
 	 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

 This work is licensed under the Creative Commons Attribution 4.0 International Licence.

To view a copy o this licence, visit https://creativecommons.org/licenses/by/4.0/

A procedure for Web Service Selection Using
WS-Policy Semantic Matching

Maryam Amiri Kamalabad1, Farhad Mardukhi2, Naser Nematbakhsh3

1,3- Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Isfahan, IRAN.
(m.amiri@sco.iaun.ac.ir)
2- Computer Engineering and Information Technology Group, Faculty of Engineering, Razi University, Kermanshah, IRAN

Received (2019-12-27) Accepted (2020-04-12)

Abstract: In general, Policy-based approaches play an important role in the management of web
services, for instance, in the choice of semantic web service and quality of services (QoS) in particular.
The present research work illustrates a procedure for the web service selection among functionality
similar web services based on WS-Policy semantic matching. In this study, the procedure of WS-
Policy publishing in the UDDI registry was also described. The approach, which is used to represent
the policies, is thus represented as semantic trees, and in this representation, measurable quality
attributes are considered; and the certain matching operations are used to identify the similarity
match via match function or similarity distance function. The illustration of semantic concepts and
rules during policy matching, which is not possible by using a mere semantic concept, leads to
better web service matches. The proposed approach has been validated through various tests that
can evaluate the similarity of large and arbitrary sets of measurable quality attributes. We also
compared the proposed procedure with the other ones. The proposed procedure for web service
choose, which uses WS-Policy semantic matching, can be more effective to solve different problems
like selection, composition, and substitution of services.

Keywords: Ontologies, Rule, Semantic Matching, Service Selection, UDDI, WS-Policy

I. INTRODUCTION

Web service semantic matching will
reflex the similarity degree between

different concepts among ontologies, rules,
and similarity criteria in order to find suitable
semantic web services. These services
accommodate the requirements of a requester
that can be a user, program, or another service
among numerous advertised web services[1].

Service Oriented Architecture (SOA)
can compose multiple services with various
functional properties and make a composed
service with a larger function to perform a
larger unit of work (tasks). But each of them
has different non-functional properties (ex.

different data values of response time), so
non-functional properties play a major role
in all web service-related tasks, especially
in determining the success or failure of the
composed service [2], [3].

Thus, monitoring and controlling the
quality properties of web services are quite
of essence to establish an ensured proper
behavior and expected QoS stability level. In
addition, the successful integration of the large
service-oriented architectures in distributed,
heterogeneous and dynamic environments
depends on supporting quality of service
(QoS), management operations of web
services at runtime, e.g. QoS-based service
selection, QoS negotiation, adaptive web
services composition and policy management

How to cite this article:
Maryam Amiri Kamalabad, Farhad Mardukhi, Naser Nematbakhsh. A procedure for Web Service Selection Using WS-Policy
Semantic Matching. J. ADV COMP ENG TECHNOL, 6(2) Spring 2020 : 91-106

https://creativecommons.org/licenses/by/4.0/

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

92							 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

[4].
Policies are used to express non-functional

properties like the quality of service requirements.
They can be applied in different phases of the web
service life cycle including design, deployment or
runtime [5]. Policies may consist of one or more
assertions defining how web services should work
and determine the web service behavior. They
are associated with a variety of resources like a
certain service or endpoint through using the
Web Service Description Language (WSDL) that
describes functional properties of a service or
using other mechanisms defined in a WS-Policy
attachment [4].

To select a service, the user should consider
the policies; otherwise, he would encounter
numerous services with similar functions, many
of which may not be matched with the requester’s
policies and consequently not meeting its QoS
requirements [6].

Another issue rising here is that matching the
requester's business policies with web service
policies is done syntactically; therefore, no perfect
matching is achieved and lack of semantic features
causes no compatibility matching between the
QoS policies regardless of their being equivalent
and compatible. Thus, the importance of semantic
matching becomes apparent and can be achieved
by using semantic web technologies such as
ontologies and added semantic information.
Moreover, the semantic policies facilitate service
negotiation, improve policy monitoring and
enable more accurate intersections compared to
syntactic approaches [7].

In Service-Oriented Architecture (SOA), web
service flexibility, scalability, dynamic selection
and composition of services are of significance.
Semantic web technologies transform web from
passive state to positive state and lead to dynamic
management of services, particularly substituting
current services in composite services by a new
service for instance, a service having better and
more compatible quality attributes, dynamically
and automatically at run time [8].

Semantic matching algorithms were
introduced to focus on matching the large-size or
large-number ontologies. During the matching
process, it is necessary to exchange information;
therefore, a correspondence must be found
between different concepts to select the best
one. It is impossible to perform this manually;

especially in dynamic environments such as the
semantic web. Hence, there is a need for automatic
matching algorithms [9].

This paper is the extension of the previous
published paper [10]. The present paper provides
a comparison between the present research work
and some related studies and suggests more
motivating examples so as to underline the need
and usefulness of rules in the matching process
and explains the proposed algorithm with a
motivating example using transforming rules
and explains the time complexity of the proposed
algorithm and evaluates it with more tests. Also
importance of the critrion of similarity considered
in our work through test has been presented. This
paper is extended through explaining a method
for publishing WS-policies in the UDDI registry
and a procedure for selecting web service based
on proposed WS-Policy semantic matching
algorithm and also importance of the proposed
algorithm in the web service select procedure has
been explained. Moreover theoretical defining
semantic distance that was as the future work of
previous published paper and the algorithm using
semantic distance has been presented.

The rest of the paper is organized as follows.
Section 2 provides relevant research studies.
Section 3 describes the semantic web and SWRL.
Section 4 exemplifies the proposed approach.
Section 5 describes the evaluation of the approach.
Section 6 presents a new tuple for publishing
WS-Policies in UDDI registry and how to use it
to select appropriate service. We also compare
issues of this section with other related works.
Finally, the conclusion comes in section 7 and
future research work is proposed.

II. RELEVANT RESEARCH STUDIES

Some studies (e.g. Bellur & Kulkarni, 2007;
Plebani & Pernici, 2009) proposed an approach
to match the web service functional properties
based on comparing the service profiles assessing
the similarity among the profiles in accordance
with the concept matching the bipartite graph.
Khanam and Yong (2016) have proposed a
scheme for semantic web service discovery
that utilized a combination of similarity-based
method with WSDL specification and ontology
using the concept matching the bipartite graph. In

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020	 				 	 	 	 93

Jiang (2013), the semantic web service functional
properties matching algorithm was suggested
based on the semantic distance.

Brahim et al. (2012) have presented a semantic
approach for specifying and matching the two
web service security policies (WS-SP) using an
OWL-DL ontology and the execution of SWRL
rules. Speiser (2010) proposed an approach
that meets matching security requirements and
capabilities based on their actual meaning by
description and semantic annotations to the WS-
Policy documents. Also, he demonstrated that a
syntactic–based mechanism of security policies
fails to match two compatible policies. OWL
language is not sufficient to handle granularity
mismatches; however, the OWL reasoners can
extract more relationships and knowledge and
match them. In Ben Brahim, Chaari, Ben Jemaa
and Jmaiel, (2012), authors presented an approach
capable of considering several capabilities
in combination, matching a single security
requirement using the SWRL and resulting in a
more flexible matching of security assertions.

Harb et al. (2013) also proposed a heuristic
algorithm based on greedy technique and genetics
for nonfunctional based service matching. Jagtap
and Patil (2016) have proposed a mathematical
model with the help of Hidden Markov Model
to describe the quantifiable metrics regarding
quality evaluation by measuring the QoWS of a
given web service and to select ideal web service
in terms of QoS parameters. In Badr, Abraham,
Biennier and Grosan (2008), the authors
introduced a weighting coefficient allocated to
each of the QoS features; thus, the importance of
quality for the service features is specified and a
more appropriate service is selected based on user
preferences. Li and Horrocks (2003) proposed an
approach for matching non-functional attributes.
In their approach, the inferences were done only
by description logics; however, our approach
is more flexible due to using domain rules and
ontologies for matching. The rules cannot fully be
inferred by using description logics alone so that
the rules are expressed by SWRL as a major key
in our approach.

In Chan Oh, Woon Yoo, Kil, Lee and Kumara
(2007), a semantic web service composition
algorithm was suggested to identify the
relationships among different parameter types
during the service composition process based on

flexible parameter matching framework.
Velasco-Olvera, While and Raju (2014) have

put forth a web services adaptation process study
at policy layer and represented mismatches of
nonfunctional like QoS using WS-Policy standard
in web service composition. They have also
proposed a model to resolve the incompatibilities
automatically through adaptors to enhance
interoperability in web services. Considering these
mismatches in this layer, they have expressed that
the compatibility of the two web service policies
must be matched with requirement attributes
of another service policies. Chaari, Badr and
Biennier (2008) developed the WS-Policy
specifications by adding different components
with regard to measurable quality attributes and
presented as an ontological model. Moreover,
they defined a general QoS ontology and used
domain rules for matching the QoS attributes.
They introduced an algorithm to evaluate two
sets of measurable attributes according to the
compatibility policies of ontological concepts
and rules. After this, they explained a pattern
for publishing QoS-based Policies in the UDDI
registry and illustrated a procedure for selecting
web services using QoS Policy matching. Herein,
the domain rules and ontological concepts were
also used, and our matching algorithm is in a
more flexible and extensive manner, and also our
selection procedure is more efficient.

Kritikos and Plexousakis (2006) developed
a model as several facts for the QoS based on
ontological concepts. They introduced a semantic
QoS metric matching algorithm inferring the
similarity between two different metrics. In the
present research, the QoS descriptions were used
based on the ontological concepts.

There are some studies in the field of web
service selection based on the quality of service
such as Fariss et al. (2018) compared Sort Filter
Skyline algorithm and Branch-and-Bound Skyline
algorithm and proposed that these algorithms
can be used to select the best services according
to requester’s requirements among the same web
services functionality. In fact, these algorithms
limit the great number of the same web services
functionality. Chandra and Niyogi (2019) and
Dahan et al. (2019) introduced solutions for we
service selection process based on non-functional
properties using Artificial Bee Colony algorithm.
Singhal et al. (2019) introduced a solution for

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

94							 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

microservices discovery and selection based on
the quality of microservices using data mining
techniques such as association analysis and
K-means clustering algorithm. Wang et al. (2017)
suggested a two-phase decisions approach that
is named ISAT to select web service. In the first
phase, they considered some parameters and used
convex hull technique and strict rules to obtain
reliable web services and search space is limited.
In the second phase, the optimal web service is
selected among reliable web services.

Briefly, the main differences between our
work and the previous relevant papers based on
evaluation factors are shown in tabular form (see
table I):

TABLE I
MAIN DIFFERENCES BETWEEN PROPOSED

WORK AND RELEVANT RESEARCH STUDIES
Citation Evaluating factors considered

1

Bellur & Kulkarni, 2007;
Plebani & Pernici, 2009;
Khanam and Yong (2016); Jiang
(2013);

Matching the web service
functional properties [11], [12],
[13], [14]

2. In Chan Oh, Woon Yoo, Kil,
Lee and Kumara (2007)

semantic web service
composition[22].

3.

Harb et al. (2013); Jagtap and
Patil (2016); In Badr, Abraham,
Biennier and Grosan (2008); Li
and Horrocks (2003);

Matching the web service
nonfunctional properties[18],
[19], [20], [21]

4.
Brahim et al. (2012); Speiser
(2010); In Ben Brahim, Chaari,
Ben Jemaa and Jmaiel, (2012).

Semantic Matching the web
service security policies (WS-SP)
[15], [16], [15]

6.

Fariss et al. (2018); . Chandra
and Niyogi (2019) ;Dahan et al.
(2019); Singhal et al. (2019) ;
Wang et al. (2017) ;

we service selection process based
on Matching non-functional
properties[25],[26],[27],[28],[29]

5. Chaari, Badr and Biennier
(2008) ;

Semantic Matching the web
service measurable attributes
according to the compatibility
policies, service selection
procedure using this semantic
matching [8]

6 Our Proposed work

Semantic Matching measurable
attributes as WS-Policy structure,
flexible ,extendable, Low
probability of failure in matching
two WS-Policies , web service
selection procedure using the WS-
Policy semantic matching ,to
compare this procedure with
number 5

III. SEMANTIC WEB AND SWRL

Ontology specifies a conceptualization of
a specified domain in terms of concepts along
with their properties, instances, restrictions
and relationships in a machine-understandable
manner using a semantic web technology like
Web Ontology Language (OWL). It is one of the
semantic reasoning standards using description

logics and relationships between concepts. In
this regard, new knowledge can be inferred and
a knowledge base can be provided based on the
concept. The OWL can explicitly describe how
vocabularies are equivalent or different from each
other. It is of benefit when the same concepts are
described with different terminologies[1].

Using the OWL reasoning, more relationships
can be inferred based on properties such
as inversion, symmetry, and transitivity,
consequently resulting in the knowledge discovery
[16]. For example, the OWL-Q ontology consists
of some concepts to describe and model the QoS
information and presents the relationships among
the QoS properties. Moreover, ontologies of time,
currency, and operator were also developed [24].

Semantic Web Rule Language (SWRL) is one
of the semantic reasoning standards and is used
to express deductive knowledge and improve the
OWL language. It is suitable to express combined
rules as conjunctive and atomic ones as a logic
form of if….then and uses the terms of the OWL
concepts [30].

Nowadays, the use of ontology-based
systems and in particular adding rules has been
increasingly growing. Many the QoS attributes
can be expressed by their related metrics. The
syntactic matcher and OWL reasoners cannot infer
and identify terms indicating the same concept,
deposit the fact that the assertions are equivalent.
Using ontological concepts and domain rules can
make this identification possible. Thus, the rules
are used to infer new knowledge and achieve more
information about the QoS attributes that cannot
be achieved through ontological concepts. The
QoS concepts-based domain knowledge is to be
completed by domain rules [8], [6]. For example,
since delay concept is the same as latency concept
in the ontology domain and regarding the domain
rules, the result of the computation delay metric
and response metric specifies the performance
attribute. Therefore, the matching process is
correctly performed, and the identification of the
relationships between attributes and their metrics
would be possible. If the rules are not used, many
semantic web capabilities cannot be considered.
In this matter, there are many rules that Table II
represents some of them [31].

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020	 				 	 	 	 95

Rules QoS Attributes
 Execution time +Network time Response time
process time +Transfer time +Latency time Response time
Total time taken – requested time Response time
Number of successful transacrions /total number
of transactions

Integrity

number of Ack message/number of Requested
message

Accessibility

number of Acknowledgements received /total
number of requests sent

Accessibility

Total number of enviroments the web service runs
/ total number of possible enviroments that can be
used

Interoperability

number of response message/number of
Requested message

Successability

Uptime/(Up time +Down time) Availability
1-Down time /measured time Availability
success invocation /total invocation Availability
1-Probability Of Failure Reliability
1-(system failure rate +process failure rate) Reliability
enactment cost + realization cost Cost
The number of success request / the number of
request

Reliability

success access rate Reliability
The total number of success access rate / access
rate

availability

Real throughput /theoretical throughput Efficiency
Max(number of requests processed by service

provider in measured tim)/measured time
Max Throughput

1-#failed requests / #total requests Accuracy
Sum of the end user’s ranks on a service’s
reputation/the number of times service grads

Reputation

Response time + latency performance
The sum of success access rate ,failure access rate
and bounce access rate

Access rate

Total number of bounced web services/ Total
number of bounced web services +Total number
of invoked web services

bounce access rate

Successful execution/called for execution success access rate
1- failure access rate success access rate
Failed web services/ (failed web services
+successfully invoked web services+ bounced
web services

failure access
rate

The rules can be applied by the inference
engines like JESS, through which new knowledge
can be inferred and added to the concept-based
knowledge base. The inferred information can be
used separate from the asserted information . As
a result, a rich domain which could not be created
with description logic is created using ontologies
and rules [30].

IV. A SEMANTIC APPROACH USING WS-
POLICY

1. WS-Policy and Policy Compatibility
Evaluation

There are various web service non-functional
properties which especially contain the QoS
attributes. They vary from one domain to another.
In order to manage non-functional properties,
a structured presentation is required. Quality
properties can be described and displayed
using the WS-Policy. There are different XML-
based structures of WS-policy, facilitating

interoperability between organizations which are
established as the standard. In this structure, its
associated assertion is defined before defining an
attribute or its associated metrics. An assertion
specifies a property of a behavior and determines
the domain of each attribute which is identified by
a qualified name (Qnames consist of namespace
URI and local part). In this structure, one or more
assertions are grouped by ALL elements and
constitute one or more alternatives. Assertions
act as a conjunction in an alternative. Alternatives
are grouped by An Exactly element and act as
disjunction [32].

According to the structure, when two
policies are matched with each other at least
two alternatives are compatible with each other.
In syntactical matching, two alternatives are
compatible or equivalent if, there exists an
equivalent assertion for each assertion in both
alternatives. This would necessitate one-to-one
matching and the matching process would be
time- consuming and complex. In the semantic
matching with considering assertions as a
requirement or capability, the matching process
would be simpler and more specified [6].

Two QoS policy alternatives A and B, CAset
and RAset, are respectively defined as capability
assertions and requirement assertions of an
alternative. The compatibility between two
alternatives is defined as [5]:

 (1)

2. Semantic Tree
In the first step, we introduce the structure of

policy (WS-Policy) as a semantic tree instead of
an XML format. Each node expresses a concept.
Here, the first node takes policy concept and
accordingly the structure is related to an OR
element. This operator is related to one or more
ALL elements and each element is related to one
or more assertions and each assertion is associated
with an attribute or its relevant metrics (Figure 1).
Each node has specifications to allocate different
roles to each. For example, consider the following
specifications:

 Type: A group of keywords are semantically

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

96							 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

relevant to each other under a name which is
known and called type. It determines the type
of concepts like policy, operator, assertion and
attribute.

Keyword: Each type has instances. Each
instance is called a keyword. It determines the
instance of concept. Examples include RTassertion
and response time.

The semantic tree has associated ontologies.
In fact, there exists a knowledge base in the
background of the semantic tree, according to
concepts and rules.

 Policy

OR
AND

AND

Assertion

 Attribute

Assertion Assertion

AND

Assertion Assertion

Fig 1. A Semantic Tree of Basic Structure of WS-Policy

3. Flexible Semantic Matching
In the semantic matching approach, a similarity

criterion is considered and is usually defined in
a range varying from zero to one. Hence, non-
functional properties can be categorized into two
general categories: qualitative and quantitative
[3].

The semantic similarity of the QoS attributes
focuses on numerical values. Therefore, we
consider the domain measurable quality attributes
for matching policies (e.g. reliability, availability,
response time, performance, stability, accuracy,
capacity, robustness, and cost, scalability,
throughput, efficiency, accessibility, successability,
reputation, consistency and delivery time).

In Real- time systems, both the computation
results and time spent to achieve theses results are
of paramount importance.; The similarity criterion
is considered here is the difference between the
data value of two similar attributes. Based on
the data value difference (d) of two attributes, a
value from the interval [0, 1] is assigned and it
determines the degree of similarity. Values in
Table III and Table IV were considered for this
kind of systems.

TABLE III
EXAMPLES OF QoS SIMILARITY

Successibility
(%)

Response
time (ms)

Availability
Reliability

(%)

similarity

d=< 1 d=< 2 d=<0.001 1
1<d<=2 2<d<=4 0.001<d<=0.01 0.8
2<d<=3 4<d<=6 0.01<d<=0.1 0.6
3<d<=4 6<d<=8 0. 1<d<=0.9 0.4

4<d 8<d 0.9<d 0.2

TABLE IV
EXAMPLES OF QoS SIMILARITY

Documentation Best
practices

throughput Latency
(ms)

similarity

d = 1 d=< 0.5 d=< 0.5 d=< 0.05 1
d =2 0.

5<d<=1
0. 5<d<=1 0.05<d<=0.1 0.8

d =3 1<d<=1.5 1<d<=1.5 0.1<d<=0.2 0.6
d =4 1.5<d<=2 1.5<d<=2 0.2<d<=0.4 0.4

 5 <=d 2<d 2<d 0.4<d 0.2

Matching two semantic trees is done based
on generic Boolean function match (p1, p2) that
determines whether the two parameters of p1 and
p2 match [22]. Formally:

Definition 1 (match): A Boolean function,
match (p1, p2), returns True

If: p1.type = p2.type and p1.keyword = p2.keyword
OR
In some cases If: p1.type = p2.type and p1.

Keyword != p 2. Keyword)
In our approach is If : p1.type = p2.type and p1.

Keyword = capability and p 2. Keyword = requirement
When the Boolean function "match (p1,p2)”

returns True, it is said that the parameter p1
matches parameter p2. It is called flexible
parameter matching.

As already mentioned in the previous paper
published on the section of future studies [25],
the present approach can be also adopted based
on the semantic distance function of between
Concepts, Dis (c1.c2), which determines whether
the two concepts, namely c1 and c2, are similar
to each other [33]. In this paper, we introduce it
theoretically.

Definition 2 Dis (c1, c2): the shortest path of
all chain relationships between two concepts C1
and C2 in the ontology. The semantic similarity
distance formula is described in [33].

The Function Dis (c1, c2) returns values
between 0 and ∞. The shorter the distance, the
greater the similarity between the two concepts
c1.

So, if there are not any similarities between
the two concepts, this function approaches ∞

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020	 				 	 	 	 97

and if the two concepts have the same semantic
similar to each other, then there would not be any
distance between them and therefore the function
returns a value of 0.

4. QoS-based Policy Matching
We have proposed an algorithm, which can

evaluate the degree of similarity between the two
web service policies based on measurable quality
attributes [10]. With a motivating example, we
have illustrated this and then made a comparison
between the proposed approach and another
approach from related work in measurable quality
attributes similarity [8].

For instance, a provider provides an execution
time of 4 seconds, network time of 1 seconds, and
also a set of QoS containing:{Availability=92.78%
,Successability=90%, Reliability=87.56%}. On the
other hand, a requester may require a response
time of 5 seconds or a set of QoS containing:
{ Availability=92.7%, Successability=92%,
Reliability=87.56% }, as shown in figure 2.

</wsp: policy>
 <wsp: exactly One>
	 <wsp:all> Execution time = 4000

milliseconds
	 Network time = 1000milli seconds
	 <wsp: all>
	 <wsp: all>
 Availability=92.78,Successability=90,

Reliability=87.56
 <wsp: all>
 <wsp: exactly One>
</wsp: policy>

(a). Provider capability in WS-Policy

</wsp: policy>
 <wsp: exactly One>
	 <wsp: all>
		 Response time =5000 milliseconds
	 <wsp: all>
	 <wsp: all>
 Availability=92.7, Successability=92,

Reliability=87.56
 <wsp: all>
 <wsp: exactly One>
</wsp: policy>

(b.) Consumer requirement in WS-Policy

Fig 2. A sample of the WS-Policy matching problem

The algorithm contains six principal functions
that act recursively. Each function is defined as
follows:

Function (1) “Get Similarity Policy”: To
compare the QoS properties described in two
WS-Policy documents, first each WS-Policy
document is represented as two semantic trees.
One of them expresses requirement assertions
of a policy and the other expresses capability
assertions. In the next step, the second function
is called for matching the two trees. Function
(2) would represent their similarity in a range
varying from zero to one. Additionally, the first
function calls the second function for matching
the other trees and according to the compatibility
of policies, it would normalize the obtained values
and finally return the similarity degree of policies
in the interval [0, 1], as shown in figure 3.

The value zero indicates a lack of similarity
between the two policies and value one indicates
that two policies have the highest degree of
similarity.

Algorithm1. WS-Policy Semantic Matching Algorithm
1. Float ontology. get similarity policy (p1,p2)
2. {T1=Make a tree for Cset(p1);
3. T2=Make a tree for Rset(p2);
4. T3=Make a tree for Cset(p2);
5. T4=Make a tree for Rset(p1);
6. y= similarity match (Tree T1, Tree T2)
7. x= similarity match (Tree T3, Tree T4)

 IF(y==0||x==0) then Sim=0
8. else
9. Sim = (y+x)/2
10. Return (Sim);
11. }

Fig 3. WS-Policy Semantic Matching Algorithm

The semantic trees of the user requirement and
the provider capability pertinent to our example
are illustrated in figures 4.

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

98							 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

Network
time

(a). A Semantic tree of the provider capability based on
 Basic Structure of WS-Policy

Type: attribute
Keyword: successability
Value: 90%

Policy

OR

AND AND

RTAssertion

RI

SUC

AV

Availability

 Reliability

Successability
Execution

time

Type: Policy
Keyword: Capability

Type: Assertion
Keyword: Successability

 (b). A Semantic tree of the user requirement based on
Basic Structure of WS-Policy

Policy

OR

AND AND

RTAssertion

Response
time

RI

SUC

AV

Availability

Reliability

Successability

Type: Policy
Keyword: Requirement

Type: Assertion
Keyword: Successability

Type: attribute
Keyword: successability
Value: 92%

Fig 4. A sample of the WS-Policy matching problem

Function (2) “Similarity Match”: As shown in
figure 5, this is to take one Semantic tree of the
provider capability from concept WS-Policy and
one Semantic tree of the provider capability from
concept WS-Policy as input. The correspondence
between the concepts and their matching concept
in the semantic trees is done hierarchically. Based
on the definition of function match (p1, p2) with
the same type of concepts at the first level, if the
keywords of the first and the second concepts
are defined as capability and requirement
respectively, this function will call the next
function for matching the concepts at the next
level. Otherwise, the matching process will not
be conducted. In our example, types are equal to
“policy” and keywords are equal to capability and
requirement respectively. Therefore, Function (3)
“Similarity Node” is called.

Function (3) “Similarity Node”: This takes one
operator “exactly one” from semantic tree 1 and
one operator “exactly one” from semantic tree 2
as input. Since the types of concepts are similar,
according to the concept of operators “ALL” in the
next level, a matrix will be first created with the
same dimension number of sets in the two trees
and then, it calls the next function for each of the

sets. Next, the degree of similarity for the sets is
returned and stored in the matrix. Finally, with
respect to the two things, (one concept of operator
“exactly one” and other the higher the normalized
value is, the better level the QoS is), the maximum
values in the matrix would be considered as the
degree of similarity for two trees.

Function (4) “Match Assertion”: This is to
take each of assertion concepts from the sets
belonging to semantic tree 1 and each of assertion
concepts from the sets belonging to semantic tree
2 as input. If the concepts are of the same type and
provided that the keywords of concepts are also
the same according to the compatibility of the two
sets, the next function will be called for the next
level trees. In our example, assertions belonging
to semantic tree 1 and tree 2 are RT Assertion,
RI, AV, and SUC. As long as concept types are
equal to the assertion, keywords of concepts are
consequently checked. As one instance, since
keywords of an assersion type are equal to RT
Assertions, the function (5) will be called and it
returns the degree of attributes similarity. If all
assertions of the first set satisfy assertions of the
second set, a normalized degree of similarity is
out of function 4. Otherwise, it would be zero.

Function (5) “Match Child”: This takes as
input two concepts from semantic trees. If the
types of concepts are the same, which in our
example are “attributes”, then semantic reasoning
will be performed and transformation rules will
be used; because an attribute can be expressed
as its associated metrics. If new knowledge is
inferred, then each of them will be represented as
separate semantic trees. In the next step, when the
keywords of concepts are the same, conversions
must be done if the dimensions are different.
Finally, the specification of values determines the
data value difference between the two attributes
and calls for the next function. As an instance in
tree 2, the attribute “response time” is expressed
as metrics of network time and execution time.
Hence, new knowledge is inferred named
response time since keywords of concepts in trees
are equal to response time and function “sim1” is
called.

Function (6) “Sim 1”: Additionally, a function
is defined for each of QoS attributes to consider
various numerical ranges for different data values,
assign a value from the interval [0, 1] for each of
them and determine and return the similarity

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020	 				 	 	 	 99

degree of the two attributes according to the
data value difference (d), which is as function’s
input. A single case example of the response time

attribute is shown in Figure 5. Since (d) is smaller
than 2, the function returns as output value 1. It
means that the QoS level is acceptable.

1. Function similarity Match (Tree T1,Tree T2) //

Trees Matching
2. { Node1= get root(T1) ;
3. Node2= get root (T2) ;
4. IF((node1.Type == node2 .Type) &&
 (node1.keyword == Capability)&&
 (node2.keyword == requirement) then {

5. For child do
6. Return similarity node

(node1,node2)}};
7. Function similarity node (node1,node2) //

Operator Matching
8. { IF (node1.Type == node2 .Type) then
9. { l1=degree (node1)//number Child of node1
10. l2=degree(node2)//number Child of node2
11. For all of child do{
12. For (i=0 ; i< l1; i++){
13. For (j=0; j<l2; j++)
14. For all child do{
15. Matrix [i][j]= Match

assertion (node1(i), node2(j) ;}}}
16. Return Max matrix [i][j]
17. }};
18. Function Match assertion (assertion list1[],

assertion list2[]) // Assertion Matching
{

19. If (assertion list1 [].type == assertion list2 []. Type)
then

20. { find=true ; k=0 ; z=0;
21. While (find) and (k< length (assertion list1[]))
22. { g=0 ; Find1= false;
23. While (not find1) and (g< length

(assertion list2[])
24. {
25. IF (assertion list1[k].keyword ==

assertion list2[g].keyword) then
26. { for all of Child do // leafs
27. s= match child (node1,node2)
28. If (s==0) then { g++
29. else
30. {z= s+z;Find1 = true ; k++}}
31. Else
32. g++
33. }
34. If(g == length (assertion list2[]) then
35. { find = false; z=0};
36. } };
37. z=z/length (assertion list1[])
38. Return(z);
39. }};

40. Function match child (node1,node2)// Attributes

Matching

{
41. IF (node1.Type== node2 .Type) then{
42. As1=transforming rule(assertion list1[k]);
43. As2= transforming rule(assertion list1[g]);
44. If As1!=null then{T5= make a tree for As1 and

node1=get root(T5)};
45. If As2!= null then{T6= make a tree for As2

and node2=get root(T6)};
46. IF node1.keyword == node2. Keyword Then
47. { If (node1.unit)!=(node2.unit) then convert

unit(node1,node2)
48. d = |node1.value- node2.value|
49. Select case node1.keyword
50. Case reliability
51. s=sim1(d)
52. Case availability
53. s=sim2(d)
54. end select
55. Return (s);
56. Else
57. Return (0)}}};

1. Function sim1 (d) {

2. If d=< 2 then s=1

3. If 2<d<=4 then s=0.8

4. If 4<d<=6 then s=0.6

5. If 6<d<=8 then s=0.4

Fig 5. Functions of the WS-Policy Semantic Matching Algorithm

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

100							 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

As was mentioned previously, we can use
semantic distance function Dis (C1, C2) [26]
for Matching of the proposed approach. In the
present QoS-Based policy Algorithm, lines 4, 8,
19, 25, 41 and 46 would be substituted as follows:

Line 4 in Function similarity Match is replaced
with IF Dis (node1. Type, node2. Type) == 0 &&
Dis (node1.keyword, Capability) == 0 && Dis
(node2.keyword, requirement) == 0 then

Lines 8, 41 are replaced with IF Dis (node1.
Type, node2. Type) == 0 then

Line 19 is replaced with IF Dis (assertion list1
[].type, assertion list2 []. Type) == 0 then

Line 25 is replaced with IF Dis (assertion list1
[k].keyword, assertion list2 [g].keyword) == 0
then

Lines 46 is replaced with IF Dis (node1.
keyword, node2. keyword) == 0 then

5. Complexity Analysis of the Proposed
Algorithm

The time of complexity of the matching QoS-
based policy algorithm is computed with the
inclusion of several tasks as follows:

“Get similarity policy” functionality: the
time complexity of this function depends on the
“similarity mach” functionality. The “similarity
node” functionality is done twice: once for
capability assertion concepts in the first WS-
Policy with requirement assertion concepts
in the second WS-Policy, once for capability
assertion concepts in the second WS-Policy with
requirement assertion concepts in the first WS-
Policy.

Similarity mach functionality: the time
complexity of this function depends on the
“similarity node” functionality

“Similarity node” functionality: l1 denotes
the number of AND operators in one tree and l2
denotes the number of AND operators in another
tree. This function calls the “Mach assertion”
functionality l1* l2 times. Time complexity of the
search of a maximum value in the created matrix
is bounded by O (l1*l2).

“Match assertion” functionality: assertion list1
denotes the number of assertions in one set in
one tree and assertion list2 denotes the number
of assertions in one set in another tree. K denotes
the number of attributes in one assertion in one
tree and g denotes the number of attributes in one
assertion in another tree. This function calls the

“mach child” function for two assertion list1 and
assertion list2 concepts assertion list1*assertion
list2 *k*g times.

 “Mach child” functionality: this function O
(1) time is executed.

Hence the total time complexity of the
matching QoS-based policy algorithm is
simplified as: l1*l2* assertion list1*assertion list2
*k*g.

The time complexity of this algorithm is
polynomial, and considering the worst case,
where l1=l2= assertion list1=assertion list2
=k=g= N, the time complexity of the proposed
algorithm is bounded by O (N6).

6. Comparison between the proposed
approach and other related approach

Chaari, Badr, and Biennier (2008) did not
consider the WS-Policy structure and they
introduced an algorithm to compare only one
set of provider measurable capability attributes
and one set of consumer measurable requirement
attributes according to the compatibility policies
of ontological concepts. Moreover, the algorithm
result was expressed as false that signals a lack
of compatibility and the similarity degree is
equal to 0 or as true that means the two sets are
compatibility and similarity degree that is equal to
1, while our proposed approach considers the WS-
Policy structure and our algorithm compares and
calculates two WS-Policy structures according to
the compatibility policies of ontological concepts.
As a result, we can calculate similarity degree and
enormous measurable QoS, therefore, our work is
way more extensible. Besides, similarity degree is
expressed in the interval [0, 1] that value 1 means
the QoS level is highly acceptable and value 0 is not
acceptable. Since our work enjoys more flexibility
and with respect to its high extensibility, the
algorithm can affect real-time systems and high
probability can find web service with acceptable
service quality level.

V. EVALUATION

To evaluate the proposed algorithm obtaining
from the flexible parameter matching framework;
several experiments were performed using
different data sets. It was shown that the proposed
approach can evaluate the degree of similarity

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020	 				 	 	 	 101

in large and various sets of measurable QoS
attributes for the requester and provider.

In all experiments, let us assumedly consider
several measurable QoS attributes of provider
and requester-considered as capability (C) and
requirement (R) to generate a large number of
WS-Policies as the experimental test input data
sets. Some of them are shown in tables IV, V,
VI, VII, VIII, IX, X and 11. Furthermore, Table
2 and Table 3 represent the degrees of similarity
according to data value difference (d) of each
attribute.

Test1. In the first experiment, we evaluated
the similarity of provider policy and requester
policy, each of which containing at most a set of
an attribute. Some datasets are shown in Table
V and table VI. The experiment was carried out
on 25 datasets. For example with regards to the
data set (1), similarity value of provider C QoS
and user R QoS is obtained 1 and similarity value
of user C QoS and provider R QoS is obtained 1
and normalized similarity of policies is obtained
1. As it is shown in Figure 6, the values obtained
in experiments are equal to the desired and
acceptable values

TABLE V
 DATA SETS OF TEST1

User QoS attributes Data
set

Requirement Capability
Response time=133.33 - 1
availability=87 throughput=6.3 2
Reliability=90.85 latency=11 3
- Best practice =84.5 4
Response time=160 - 5
Response time=210 documentation=8 6

latency=11 Reliability=79.999 7

TABLE VI
DATA SETS OF TEST1

Provider QoS attributes Data
set

Requirement Capability
- Response time=135.33 ١
throughput=6 availability=86.5 ٢
latency=11.33 Reliability=89.99 ٣
Best practice=84 - ۴
- Response time=155 ۵
documentation=6 Response time=200 ۶

Reliability=80 latency=10.67 ٧

Fig 6. Results of test1

Test2. In the second experiment, each policy
contains multiple sets of an attribute. Experiment
was performed on 30 data sets. Some datasets are
shown in table VII and table VIII. As it is shown
in Figure 7, the experiment values are equal to the
desired and acceptable values.

TABLE VII
 DATA SETS OF TEST2

Provider QoS attributes Data
set

Requirement Capability
{Availability=95.9}
{best practice=100}

{Response time=102}
{succcessibility=97}

1

{Response time=133 }
{Response time=133.86}
{documentation =10}

{ succcessibility=95}
{Reliability=89.99}

2

- {Reliability=90.75}
{Availability=80}

3

TABLE VIII
DATA SETS OF TES

User QoS attributes Data
set

Requirement Capability
{Response time=101.5}

{successibility=96}
{Availability=96.03}
{best practice=99.5}

1

{Accuracy=88.5}
{Reputation=90 }

{ succcessibility=97}

{Response time=133.33}
{documentation= 8}

2

{Availability=80.50} - 3

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

102							 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

Fig 7. Results of test2

Test3. In the third experiment, each policy
contained multiple sets of multi-attributes.
Experiment was conducted on 10 data sets. Some
are shown in Table IX and table X. As shown in
Figure 8, the experiment values are equal to the
desired values.

TABLE IX
DATA SETS OF TEST3

User QoS attributes Data
set

Requirement Capability
{Availability=98.5
Response time=98.75}

{Reliability =98.50
throughput =6.1}

1

{Response time=95.5,
Best practice =84, throughput=8}

{documentation=3} 2

{Response time=102,
Latency=11,successibility=90,
Reliability=86.57}
{Availability=92.78,
Best practice=84}

- 3

{Response time=92.5,
Latency=11,Reliability=91.5 }
{Response time=100,
Latency=11,Reliability=92.99}

- 4

TABLE X
DATA SETS OF TEST3

Provider QoS attributes Data
set

Requirement Capability

{Reliability =95.99
throughput =6.3}

{Availability=102.5
Response time=101.5}

1

{documentation=8} {Response time=95.5,
Best practice=85, throughput=7.7}

2

- {Response time=100, Latency=11,
successability=90 ,Reliability=87.56}
{Availability=92.8,
Best practice=84}

3

- {Response time=95.5,
Latency=11,Reliability=92.85}

4

Fig 8. Results of test3

Test4. In the fourth experiment, if there were
no similarity between the capability of a policy
QoS attributes and the requirement of another
policy QoS attributes, then the two policies would
not be similar and the obtained value was zero as
shown in Figure 9. Its data set is also shown in
Table XI and table XII.

TABLE XI
DATA SETS OF TEST4

User QoS attributes Data
set

Requirement Capability
{Response time=105.5
Reliability=99.99}

{best practice=85} 1

{successibility=95,
Reliability=95.99}

{Response time=95}
{Response time=96}
{documentation=2}

2

TABLE XII
DATA SETS OF TEST 4

Provider QoS attributes Data
set

Requirement Capability
{throughput=8,latency=8}
{latency=9}

{Response time=102,
Reliability=99.99}

1

{Response time=95}
{Response time=90}
{documentation=10}

{successibility=95,
latency=10
Reliability=98.50}

2

Fig9.Results of test4

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020	 				 	 	 	 103

Test5. the critrion of similarity considered in
our work , the data value difference (d) of the two
same attributes, is vital.for this reason, In this
experiment, we have compared the results of our
proposed algorithm with the result of previous
related work from Chaari, Badr, and Biennier
(2008) [5]. The experiment was carried out on 25
datasets. For example, with regards to the data set
shown in table XIII and table XIV, in the proposed
algorithm, the similarity value of provider C QoS
and user R QoS is obtained 1 and similarity value
of user C QoS and provider R QoS is obtained 1
and normalized similarity of policies is obtained
1. As it is shown in Figure 10, the values obtained
in the experiment are equal to the desired and
acceptable values. Whereas, in previous algorithm
[5] similarity value of provider C QoS and user
R QoS is obtained 0 and similarity value of user
C QoS and provider R QoS is obtained 1 and
normalized similarity of policies is obtained 0. It
can be inferred that our work is more and more
flexible and also values are equal to the desired
and acceptable values.

TABLE XIII
DATA SETS OF TEST 5

Provider QoS attributes Data set
Requirement Capability

{throughput=8,
latency=8}
{latency=9}

{Response time=102 ,
latency=10, Reliability=99}

Proposed
research

{throughput=8,
latency=8}
{latency=9}

{Response time=102
,latency=10,Reliability=99}

Previous
research

TABLE XIV
DATA SETS OF TEST 5

Provider QoS attributes Data set
Requirement Capability

{throughput=8,
latency=8}
{latency=9}

{Response time=102 ,
latency=10, Reliability=99}

Proposed
research

{throughput=8,
latency=8}
{latency=9}

{Response time=102
,latency=10,Reliability=99}

Previous
research

Fig 10. Results of test5

VI. A Method for Publishing WS-Policy and a
Procedure for Selection Web Service

A challenge that is still faced in the selection
process of a web service is that in the discovery
process of service one deals with lots of similar
web services functionality that each of them
contains different nonfunctional properties.
This should be addressed considering their
nonfunctional properties. Another challenge
is applying these nonfunctional properties to
enhance the selection of services. To address
this challenge a structure is required to represent
these properties. To represent nonfunctional
properties as lots of sets with the desired and
arbitrary number of qualities of service and also
as various nonfunctional properties, the standard
form of the WS-Policy can be appropriate.

1. A method for Publishing the WS-Policy
The tModel field is used to publish WS-Policy

[]. We define three fields as a tuple named tModel,
tModel =< WS-Policy ID, WS-Policy URL, S-ID>,
this tuple is used to publish WS-policy in the
UDDI registry.

Each WS-policy has a unique code that is
named as WS-Policy ID and is defined as a
distinct file, WS-Policy URL will refer to the WS-
Policy XML file, and finally, each web service has
a unique code that is named S-ID.

2. A procedure for Selecting Web Services
Using WS-Policy semantic matching algorithm

We illustrate our procedure through a simple
scenario of web service substitution. We need to

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

104							 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

replace the similar web service both functionality
and non-functionality.In our research, we would
only focus on the service nonfunctional selection
phase.

First of all, the Selection Engine (SE) sends an
initial request message with the unique Code of
WS1(S-ID) that will be substituted to the UDDI
registry. The UDDI registry does some tasks:
finding tModel, finding services, and finding WS-
Policies. Acceptable WS-Policy is attached to the
WS1.The policy matcher receives WS-Policies
and according to WS-Policies stored in tM files,
and WS-Policy attached to the WS1 acts to match
WS-Policies. Figure 11 shows a glimpse of the
procedure of web service selection.

UDDI Registry

PolicyMatcher Selection Engine
(SE)

tMode

business Service

❶S-ID
❷ID-Policies of
 the ID- WS

❸{S-ID}

Fig11. Exchanging messages between different entities

After this, the Selection Engine (SE) constructs
a table that is named the Selection Table, ST =
(STi, 1<=i<=n), each its row belongs to an STi,
which includes a particular service, a WS-Policy
and, a value. Values can be between 0 and 1 that
are an indicator of the similarity degree. The SE
chooses the service with the maximum value. The
table is shown in Figure 12.

S1 WS-Policy1 0.8
S2 WS-Policy2 1

Sn WS-Policyn 0

 Fig12. Example of the selection table

3. Comparison of the proposed web service

procedure with the other related web service
procedure

There are four advantages in the proposed
procedure in compression with another as follows:

1. In the proposed solution to publish WS-
Policy in the UDDI registry, a new tuple is defined
as tModel that needs three fields, while in the
other solution, the defined tuple, tModel, needs
four fields. Because in the proposed solution,
WS-Policy standard form is used,as known in this
form, all of attributes that requester needs are as
separated sets and no longer quality attributes of
requester need to be searched and grouped as the
sets . Therefore, less information is stored.

2. In the proposed solution, three components
cooperate in selecting an appropriate web service,
while in the other solution, four components
cooperate in selecting an appropriate web service.

3. In the proposed solution, three request-reply
messages among the components are transmitted,
while in the other related search, five request-reply
messages among the components are transmitted.
Therefore, the number of messages is less.

4. In the proposed solution, a web service with
acceptable QoS so more likely is finally selected,
and the real-time system can continue its tasks,
while in the other solution, the service selection
is limit. It is possible that service with requester
quality attributes cannot be accessible, and the
service cannot be selected, and the system cannot
continue its tasks. However, there is web service
with acceptable quality attributes of the requester.

VII. Conclusions and Future Work

Quantitative attributes are one of the most
important subsets of non-functional properties
that can be presented as policies using the
WS-Policy standard document. This immense
range of attributes accommodates the quality
requirements of the service. Syntactic–based
policy matching limits the selection of suitable
services. A Semantic tree is a powerful data
structure which can be used to represent the
concepts. Flexible parameter matching framework
is a significant factor in evaluating the similarity of
web service policies. An approach was proposed
for matching measurable quality parameters
according to the WS-Policy document using
semantic trees, ontologies and rules with regard

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020	 				 	 	 	 105

to flexible semantic matching via match function
or semantic distance function. It is possible to
compare the measurable qualitative attributes of
service arbitrarily in terms of both number and
type of attributes, and to calculate the consistency
of their attributes and their semantic similarity,
and also, according to the semantic similarity
criteria of the attributes, the system is so much
likely to be accessible. Not only these, with fewer
messages, fewer components, and less stored
information, can be selected acceptable quality
attributes Therefore, the proposed procedure is
potentially efficient when choosing a service,
controlling measurable quality attributes of the
composed services and replacing a suitable web
service. In Future studies, we will test the present
mechanism with large and various sets of QoS
attributes based on tree matching using Edit
distance

REFERENCES

1.  Khanam, S.A. and H.Y. Youn, A Web Service
Discovery Scheme Based on Structural and Semantic
Similarity. J. Inf. Sci. Eng., 2016. 32(1): p. 153-176;
Available from: https://pdfs.semanticscholar.org/6913/
bd2f608246972ae38da1a856bea49e8457f7.pdf.

2.  Velasco-Olvera M., W.D., Raju P., Web Services
Adaptation at Policy Layer. International Journal of
Multimedia and Image Processing(ijmip), 2014. 4(3/4): p.
226-233; Available from: https://infonomics-society.org/wp-
content/uploads/ijmip/published-papers/volume-4-2014/
Web-Services-Adaptation-at-Policy-Layer.pdf.

3.  F. Hadjila. QoS-Aware Service Selection based on
Genetic Algorithm. in Proceedings of CIIA'11. 2011. Saida
Algeria: Citeseer.

4.  Badidi, E. and L. Esmahi, A Scalable framework for
Policy-based QoS management in SOA Environments.
Journal of Software, 2011. 6(4): p. 544-553; Available from:
http://www.jsoftware.us/vol6/jsw0604-4.pdf.

5.  Mukhi, N.K. and P. Plebani. Supporting policy-
driven behaviors in web services: experiences and issues. in
Proceedings of the 2nd international conference on Service
oriented computing. 2004.

6.  Chaari, S., et al., Framework for web service
selection based on non-functional properties. 2008: p. 94-
109; Available from: https://hal.archives-ouvertes.fr/hal-
00348511/.

7.  Oldham, N., et al. Semantic WS-agreement partner
selection. in Proceedings of the 15th international conference
on World Wide Web. 2006.

8.  Chaari, S., Y. Badr, and F. Biennier. Enhancing web

service selection by QoS-based ontology and WS-policy.
in Proceedings of the 2008 ACM symposium on Applied
computing. 2008.

9.  Algergawy, A., E. Schallehn, and G. Saake. A sequence-
based ontology matching approach. in Proceedings of 18th
European Conference on Artificial Intelligence Workshops.
2008.

10.  Kamalabad, M.A., et al. Evaluating the similarity
of web service policies using flexible parameter matching.
in Proceedings of 2012 International Conference on
Measurement, Information and Control. 2012. IEEE.

11.  Bellur, U. and R. Kulkarni. Improved matchmaking
algorithm for semantic web services based on bipartite graph
matching. in IEEE international conference on web services
(ICWS 2007). 2007. IEEE.

12.  Plebani, P. and B. Pernici, URBE: Web service
retrieval based on similarity evaluation. IEEE Transactions
on Knowledge and data engineering, 2009. 21(11): p. 1629-
1642; Available from: https://ieeexplore.ieee.org/abstract/
document/4760142.

13.  Khanam, S.A. and H.Y. Youn, A Web Service
Discovery Scheme Based on Structural and Semantic
Similarity. J. Inf. Sci. Eng., 2016. 32(1): p. 153-176;
Available from: https://pdfs.semanticscholar.org/6913/
bd2f608246972ae38da1a856bea49e8457f7.pdf.

14.  Jiang, B. and Z. Luo, A New Algorithm for Semantic
Web Service Matching. JSW, 2013. 8(2): p. 351-356.

15.  Brahim, M.B., et al. Semantic matching of web
services security policies. in 2012 7th International
Conference on Risks and Security of Internet and Systems
(CRiSIS). 2012. IEEE.

16.  Speiser, S. Semantic annotations for ws-policy. in
2010 IEEE International Conference on Web Services. 2010.
IEEE.

17.  Brahim, M.B., et al. Semantic matching of ws-
securitypolicy assertions. in International Conference on
Service-Oriented Computing. 2011. Springer.

18.  Harb, I., M. Ezz, and H. Farahat, A Heuristic
Algorithm For QoS (Non-Functional) Based Service
Matching. International Journal of Computer Science Issues
(IJCSI), 2013. 10(6): p. 132; Available from: https://search.
proquest.com/openview/b034aaa82d6356bd1b8b7d4958f5f
de8/1?pq-origsite=gscholar&cbl=55228.

19.  Jagtap, M.S. and P. Patil, Ideal Web Service
Selection in terms of Response Time and QoS Parameters.
2016; Available from: https://www.academia.edu/
download/54528656/IRJET-V3I7195.pdf.

20.  Badr, Y., et al. Enhancing web service selection by
user preferences of non-functional features. in 2008 4th
International Conference on Next Generation Web Services
Practices. 2008. IEEE.

21.  Li, L. and I. Horrocks. A software framework for
matchmaking based on semantic web technology. in the
proceedings of the World Wide Web 2003.

22.  Oh, S.-C., et al. Semantic web-service discovery and
composition using flexible parameter matching. in The 9th

https://pdfs.semanticscholar.org/6913/bd2f608246972ae38da1a856bea49e8457f7.pdf
https://pdfs.semanticscholar.org/6913/bd2f608246972ae38da1a856bea49e8457f7.pdf
https://infonomics-society.org/wp-content/uploads/ijmip/published-papers/volume-4-2014/Web-Services-
https://infonomics-society.org/wp-content/uploads/ijmip/published-papers/volume-4-2014/Web-Services-
https://infonomics-society.org/wp-content/uploads/ijmip/published-papers/volume-4-2014/Web-Services-
http://www.jsoftware.us/vol6/jsw0604-4.pdf
https://hal.archives-ouvertes.fr/hal-00348511/
https://hal.archives-ouvertes.fr/hal-00348511/
https://ieeexplore.ieee.org/abstract/document/4760142
https://ieeexplore.ieee.org/abstract/document/4760142
https://pdfs.semanticscholar.org/6913/bd2f608246972ae38da1a856bea49e8457f7.pdf
https://pdfs.semanticscholar.org/6913/bd2f608246972ae38da1a856bea49e8457f7.pdf
https://search.proquest.com/openview/b034aaa82d6356bd1b8b7d4958f5fde8/1?pq-origsite=gscholar&cbl=552
https://search.proquest.com/openview/b034aaa82d6356bd1b8b7d4958f5fde8/1?pq-origsite=gscholar&cbl=552
https://search.proquest.com/openview/b034aaa82d6356bd1b8b7d4958f5fde8/1?pq-origsite=gscholar&cbl=552
https://www.academia.edu/download/54528656/IRJET-V3I7195.pdf
https://www.academia.edu/download/54528656/IRJET-V3I7195.pdf

Maryam Amiri Kamalabad et al./ A procedure for Web Service Selection Using WS-Policy Semantic Matching

106							 J. ADV COMP ENG TECHNOL, 6(2) Spring 2020

IEEE International Conference on E-Commerce Technology
and The 4th IEEE International Conference on Enterprise
Computing, E-Commerce and E-Services (CEC-EEE 2007).
2007. IEEE.

23.  Velasco-Olvera, M., D. While, and P. Raju, Web
Services Adaptation at Policy Layer. International Journal
Multimedia and Image Processing (IJMIP), 2014. 4(3/4): p.
226-233; Available from: http://infonomics-society.org/wp-
content/uploads/ijmip/published-papers/volume-4-2014/
Web-Services-Adaptation-at-Policy-Layer.pdf.

24.  Kritikos, K. and D. Plexousakis. Semantic qos metric
matching. in 2006 European Conference on Web Services
(ECOWS'06). 2006. IEEE.

25.  Fariss, M., H. Asaidi, and M. Bellouki, Comparative
study of skyline algorithms for selecting Web Services based
on QoS. Procedia Computer Science, 2018. 127: p. 408-415;
Available from: https://www.sciencedirect.com/science/
article/pii/S1877050918301509.

26.  Chandra, M. and R. Niyogi, Web service selection
using modified artificial bee colony algorithm. IEEE Access,
2019. 7: p. 88673-88684; Available from: https://ieeexplore.
ieee.org/abstract/document/8752353.

27.  Dahan, F., H. Mathkour, and M. Arafah, Two-step
artificial bee colony algorithm enhancement for QoS-aware
Web service selection problem. IEEE Access, 2019. 7: p.
21787-21794; Available from: https://ieeexplore.ieee.org/
abstract/document/8625404.

28.  Singhal, N., U. Sakthivel, and P. Raj, Efficient
Microservices Discovery and Selection Based on QoS
Ontology a Data Mining Approach. International Journal of
Innovative Technology and Eexploring Engineering(IJITEE),
2019. 8: p. 4.

29.  Wang, W., Z. Huang, and L. Wang, ISAT: An intelligent
Web service selection approach for improving reliability via
two-phase decisions. Information Sciences, 2018. 433: p.
255-273; Available from: https://www.sciencedirect.com/
science/article/abs/pii/S0020025517311696.

30.  Plinere, D. and A. Borisov, SWRL: Rule acquisition
using ontology. Applied Computer Systems, 2009. 40(1): p.
117-122; Available from: https://content.sciendo.com/view/
journals/acss/40/1/article-p117.xml.

31.  Ramachandran, M. and Z. Mahmood, Requirements
engineering for service and cloud computing. 2017: Springer.

32.  Bajaj, S., et al., Web services policy framework (WS-
Policy). Policy, 2006.

33.  Jiang, B. and Z. Luo, A New Algorithm for Semantic
Web Service Matching. JSW, 2013. 8(2): p. 351-356.

http://infonomics-society.org/wp-content/uploads/ijmip/published-papers/volume-4-2014/Web-Services-A
http://infonomics-society.org/wp-content/uploads/ijmip/published-papers/volume-4-2014/Web-Services-A
http://infonomics-society.org/wp-content/uploads/ijmip/published-papers/volume-4-2014/Web-Services-A
https://www.sciencedirect.com/science/article/pii/S1877050918301509
https://www.sciencedirect.com/science/article/pii/S1877050918301509
https://ieeexplore.ieee.org/abstract/document/8752353
https://ieeexplore.ieee.org/abstract/document/8752353
https://ieeexplore.ieee.org/abstract/document/8625404
https://ieeexplore.ieee.org/abstract/document/8625404
https://www.sciencedirect.com/science/article/abs/pii/S0020025517311696
https://www.sciencedirect.com/science/article/abs/pii/S0020025517311696
https://content.sciendo.com/view/journals/acss/40/1/article-p117.xml
https://content.sciendo.com/view/journals/acss/40/1/article-p117.xml

