

 Vol 18, Summer 1404

Information Technology in Engineering Design
https://sanad.iau.ir/journal/ited

Comparative Analysis of the Latest Improvements of Particle

Swarm Optimization Algorithms on Automated Software Test

Data Generation

 Mojtaba Salehi(1) Saeed Parsa(2)* Saba Joudaki(3) Hoshang Kolivand(4)

(1) Department of Computer Engineering, Bo. C., Islamic Azad University, Borujerd, Iran

(2) Department of Computer Engineering, Tehran Branch, Iran University of Science and Technology, Tehran, Iran*

(3) Department of Computer Engineering, Khor.C., Islamic Azad University, Khorramabad, Iran

(4) School of Computer Science and Maths, Liverpool John Moores University, L3 3AF, Liverpool, UK

(Date received: 1403/09/08 Date accepted: 1404/02/27)

Abstract

This study examines enhancements to Particle Swarm Optimization (PSO) algorithms for

generating automated software test data, with a focus on path coverage in software systems.

PSO, valued for its scalability and simplicity, has been enhanced through various algorithmic

improvements to address challenges like local optima entrapment and convergence

inefficiencies. The research evaluates ten recent PSO variants on benchmark programs,

comparing their performance based on coverage, runtime, and success rates. Among these, the

A5 (EBPSO) algorithm demonstrated superior performance, excelling in exploration-

exploitation balance, population diversity, and convergence efficiency. Experimental results

affirm the efficacy of meta-heuristic approaches in generating test data across expansive search

spaces, positioning A5 as a leading solution for test data generation in optimizing software

testing processes.

Keywords: Test data generation, meta-heuristic algorithms, particle swarm optimization, path

coverage

:Corresponding author *
 Saeed Parsa

Address: Department of Computer Engineering, Tehran Branch, Iran University of Science and Technology,

Tehran, Iran

Email: parsa@iust.ac.ir

C
o
m

p
a
r
a
ti

v
e
 a

n
a
ly

si
s

o
f

th
e

L
a
te

st
 I

m
p

ro
v

e
m

e
n

ts
 o

f
P

a
r
ti

cl
e

S
w

a
r
m

 O
p

ti
m

iz
a

ti
o

n
 a

lg
o
r
it

h
m

s
o
n

 a
u

to
m

a
te

d
 s

o
ft

w
a
r
e

te
st

 d
a
ta

 g
e
n

e
r
a
ti

o
n

 1

1- Introduction

Although random testing is a low-cost approach to software testing, it struggles to

address complex constraints and achieve comprehensive structural coverage. Search-

based software testing (SBST) utilizes optimization techniques to generate test data,

thereby efficiently overcoming these limitations. SBST leverages meta-heuristic

algorithms, which excel at navigating large search spaces without assumptions about

problem characteristics. Foundational studies by McMinn [1] and Harman et al. [2]

highlighted the effectiveness of meta-heuristic approaches, including Particle Swarm

Optimization (PSO) [3], Hill Climbing (HC) [4], Tabu Search (TS) [5], Ant Colony

Optimization (ACO) [6], Differential Evolution (DE) [7], Artificial Bee Colony (ABC)

[8], and Firefly Algorithm (FA) [9].

Significant advancements in these algorithms have enhanced their adaptability and

performance. Liang et al. [10] introduced a DE algorithm with a one-test-at-a-time

strategy, achieving notable improvements in solution quality through parameter

optimization. Malhotra et al. [11] demonstrated that ABC outperformed ACO and GA in

test data generation due to its efficient parallelism and neighborhood production

mechanism. Similarly, Srivatsava et al. [12] employed the FA to optimize test paths,

demonstrating its ability to minimize test efforts through features like guidance matrices

and cyclomatic complexity-based traversal.

Inspired by swarm intelligence, PSO has emerged as a leading method for generating

test data. PSO optimizes candidate solutions for improved coverage and efficiency by

iteratively updating the positions and velocities of particles. Tiwari et al. [3] applied a

PSO variant to regression testing, achieving superior path coverage. Jatana et al. [13]

compared PSO with GA in mutation testing, finding that PSO offered faster convergence

and smaller test suites. Sahoo et al. [14] introduced an Improved Combined Fitness

function with Adaptive PSO (APSO), showcasing its ability to enhance critical path

coverage.

This paper investigates the performance of ten advanced PSO variants in automated

test data generation. Among these, Algorithm A5 emerged as the most effective, utilizing

innovative solution-updating strategies that adapt to search space conditions. By

balancing exploration and exploitation, Algorithm A5 mitigates the entrapment in local

optima, enhances population diversity, and leverages collective intelligence to navigate

the search space efficiently.

In
fo

rm
a
ti

o
n

 T
ec

h
n

o
lo

g
y

 i
n

 E
n

g
in

ee
ri

n
g
 D

es
ig

n

2

The rest of this paper is structured as follows: Section 2 reviews related work on SBST

and PSO applications. Section 3 outlines the theoretical background supporting the

proposed approach. Section 4 introduces the improved PSO algorithms, details the

experimental setup, and presents a comparative analysis of their performance. Finally,

Section 5 summarizes the findings, emphasizing the superiority of Algorithm A5, and

discusses potential directions for future research.

2- Related Work

 Test data generation is a critical challenge in software testing, with random testing

often failing under complex constraints. Search-based software testing (SBST) employs

meta-heuristic algorithms, such as Particle Swarm Optimization (PSO) [3], Hill Climbing

[4], and Differential Evolution (DE) [7], to address these issues by efficiently navigating

large search spaces without assumptions about problem characteristics [1, 2]. Liang et al.

[10] improved DE with a one-test-at-a-time strategy, while Malhotra et al. [11] showed

ABC's superiority in path coverage due to its robust parallelism. Srivatsava et al. [12]

optimized test paths using the Firefly Algorithm (FA), and Lv et al. [15] proposed a

metamorphic relations-based approach as an alternative to PSO despite its reliance on

domain expertise.

PSO has demonstrated notable success in testing, with Tiwari et al. [3] applying it to

regression testing and Sahoo [14] enhancing it with a fitness function to achieve 100%

path coverage. Saadatjoo [16] and Ghiduk [17] demonstrated the potential of

evolutionary and PSO-based methods for optimizing test data generation. Recent efforts,

including Damia's adaptive PSO [21, 22] and Esnaashari's hybrid memetic algorithm

[23], have addressed the limitations of PSO, such as entrapment in local optima and

convergence issues. Researchers such as Semujju [19] and Rajagopal [20] have

developed adaptive and hybrid approaches, enhancing efficiency in challenging testing

scenarios.

These studies affirm the versatility of PSO and its variants in tackling diverse software

testing challenges, with continuous innovations improving adaptability, efficiency, and

coverage.

3- Background

This section describes the theoretical background being used in our proposed

approach. This section introduces the basic concepts of software testing, path testing,

and fitness functions, which will help us understand the test data generation based on

the PSO algorithm.

C
o
m

p
a
r
a
ti

v
e
 a

n
a
ly

si
s

o
f

th
e

L
a
te

st
 I

m
p

ro
v

e
m

e
n

ts
 o

f
P

a
r
ti

cl
e

S
w

a
r
m

 O
p

ti
m

iz
a

ti
o

n
 a

lg
o
r
it

h
m

s
o
n

 a
u

to
m

a
te

d
 s

o
ft

w
a
r
e

te
st

 d
a
ta

 g
e
n

e
r
a
ti

o
n

 3

3-1- Control Flow Graph

The control flow graph was constructed using source code. Source code is taken as

input, and the instrumented code is generated [1]. After that, instrumented code is parsed

and stored, line by line, in the adjacency list. CFG for a program 𝑃 is a directed graph 𝐺

= (𝑁, 𝐸) consisting of N as a set of nodes and E as a set of edges. A node represents a

statement or a basic block of statements [2]. An edge represents the flow of control

between nodes. CFG is generated using software such as Visustin or the pycfg or staticfg

library in the Python programming language, and then extracts the paths of this graph

from the desired graph. An example of the flow graph with the resulting program from

Visustin output is shown in Fig.1.

Figure 1: Corresponding CFG sample method, b: a sample source code c: instrumented method

3-2- Initial Population

The initial population of particles in the PSO algorithm can be considered the initial

test data set. Each particle (or test data set) is initialized with a random set of values

within the defined bounds of the search space [3]. The data structure considered here for

In
fo

rm
a
ti

o
n

 T
ec

h
n

o
lo

g
y

 i
n

 E
n

g
in

ee
ri

n
g
 D

es
ig

n

4

PSO-improved algorithms is a matrix structure, where the number of matrix columns

equals the product of the number of program variables and their paths [4]. Suppose there

are m execution paths, 𝑃1 to 𝑃𝑚, to be covered by n test data, X1 to X𝑛. Each test data, X𝑖,

is a vector (𝑥𝑖1
, 𝑥𝑖2

, ..., 𝑥𝑖𝑚
), of m elements where each element is an input variable.

3-3- Fitness Function

The fitness function is a crucial component of search algorithms used to assess the

quality of various solutions. The solution (test data) needs to be provided as input to the

program under test, which is then executed, and its path coverage is measured. If the

number of paths of the program under test is denoted as NP and the number of paths

covered by the PSO algorithm is denoted as TP, in all implementation algorithms, the

fitness of each solution (i) is calculated using Eq. (1):

𝐹𝑖 =
𝑇𝑃

𝑁𝑃

(1)

3-4- Brief explanations of the Improved PSO algorithms

In this section, the simple PSO algorithm is first described according to the algorithm

presented by Mao et al. [5]. Next, the improvements to the PSO algorithm are briefly

outlined.

3-4-1- Basic Particle Swarm Optimization

In the PSO algorithm, which models the collective behavior of bird flocking, a swarm

of particles changes their positions in the search space depending on their previous

experience and the swarm's experience to find the global optimum. In general, the

personal best position of particle i is denoted by pbesti, while the global best position of

the entire population is called gbest. Suppose the population size is s in the D-dimensional

search space; a particle represents a potential solution. The velocity and position of the

dth dimension of the ith particle can be updated by formulas (2) and (3) [5], respectively.

In Figure 2, you can see the pseudocode of the basic PSO algorithm.

Algorithm. Simple PSO

ŒInput: (1) the program under test P, and

 The variable (a1, a2, a3, …., an) is the variable list of

P ;

 (2) structural coverage criterion target path ;

C
o
m

p
a
r
a
ti

v
e
 a

n
a
ly

si
s

o
f

th
e

L
a
te

st
 I

m
p

ro
v

e
m

e
n

ts
 o

f
P

a
r
ti

cl
e

S
w

a
r
m

 O
p

ti
m

iz
a

ti
o

n
 a

lg
o
r
it

h
m

s
o
n

 a
u

to
m

a
te

d
 s

o
ft

w
a
r
e

te
st

 d
a
ta

 g
e
n

e
r
a
ti

o
n

 5

 (3) algorithm parameter of PSO. n, w, c1, c2, and Vmax
;

 (4) the maximum evolution generation max_gen.

ŒOutput: test data set TS satisfying the target path.

01 encode input list variable into a m-dimension position

vector;

02 instrument program P for gathering structural coverage

information;

03 initialize the velocity vector 𝑉𝑖
𝑑 and position vector 𝑋𝑖

𝑑

ŒTest Suite Generation

04 while(Max_iteration)

06 for each particle i in the population with size n

07 for each dimension (1 ≤ 𝑑 ≥m) of particle i

08 Calculate the current velocity 𝑉𝑖
𝑑

 of particle i in dimension d;

09 if 𝑉𝑖
𝑑 exceeds the boundary 𝑉𝑚𝑎𝑥 then

10 adjust it within the boundary;

11 endif

12 calculate the current position 𝑋𝑖
𝑑

13 endfor

14 decode vector 𝑋𝑖 into a test case tci ∈ TS ;

15 execute the program with the test case tci and collect the

 coverage information to calculate the fitness f (Xi) ;

16 if 𝑓(𝑋𝑖) > 𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖) then

17 pbesti = Xi
18 endif

19 if 𝑓(𝑋𝑖) > 𝑓 (𝑔𝑏𝑒𝑠𝑡) then

 gbest=Xi

20 endif

21 end for

22 end while

23 return TS = (tci) ;

Figure 2: Algorithm simple Pso

We must encode the input list (a1, a2, a3,…, an) into an m-dimensional position vector

at the initialization stage. Path coverage is a criterion commonly applied in structural

methods of test data generation. To calculate the fitness value of each particle (test case),

we should instrument the program under test P to gather the coverage information about

construct elements. On the other hand, some random values are utilized to initialize the

velocity vector V_i^dand position vector X_i^d. In the algorithm body, the procedure

between lines 07 and 14 is used to determine the current position X_i^d of particle i at

different dimensions d. In line 14, each particle vector Xi in the population is decoded

into a test case. Then, the fitness of each test case f (Xi) is evaluated. Based on the fitness

value of each particle (test case), the personal best position, pbesti, and the global best

position, best, can be updated (lines 16-20). The termination condition in line 05 controls

the whole particle evolution process. For the testing problem, the termination condition

In
fo

rm
a
ti

o
n

 T
ec

h
n

o
lo

g
y

 i
n

 E
n

g
in

ee
ri

n
g
 D

es
ig

n

6

can be the following two cases: (1) all construct elements have been covered, or (2) the

maximum evolution generation max_gen is reached

3-4-2- Improved PSO Algorithms

This section compares the ten most recent improved versions introduced by the

particle swarm optimization algorithm for automatic test data generation. Particle swarm

optimization (PSO) has been widely applied in various optimization fields due to its ease

of implementation and high efficiency. However, it suffers from limitations, such as slow

and premature convergence, when solving high-dimensional optimization problems. This

paper attempts to address these critical issues. A1 to A10 are, respectively, different

versions of PSO-improved algorithms. In research A1 [6], writers propose a novel PSO

algorithm called Chaos Adaptive Particle Swarm Optimization (CAPSO), which

adaptively adjusts the inertia weight parameter w and acceleration coefficients c1, c2, and

introduces a controlling factor γ based on chaos theory to adaptively adjust the range of

chaotic search. A2 is the standard particle swarm algorithm.

In A3 [7], a new method of parameter adjustment, known as piecewise nonlinear

acceleration coefficients, is introduced to the simplified particle swarm optimization

algorithm (SPSO). An improved algorithm, referred to as piecewise-nonlinear-

acceleration-coefficients-based SPSO (P-SPSO), is then proposed. Then, a mean

differential mutation strategy is developed for the update mechanism of P-SPSO, and

another improved algorithm named mean-differential-mutation-strategy embedded P-

SPSO (MP-SPSO) is proposed. A4 [8] introduced appropriate improvements to PSO and

proposed a novel chaotic PSO variant with arc tangent acceleration coefficient (CPSO-

AT). A5 [31] presents a new particle swarm optimization (EBPSO) algorithm. Firstly,

based on an adaptive adjustment mechanism, the algorithm can select a more effective

strategy from two search equations to balance exploration and exploitation abilities.

Secondly, to utilize the information from individual historical optimal solutions and the

optimal solution of the current population, a weight is introduced to adjust their influence

in the search equation. Thirdly, by introducing population diversity, a dynamic equation

for adjusting the algorithm's searchability is proposed. Finally, to avoid falling into a

local optimum and to explore potential locations, a dynamic random search mechanism

is proposed, which utilizes information from the current optimal solution.

In A6 [9], a constraint factor is introduced to control the velocity weight and reduce

blindness in the search process. A dual-update (DU) strategy is based on new speed and

position update strategies that are designed. Research A7 [10] proposed a PSO algorithm

with an adaptive two-population strategy (PSO-ATPS), which adaptively divides a

C
o
m

p
a
r
a
ti

v
e
 a

n
a
ly

si
s

o
f

th
e

L
a
te

st
 I

m
p

ro
v

e
m

e
n

ts
 o

f
P

a
r
ti

cl
e

S
w

a
r
m

 O
p

ti
m

iz
a

ti
o

n
 a

lg
o
r
it

h
m

s
o
n

 a
u

to
m

a
te

d
 s

o
ft

w
a
r
e

te
st

 d
a
ta

 g
e
n

e
r
a
ti

o
n

 7

population into two groups representing excellent and ordinary populations. Inspired by

animal hunting behavior, a new velocity–position update method is proposed for the

general population. A velocity update formulation with decreasing inertia weights based

on logistic chaotic mapping is applied to the excellent population. In A8 [11], an improved

particle swarm optimization (PSO) with adaptive weighted delay velocity (PSO-AWDV)

is proposed.

A new scheme blending weighted delay velocity is first presented for a new PSO with

a weighted delay velocity (PSO-WDV) algorithm. Then, to adaptively update the velocity

inertia weight, an adaptive PSO-AWDV algorithm is developed based on the

evolutionary state of the particle swarm evaluated via a new estimation method.

 In A9 [12], a hybrid HPSO-SSM algorithm is developed in which three significant

improvements are made to the original PSO: First, a logistic map sequence is used to

adjust the inertial weight 𝜔, which provides sufficient variety and facilitates the

avoidance of optimal solutions throughout the selection process. Second, a significantly

improved update equation for creating the next-generation position is proposed, which

can more effectively integrate exploration and exploitation. Third, a spiral-shaped

mechanism (SSM) is coupled to the original PSO as a local search strategy for the known

optimum solution. In A10 [13], a novel randomized particle swarm optimizer (RPSO) is

proposed. The Gaussian white noise with adjustable intensity is utilized to randomly

perturb the acceleration coefficients to explore the problem space more thoroughly.

4- Experiments and results

This study conducted two distinct experiments employing ten advanced Particle

Swarm Optimization (PSO) algorithms (A1 through A10) to address five benchmark

software problems. The first experiment focused on a comparative analysis of the meta-

heuristics discussed in the paper, utilizing predetermined control parameter values. This

comparison assessed the algorithms' performance based on the coverage metric and

included a runtime analysis, emphasizing the importance of time efficiency in algorithm

selection. Given that the fitness function directs the algorithms within the search space,

the effectiveness of these functions was evaluated against the path coverage criterion.

The second experiment conducted a comparative analysis of the success rates of

algorithms derived from the first experiment, providing deeper insights into their

performance and effectiveness.

4-1- Experimental setup

An architecture based on actual value execution was used for the experiments. It

In
fo

rm
a
ti

o
n

 T
ec

h
n

o
lo

g
y

 i
n

 E
n

g
in

ee
ri

n
g
 D

es
ig

n

8

consisted of a program analyzer, a path selector, and a test data generator. A program

analyzer is provided with source code and generates a suitable representation (e.g., a

control flow graph, a data dependence graph, or a program dependence graph) for

subsequent analysis. Following the generation of test paths by the path selector, the test

data generator generates path information for the specified test paths. The path selector

utilizes this path information to regenerate the paths until a coverage criterion is met. The

study utilized five benchmark problems, which comprised the following: triangle,

quadratic equation, Max-Min number, leap year, and Fibonacci of marks. Triangle: The

program checks whether a triangle can be formed using the given sides. If a triangle is

formed, the program classifies the type of triangle as isosceles, equilateral, or scalene.

Quadratic Equation: The program checks whether three input scans form a quadratic

equation. If a quadratic equation is formed, then the roots of the equation are found. Max-

Min: The program finds the largest and smallest numbers among input numbers. Leap:

The program checks whether a given year is a leap year. Fibonacci: A Fibonacci program

is a program that generates the Fibonacci sequence. The Fibonacci sequence is a series

of numbers where each is the sum of the two preceding ones, starting from 0 to 1. In all

of the problems, solutions were encoded using integer representation. Experiments were

conducted on a platform equipped with an Intel(R) Core(TM) i7-6820HQ CPU at 2.70

GHz and 16 GB of RAM. All code fragments of the problems in Table 1 were

implemented using the Python programming language.

Table 1: Properties of the benchmark problems used in the experiments

 Program

title

Line

count

Number

of paths

CFG

node

size

No. of

variables

References

1 Triangle 23 3 23 3 [14-16]

2 QuadEq 15 6 12 3 [15, 17]

3 Max-Min 31 25 21 5 [18]

4 Leap 7 6 8 3 [15]

5 Fibonacci 14 5 10 3 [17]

6 Bessj 49 30 32 2 [14]

4-2- Experiment 1: Comparison of Improved PSO Algorithms

The decision for the termination criteria is based on whether at least one test datum

has traversed the target path or if the number of evolution iterations has reached the preset

value. In either case, the evolution process will stop. Table 2 compares the results based

on the coverage, evaluation, and time(s) criteria. Regarding the mean evaluations for the

Quadratic Equation program, A5 generates path-oriented data more efficiently than other

C
o
m

p
a
r
a
ti

v
e
 a

n
a
ly

si
s

o
f

th
e

L
a
te

st
 I

m
p

ro
v

e
m

e
n

ts
 o

f
P

a
r
ti

cl
e

S
w

a
r
m

 O
p

ti
m

iz
a

ti
o

n
 a

lg
o
r
it

h
m

s
o
n

 a
u

to
m

a
te

d
 s

o
ft

w
a
r
e

te
st

 d
a
ta

 g
e
n

e
r
a
ti

o
n

 9

algorithms, and A4 has the worst mean evaluations among all algorithms. Regarding the

search time for each approach, the mean A5 has the least search time, while A7 has the

worst time.

Regarding the mean coverage for the Quadratic Equation program, A3, A5, and A9

have achieved 100% coverage, while A10 has the lowest coverage. It shows that the

paper performs best in this test code sample. Regarding the mean evaluations for the

triangle classifier program, the paper for generating path-oriented data has the lowest

evaluations compared to other Algorithms, and A2 has the worst mean evaluations among

all algorithms. Regarding the mean coverage for the triangle classifier program, A3, A5,

and A9 have reached 100% coverage. And A2 has the worst coverage. It shows that the

paper performs best in this test code sample.

Regarding the mean evaluations for the Leap program, A4 for generating path-oriented

data has the lowest mean evaluations compared to other Algorithms, and A7 has the worst

mean evaluations among all algorithms. Regarding the search time for each approach,

the mean A2 has the least search time, while A8 has the worst time. Regarding the mean

coverage for the Leap program, A1, with a coverage of 0.94, is the best, and A7 has the

worst coverage. It shows that the paper performs best in this test code sample. Regarding

the mean evaluations for the Max-Min program, A3 generates path-oriented data more

efficiently than other algorithms, and A8 has the worst mean evaluations among all

algorithms. For the search time of each approach, the mean A3 has the least search time,

while A9 has the worst time. In terms of the mean coverage for the Max-Min program,

A2, A3, A5, A6, A8, and A9 have reached 100% coverage. And A4 and A7 have the worst

coverage. It shows that the paper performs best in this test code sample.

Regarding the mean evaluations for the Fibonacci program, A5 yields the lowest

results among other algorithms for generating path-oriented data, and A3 has the worst

mean evaluations among all algorithms. Regarding the search time for each approach,

the mean A3 and A5 have the shortest search times, while A8 has the longest time.

Regarding the mean coverage for the Fibonacci program, A5 with 100% coverage is the

most effective, while A10 has the worst coverage. It shows that the paper performs best

in this test code sample. The experiments were repeated for the search space bounded by

the range [-100, 100] to observe the algorithms' behavior in a constrained search space.

We reported the mean and standard deviation in the first line, the median, and the rank

of each algorithm in the second line of each cell. The number of evaluations and CPU

times (in seconds) required to achieve maximum coverage were also reported in Table 2.

The results produced by the algorithms were different versions of the PSO algorithm,

ranging from A1 to A10, which were used, respectively. For a better understanding of

Table 2, its structure is further explained in Figure 3.

In
fo

rm
a
ti

o
n

 T
ec

h
n

o
lo

g
y

 i
n

 E
n

g
in

ee
ri

n
g
 D

es
ig

n

10

 Program title Coverage Evaluation Time (s)

Algorithms

Test program

Mean standard

deviation

Mean ± standard

deviation

Mean ± standard

deviation

Median value ranks Median value Median value

Figure 3: Structure of Table 2

Table 2: The results of the algorithms designed using a fitness function. Mean ∓ standard deviation are

reported. Median values are given in parentheses, and ranks are presented next to the median.

program

title

Rang Rang

[-100, +100] [-100, +100]

Coverage Evaluation Time

(s)

A6

Coverage Evaluation Time

(s)

A1

QuadEq

0.635 0.150 20000 ±

0.0

0.610 ±

0.153

0.926 0.09705 15950.6 ±

4017.664

0.617 ±

0.134

(0.5) 3 20000.0 0.54276 (1.0) 2 15630.0 0.623

Triangle

0.62 0.34897 14080 ±

9252.425

0.437 ±

0.292

0.76 0.12649 17782 ±

5963.089

0.572 ±

0.192

(0.5) 4 20000.0 0.59599 (0.7) 4 20000.0 0.614

Leap

0.947 0.12669 10899.6 ±

6699.727

0.593 ±

0.382

0.91 0.14491 13224 ±

6307.299

0.793 ±

0.337

(1.0) 2 9950.0 0.543 (1.0) 3 11920.0 0.793

Max-Min

0.998 0.0199 2392 ±

3626.663

0.613 ±

0.982

1.0 0.0 3960 ± 3601.481 1.379 ±

1.290

(1.0) 1 330.0 0.076 (1.0) 1 3190.0 1.121

Fibonachi

0.561 0.083 20000 ±
0.0

0.624 ±
0.049

0.778 0.08478 19793.8 ±
1024.060

0.835 ±
0.06

(0.6) 5 20000.0 0.611 (0.8) 3 20000.0 0.825

A2

QuadEq

0.78 0.20986 15304 ±

6908.013

0.512 ±

0.234

A7

0.92 0.10328 18628 ±

1621.883

0.405 ±

0.078

(0.8) 3 20000.0 0.638 (1.0) 1 19150.0 0.403

Triangle

0.5 0.21082 20000 ±

0.0

0.605 ±

0.096

0.76 0.12649 18864 ±

3536.486

0.393 ±

0.172

(0.5) 5 20000 0.572 (0.7) 4 20000.0 0.335

Leap

0.92 0.17512 8348 ±

7001.702

0.469 ±

0.441

0.8 0.18257 13372 ±

9011.692

0.498 ±

0.352

(1.0) 2 4870.0 0.239 (0.7) 2 20000.0 0.679

Max-Min

1.0 0.0 1982 ±
1527.130

0.537 ±
0.417

0.92 0.06324 17216 ±
5179.513

2.659 ±
0.967

(1.0) 1 1850.0 0.529 (0.9) 1 20000.0 2.874

Fibonacci

0.584 0.09289 19924.2 ±

758.0

1.366 ±

0.522

0.78 0.11353 19692 ± 973.981 0.439 ±

0.023

(0.6) 4 20000.0 1.221 (0.8) 3 20000.0 0.447

A3

QuadEq

1.0 0.0 680 ±

751.236

0.026 ±

0.032

A8

0.984 0.05453 6179.4 ±

5711.668

2.208 ±

2.055

(1.0) 1 470.0 0.016 (1.0) 2 3800.0 1.260

Triangle

1.0 0.0 896 ±

803.923

0.063 ±

0.099

0.73 0.09487 18778 ±

3864.303

5.201 ±

1.071

(1.0) 1 510.0 0.01402 (0.7) 5 20000.0 5.449

Leap

0.911 0.17049 11260.4 ±

6880.619

0.583 ±

0.358

0.91 0.15472 11564 ±

6943.920

6.221 ±

3.796

(1.0) 3 11240.0 0.557 (1.0) 3 11260.0 6.444

C
o
m

p
a
r
a
ti

v
e
 a

n
a
ly

si
s

o
f

th
e

L
a
te

st
 I

m
p

ro
v

e
m

e
n

ts
 o

f
P

a
r
ti

cl
e

S
w

a
r
m

 O
p

ti
m

iz
a

ti
o

n
 a

lg
o
r
it

h
m

s
o
n

 a
u

to
m

a
te

d
 s

o
ft

w
a
r
e

te
st

 d
a
ta

 g
e
n

e
r
a
ti

o
n

 11

Max-Min

1.0 0.0 585 ±

407.112

0.151 ±

0.105

1.0 0.0 1325.8 ±

1122.246

3.931 ±

3.475

(1.0) 1 500.0 0.125 (1.0) 1 1010.0 2.883

Fibonacci

0.994 0.03428 4222.4 ±

5122.860

0.152 ±

0.187

0.778 0.12679 18313.6 ±

4367.161

18.445

±

99.342

(1.0) 2 2270.0 0.076 (0.8) 4 20000.0 8.525

A4

QuadEq

0.759 0.13714 2559.4 ±

2232.137

0.128 ±

0.117

A9

1.0 0.0 974.6 ±

1121.560

 0.071

± 0.082

(0.8) 4 1960.0 0.089 (1.0) 1 600.0 0.042

Triangle

0.73 0.09487 8350 ±

2374.405

0.402 ±

0.159

1.0 0.0 722 ± 1493.346 0.034 ±

0.066

(0.7) 5 8850.0 0.382 (1.0) 1 230.0 0.012

Leap

0.834 0.18489 6815.6 ±

5913.631

0.521 ±

0.457

0.923 0.14829 10829 ±

7183.708

1.397 ±

0.932

(1.0) 3 5200.0 0.394 (1.0) 2 10120.0 1.349

Max-Min

0.92 0.04714 765.8 ±

701.780

0.289 ±

0.272

1.0 0.0 3116 ± 3056.596 8.658 ±

8.604

(0.9) 1 550.0 0.200 (1.0) 1 2060.0 5.513

Fibonacci 0.838 0.12615 13156.8 ±

4674.743

0.726 ±

0.259

0.812 0.17481 15287.8 ±

7030.108

1.696 ±

0.953

(0.8) 2 12150.0 0.689 (0.8) 3 20000.0 1.922

A5

QuadEq

1.0 0.0 303.8 ±
219.396

0.016 ±
0.011

A10

0.664 0.18064 19157 ±
3061.330

0.998 ±
0.194

(1.0) 1 260.0 0.013 (0.5) 3 20000.0 0.995

Triangle

1.0 0.0 364 ±

263.447

0.016 ±

0.012

0.61 0.23309 18982 ±

3219.198

0.767 ±

0.206

(1.0) 1 310.0 0.013 (0.7) 4 20000.0 0.760

Leap

0.824 0.19904 14311 ±

6757.116

1.093 ±

0.522

0.881 0.17678 12282 ±

7529.841

 0.962

± 0.591

(1.0) 2 18620.0 1.381 (1.0) 2 13050.0 1.03169

Max-Min

1.0 0.0 2309 ±

2184.217

0.825 ±

0.790

0.998 0.019 3892.2±3990.593 1.672 ±

1.723

(1.0) 1 1650.0 0.569 (1.0) 1 2220.0 0.953

Fibonacci

1.0 0.0 2640.2 ±

2220.973

0.158 ±

0.135

0.522 0.09804 20000 ± 0.0 1.189 ±

0.078

(1.0) 1 2100.0 0.119 (0.6) 5 20000.0 1.175

4-3- Experiment 2: comparison of success rate criteria

The next criterion for evaluating the efficiency of algorithms is the success rate. The

success rate is calculated based on Eq. 4.

𝑆𝑅 =
∑ 𝑏𝑏𝑐𝑖

𝑝𝑠
𝑖

𝑝𝑠

(2)

In Eq.4, ps is the number of executions of the algorithm, and bbc is a Boolean flag. If

the algorithm reaches the maximum coverage from a fixed limit of calling the fitness

function of the answer, this flag will be set to one. Otherwise, it will be similar to zero.

In
fo

rm
a
ti

o
n

 T
ec

h
n

o
lo

g
y

 i
n

 E
n

g
in

ee
ri

n
g
 D

es
ig

n

12

Figure 2 illustrates the success rates of ten Particle Swarm Optimization (PSO)

algorithms (A1 to A10) across six test programs, highlighting their effectiveness in

generating test data to achieve the desired path coverage. Among the algorithms, A5

stands out with a 100% success rate in three programs (Quadratic Equation, Triangle, and

Fibonacci) and consistently high performance across all test scenarios, demonstrating its

robustness and adaptability. Algorithms like A3 and A9 also show strong performance in

specific programs, such as Max-Min and Fibonacci, but lack the consistent reliability of

A5. Other algorithms, such as A1, A2, A4, A6, A7, A8, and A10, exhibit variable success

rates, with some struggling in more complex programs like Fibonacci, indicating

sensitivity to program complexity. A5's ability to maintain high success rates across both

simple and complex programs underscores its superior balance of exploration and

exploitation, as well as its innovative solution-updating strategies. This analysis

emphasizes the significance of algorithmic enhancements in PSO for optimizing software

testing processes, with A5 being the most effective and reliable option for automated test

data generation. Future research could further enhance these algorithms to address even

more complex testing challenges.

C
o
m

p
a
r
a
ti

v
e
 a

n
a
ly

si
s

o
f

th
e

L
a
te

st
 I

m
p

ro
v

e
m

e
n

ts
 o

f
P

a
r
ti

cl
e

S
w

a
r
m

 O
p

ti
m

iz
a

ti
o

n
 a

lg
o
r
it

h
m

s
o
n

 a
u

to
m

a
te

d
 s

o
ft

w
a
r
e

te
st

 d
a
ta

 g
e
n

e
r
a
ti

o
n

 13

 Figure 4: Success rate of comparison to other algorithms on the test programs

4-4- Experiment 3: Convergence Evaluation

Figure 3 presents the convergence behavior of the ten improved Particle Swarm

Optimization (PSO) algorithms (A1 to A10) across six test programs. In automated

software test data generation, the fitness function is a critical measure of an algorithm's

ability to generate test cases that achieve the desired path coverage. The convergence

behavior of the fitness function over iterations provides valuable insights into the

efficiency, stability, and overall performance of different Particle Swarm Optimization

(PSO) algorithms. Figure 3 illustrates the average fitness function values for ten

improved PSO algorithms (A1 to A10) across six test programs. Each test program

presents unique challenges, ranging from simple control flow structures to more complex

decision-making processes, allowing for a comprehensive evaluation of the algorithms'

capabilities.

In
fo

rm
a
ti

o
n

 T
ec

h
n

o
lo

g
y

 i
n

 E
n

g
in

ee
ri

n
g
 D

es
ig

n

14

The following analysis focuses on five key observations derived from Figure 3, which

collectively highlight the strengths and weaknesses of the algorithms in terms of

convergence speed, solution quality, stability, and adaptability to varying levels of

program complexity. These observations are crucial for understanding how different

algorithmic improvements impact the performance of PSO in the context of automated

test data generation. By examining these aspects, we can identify which algorithms are

most effective in achieving high path coverage while maintaining computational

efficiency, ultimately guiding future research and practical applications in software

testing.

 Convergence Speed

The convergence speed of the algorithms varies significantly across the test programs.

Algorithms converging faster to a lower fitness value are generally more efficient,

requiring fewer iterations to generate optimal or near-optimal test data. In most test

programs, A5 demonstrates rapid convergence, often reaching the lowest fitness value

earlier than the other algorithms. This indicates that A5 is highly effective in balancing

exploration and exploitation, allowing it to navigate the search space and find optimal

solutions quickly.

 Fitness Value at Convergence

 The final fitness value at convergence is another important metric. Lower fitness values

indicate better performance, corresponding to higher path coverage and more effective test

data generation. A5 consistently achieves the lowest fitness values across all test programs,

further confirming its superiority in terms of solution quality. This is particularly evident

in programs like the Quadratic Equation and Triangle classifier, where A5 converges

quickly and reaches the lowest possible fitness value.

 Stability and Robustness

Some algorithms exhibit fluctuations in fitness values during the iterations, indicating

instability or difficulty in maintaining a consistent search direction. For example, A7 and

A8 show more variability in their fitness values across different test programs, suggesting

they may struggle with local optima or premature convergence. In contrast, A5 exhibits a

more stable convergence pattern, characterized by smooth and consistent decreases in

fitness values. This stability is a sign of robustness, as the algorithm is less likely to get

trapped in local optima and can reliably find high-quality solutions.

 Comparison with Other Algorithms

While A5 stands out as the best-performing algorithm, other algorithms, such as A3 and

A9, also demonstrate competitive performance in certain test programs. For instance, A3

C
o
m

p
a
r
a
ti

v
e
 a

n
a
ly

si
s

o
f

th
e

L
a
te

st
 I

m
p

ro
v

e
m

e
n

ts
 o

f
P

a
r
ti

cl
e

S
w

a
r
m

 O
p

ti
m

iz
a

ti
o

n
 a

lg
o
r
it

h
m

s
o
n

 a
u

to
m

a
te

d
 s

o
ft

w
a
r
e

te
st

 d
a
ta

 g
e
n

e
r
a
ti

o
n

 15

performs well in the Max-Min and Fibonacci programs, achieving low fitness values with

relatively fast convergence.

However, these algorithms do not consistently outperform A5 across all test programs.

A10, for example, shows poor performance in several test programs, with slower

convergence and higher final fitness values, indicating that it may not be as effective in

navigating complex search spaces.

 Test Program Complexity

The complexity of the test programs also plays a role in the performance of the algorithms.

Programs with more complex control flow graphs (e.g., Max-Min and Fibonacci) tend to

challenge the algorithms more, resulting in slower convergence and higher fitness values

for most algorithms.

Despite the increased complexity, A5 maintains its superior performance, suggesting

that its adaptive mechanisms for balancing exploration and exploitation are particularly

effective in handling complex search spaces.

The analysis highlights the superior performance of A5, which consistently achieves

faster convergence, lower fitness values, and greater stability compared to the other

algorithms. This makes A5 a highly effective choice for automated test data generation,

particularly in scenarios where path coverage and efficiency are critical. The results also

underscore the importance of algorithmic improvements in PSO, as they can significantly

enhance the performance of meta-heuristic approaches in software testing applications.

In
fo

rm
a
ti

o
n

 T
ec

h
n

o
lo

g
y

 i
n

 E
n

g
in

ee
ri

n
g
 D

es
ig

n

16

Figure 5: Mean Fitness function

5- Conclusion

This study has explored the latest advancements in Particle Swarm Optimization

(PSO) algorithms for automated software test data generation, with a focus on achieving

comprehensive path coverage in software systems. Through a comparative analysis of

ten improved PSO variants (A1 to A10), the research evaluated their performance across

multiple benchmark programs, considering key metrics such as coverage, runtime, and

success rates. Among the algorithms tested, A5 emerged as the most effective,

demonstrating superior performance in balancing exploration and exploitation,

maintaining population diversity, and achieving efficient convergence. Its innovative

solution-updating strategies, which adapt to the search space conditions, enabled it to

consistently outperform other algorithms in terms of fitness evaluations, success rates,

and coverage.

C
o
m

p
a
r
a
ti

v
e
 a

n
a
ly

si
s

o
f

th
e

L
a
te

st
 I

m
p

ro
v

e
m

e
n

ts
 o

f
P

a
r
ti

cl
e

S
w

a
r
m

 O
p

ti
m

iz
a

ti
o

n
 a

lg
o
r
it

h
m

s
o
n

 a
u

to
m

a
te

d
 s

o
ft

w
a
r
e

te
st

 d
a
ta

 g
e
n

e
r
a
ti

o
n

 17

The experimental results underscore the efficacy of meta-heuristic approaches,

particularly PSO, in navigating large and complex search spaces to generate high-quality

test data. The success of A5 underscores the importance of algorithmic improvements in

addressing common challenges, such as local optima entrapment and premature

convergence, which are crucial for optimizing software testing processes. Furthermore,

the study reaffirms the versatility of PSO and its variants in tackling diverse software

testing challenges, making them valuable tools for enhancing the efficiency and

effectiveness of automated test data generation.

Future research could extend this work by incorporating object-oriented programming

constructs and multi-objective fitness functions to enhance the applicability of these

algorithms further. Additionally, exploring parallelism in test data generation could

improve scalability and reduce computational overhead, making these approaches more

practical for large-scale software systems. Overall, this study contributes to the growing

knowledge in search-based software testing, offering valuable insights into the potential

of advanced PSO algorithms for optimizing software testing processes.

 References

[1] X. Bao, Z. Xiong, N. Zhang, J. Qian, B. Wu, and W. Zhang, "Path-oriented test cases

generation based adaptive genetic algorithm," PloS one, vol. 12, no. 11, p. e0187471, 2017.

[2] M. Esnaashari and A. H. Damia, "Automation of software test data generation using

genetic algorithm and reinforcement learning," Expert Systems with Applications, vol. 183,

p. 115446, 2021.

[3] C. Mao, L. Xiao, X. Yu, and J. Chen, "Adapting ant colony optimization to generate test

data for software structural testing," Swarm and Evolutionary Computation, vol. 20, pp.

23-36, 2015.

[4] R. R. Sahoo and M. Ray, "PSO based test case generation for critical path using improved

combined fitness function," Journal of King Saud University-Computer and Information

Sciences, vol. 32, no. 4, pp. 479-490, 2020.

[5] C. Mao, X. Yu, and J. Chen, "Swarm intelligence-based test data generation for structural

testing," in 2012 IEEE/ACIS 11th International Conference on Computer and Information

Science, 2012: IEEE, pp. 623-628.

[6] Y. Duan, N. Chen, L. Chang, Y. Ni, S. S. Kumar, and P. Zhang, "CAPSO: Chaos adaptive

particle swarm optimization algorithm," Ieee Access, vol. 10, pp. 29393-29405, 2022.

In
fo

rm
a
ti

o
n

 T
ec

h
n

o
lo

g
y

 i
n

 E
n

g
in

ee
ri

n
g
 D

es
ig

n

18

[7] M. Lin, Z. Wang, F. Wang, and D. Chen, "Improved simplified particle swarm

optimization based on piecewise nonlinear acceleration coefficients and mean differential

mutation strategy," IEEE Access, vol. 8, pp. 92842-92860, 2020.

[8] Z. Ma, X. Yuan, S. Han, D. Sun, and Y. Ma, "Improved chaotic particle swarm

optimization algorithm with more symmetric distribution for numerical function

optimization," Symmetry, vol. 11, no. 7, p. 876, 2019.

[9] Y. Song, Y. Liu, H. Chen, and W. Deng, "A Multi-Strategy Adaptive Particle Swarm

Optimization Algorithm for Solving Optimization Problem," Electronics, vol. 12, no. 3, p.

491, 2023.

[10] M. Zhao, H. Zhao, and M. Zhao, "Particle swarm optimization algorithm with adaptive

two-population strategy," IEEE Access, 2023.

[11] L. Xu, B. Song, and M. Cao, "An improved particle swarm optimization algorithm with

adaptive weighted delay velocity," Systems Science & Control Engineering, vol. 9, no. 1,

pp. 188-197, 2021.

[12] Z. Ahmad, J. Li, and T. Mahmood, "Adaptive Hyperparameter Fine-Tuning for Boosting

the Robustness and Quality of the Particle Swarm Optimization Algorithm for Nonlinear

RBF Neural Network Modelling and Its Applications," Mathematics, vol. 11, no. 1, p. 242,

2023.

[13] W. Liu, Z. Wang, N. Zeng, Y. Yuan, F. E. Alsaadi, and X. Liu, "A novel randomised

particle swarm optimizer," International Journal of Machine Learning and Cybernetics,

vol. 12, pp. 529-540, 2021.

[14] Z. K. Aghdam and B. Arasteh, "An efficient method to generate test data for software

structural testing using artificial bee colony optimization algorithm," International Journal

of Software Engineering and Knowledge Engineering, vol. 27, no. 06, pp. 951-966, 2017.

[15] R. Malhotra, C. Anand, N. Jain, and A. Mittal, "Comparison of search based techniques

for automated test data generation," International Journal of Computer Applications, vol.

95, no. 23, 2014.

[16] H. Sharifipour, M. Shakeri, and H. Haghighi, "Structural test data generation using a

memetic ant colony optimization based on evolution strategies. Swarm Evol Comput 40:

76–91," ed, 2018.

[17] A. Damia, M. Esnaashari, and M. Parvizimosaed, "Software testing using an adaptive

genetic algorithm," Journal of AI and Data Mining, vol. 9, no. 4, pp. 465-474, 2021.

[18] M. Khari, A. Sinha, E. Verdu, and R. G. Crespo, "Performance analysis of six meta-

heuristic algorithms over automated test suite generation for path coverage-based

optimization," Soft Computing, vol. 24, no. 12, pp. 9143-9160, 2020.

