد پره بر اینچ 12 اتفاق میافتد. در مقایسه بین این سه نوع پره، تعداد پره بر اینچ از 3 تا 6 پرههای دایرهای ضریب عملکرد بالاتری نسبت به پرههای شش وجهی دارند ولی برای تعداد پره بر اینچ بیشتر از 6 پرههای ششوجهی ضریب عملکرد بیشتری نسبت به پرههای دایرهای و مستطیلی داشته اند. با افزایش ضخامت پرهها و افزایش تعداد پره بر اینچ میزان انتقال حرارت و افت فشار کولر هوایی هر دو افزایش مییابند، ولی میزان افزایش انتقال حرارت در محدوده ضخامت پره 2/0 تا 4/0 بیشتر است، و بعد از ضخامت پره 4/0 تا 2/1 با شدت کمتری افزایش انتقال حرارت و با شدت بیشتری افزایش افت فشار حاصل شده است. برای هر سه نوع پره، با افزایش ضخامت پره، در محدوده 2/0 تا 4/0 مقدار کاهش ضریب عملکرد کم و بعد با شدت بیشتری این ضریب کاهش مییابد.
Air coolers are essential equipment in the oil, gas, and petrochemical industries. In this study, the effects of fin type (circular, rectangular, and hexagonal), fin thickness, and fins per inch (FPI) on the thermal and hydraulic performance of air coolers were analyzed using Aspen B-JAC and EES software. The results showed that increasing FPI from 3 to 12 significantly enhances heat transfer rate (about 49.6% for circular fins and 51.5% for hexagonal fins), while pressure drop in this range increases only slightly (around 1%). The highest performance coefficient (PEC) of the heat exchanger was observed for all fin types at an FPI of 12. Additionally, with increasing fin thickness and FPI, both heat transfer rate and pressure drop increase, but the increase in heat transfer is more pronounced between 0.2 mm and 0.4 mm fin thickness, whereas pressure drop increases more sharply beyond this range. Finally, increasing fin thickness results in a decrease in the cooler’s performance coefficient, with a smaller reduction between 0.2 mm and 0.4 mm thickness and a steeper decline thereafter.
[1] API 661 Standard., (2018). American Petroleum Institute: Petroleum, Petrochemical, and Natural Gas Industries Air-cooled Heat Exchangers.
[2] Zhao, Y., Zhang, H., Xu, L., (2015). Comparative analysis of fin geometries on heat transfer performance in air-cooled heat exchangers. Applied Thermal Engineering, 89, 510–519.
]3[ رسولی، م.، احمدی، ح.، و شریعتی، م. (۱۳۹۶)، تحلیل مقایسهای عملکرد حرارتی کولر هوایی با فینهای مختلف، نشریه مهندسی مکانیک ایران.
[4] Rao, V., Kumar, D., Patel, R. (2017). CFD analysis of fin shape variation in heat exchangers. International Journal of Thermal Sciences, 116, 65–75.
]5[ عباسی، م. و جمشیدی، ن. (۱۳۹۷)، بررسی عملکرد حرارتی فینهای چندوجهی در مبدلهای حرارتی، نشریه مهندسی مکانیک ایران.
[6] Singh, K. & Gupta, A. (2018). Experimental study on non-circular fins in air-coolers. Energy Procedia, 144, 901–908.
]7[ محمدی، ن. و عباسی، س. (۱۳۹۸)، تحلیل عددی عملکرد حرارتی فینهای هندسی مختلف در کولر هوایی، پایاننامه کارشناسی ارشد، دانشگاه صنعتی شریف.
]8[ کریمی، س. و معصومی، ح. (۱۳۹۹)، تحلیل مقاومت حرارتی فینها در مبدلهای هوایی، نشریه علوم حرارت و سیالات.
]9[ یوسفی، ف.، کاوه، ن.، و رضایی، م. (۱۴۰۰)، بررسی تاثیر شکل پره در مبدل حرارتی هوایی با استفاده از CFD "، نشریه مهندسی مکانیک کاربردی.
]10[ خلیلی، م. و سعیدی، ع. (۱۴۰۰)، تحلیل عددی اثر هندسه فین در کولر هوایی، پژوهشنامه مهندسی مکانیک.
[11] Kim, S. H., Lee, J., Park, J., (2019). Experimental and numerical study on hexagonal finned tubes for enhanced air-cooling. International Journal of Heat and Mass Transfer, 132, 1164–1175.
[12] Li, W., Yang, L., Zhao, F., (2020). Performance evaluation of polygonal fins using CFD simulation. Energy Conversion and Management, 221, 113152.
[13] Chen, Y., Zhang, X., Lu, H., (2020). Performance limitation of polygonal fins at high FPI. Applied Thermal Engineering, 169, 114973.
[14] Wang, X., Chen, Q., Du, S., (2021). Optimization of fin parameters in compact heat exchangers. Thermal Science and Engineering Progress, 22, 100857.
[15] Ahmed, M., Mohammed, K., (2021). Hybrid fin design for enhanced air-side performance. Heat Transfer Engineering, 42(12), 1090–1101.
]16[ فلاحزاده، ع. و عسگری، ح. (۱۴۰۱) ، تحلیل تجربی عملکرد کولر هوایی با فینهای ششضلعی ،پژوهش صنعتی پتروشیمی بندرامام.
]17[ حسینی، م. و بابایی، ر. (۱۴۰۲) ، بررسی بهینهسازی اگزرژی فینهای غیرمدور در کولر هوایی ، پایاننامه کارشناسی ارشد، دانشگاه تبریز.
[18] Tanaka, T., Yamamoto, S., & Kato, M., (2022). Experimental study on polygonal fins under humid environment. Journal of Thermal Science and Technology, 17(3), JTST0121.
[19] Zhou, F., & Feng, Y., (2023). Multi-objective optimization of fin geometry using GA. Energy Conversion and Management, 277, 116550.
[20] Chien, S., Lin, C., Chien, C., (2024). Numerical investigation of heat flow and pressure drop in plate-fin heat sinks. Processes, https://doi.org/10.3390/pr12040744.
[21] Ali, A., Khan, M., (2023). Numerical study of the fluid flow and heat transfer in a finned heat sink using Ansys Icepak. International Journal of Mechanical Engineering and Applications, 11(3), 45-53.
[22] Huang, Y., Li, J., Zhang, W., (2023). A parametric design study of natural-convection-cooled heat sinks. Fluids, https://doi.org/10.3390/fluids8080234.
[23] Sofonea, V., Tanase, I., (2025). A unit-cell shape optimization approach for maximizing heat transfer in periodic fin arrays. https://doi.org/10.48550/arXiv.2504.03436.
[24] Çengel Y. A., Cimbala J. M., Ghajar A. J., (2022). Fundamentals Of Thermal-Fluid Sciences," Mcgraw Hill LLC, Sixth Edition.
[25] Kraus, A.D., Aziz, A., Welty, J., (2003). Extended Surface Heat Transfer, 2001, John Wiley & Sons
[26] Bejan, A. & Kraus, A. D., Heat Transfer Handbook, John Wiley & Sons.
[27] Kakac S., Liu H., Pramuanjaroenkij A., (2012). Heat Exchangers Selection, Rating, and Thermal, Design Taylor & Francis Group, Third Edition,.
[28] Hong, K.T., Webb, R.L., (1996). Calculation of fin efficiency for wet and dry fins, HVAC &R Research.
[29] Wang, C.C., Webb, R.L., Chi, K.Y. , (2000). Data reduction for air-side performance of fin-and-tube heat exchangers, Experimental Thermal and Fluid Science.
[30] Perrotin, T., Clodic, D., (2003). Fin Efficiency Calculation in Enhanced fin-and tube heat Exchanger in dry.
[31] Gardner, K.A., (1945). Efficiency of extended surface, Trans. ASME, Journal of Heat Transfer.
[32] Aspen Suite v11.1 Complete Software, Aspen B-jac Manual&Help book