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Abstract 

This study examines enhancements to Particle Swarm Optimization (PSO) algorithms for 

generating automated software test data, with a focus on path coverage in software systems. 

PSO, valued for its scalability and simplicity, has been enhanced through various algorithmic 

improvements to address challenges like local optima entrapment and convergence 

inefficiencies. The research evaluates ten recent PSO variants on benchmark programs, 

comparing their performance based on coverage, runtime, and success rates. Among these, the 

A5 (EBPSO) algorithm demonstrated superior performance, excelling in exploration-

exploitation balance, population diversity, and convergence efficiency. Experimental results 

affirm the efficacy of meta-heuristic approaches in generating test data across expansive search 

spaces, positioning A5 as a leading solution for test data generation in optimizing software 

testing processes. 
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1- Introduction 

Although random testing is a low-cost approach to software testing, it struggles to 

address complex constraints and achieve comprehensive structural coverage. Search-

based software testing (SBST) utilizes optimization techniques to generate test data, 

thereby efficiently overcoming these limitations. SBST leverages meta-heuristic 

algorithms, which excel at navigating large search spaces without assumptions about 

problem characteristics. Foundational studies by McMinn [1] and Harman et al. [2] 

highlighted the effectiveness of meta-heuristic approaches, including Particle Swarm 

Optimization (PSO) [3], Hill Climbing (HC) [4], Tabu Search (TS) [5], Ant Colony 

Optimization (ACO) [6], Differential Evolution (DE) [7], Artificial Bee Colony (ABC) 

[8], and Firefly Algorithm (FA) [9]. 

Significant advancements in these algorithms have enhanced their adaptability and 

performance. Liang et al. [10] introduced a DE algorithm with a one-test-at-a-time 

strategy, achieving notable improvements in solution quality through parameter 

optimization. Malhotra et al. [11] demonstrated that ABC outperformed ACO and GA in 

test data generation due to its efficient parallelism and neighborhood production 

mechanism. Similarly, Srivatsava et al. [12] employed the FA to optimize test paths, 

demonstrating its ability to minimize test efforts through features like guidance matrices 

and cyclomatic complexity-based traversal. 

Inspired by swarm intelligence, PSO has emerged as a leading method for generating 

test data. PSO optimizes candidate solutions for improved coverage and efficiency by 

iteratively updating the positions and velocities of particles. Tiwari et al. [3] applied a 

PSO variant to regression testing, achieving superior path coverage. Jatana et al. [13] 

compared PSO with GA in mutation testing, finding that PSO offered faster convergence 

and smaller test suites. Sahoo et al. [14] introduced an Improved Combined Fitness 

function with Adaptive PSO (APSO), showcasing its ability to enhance critical path 

coverage. 

This paper investigates the performance of ten advanced PSO variants in automated 

test data generation. Among these, Algorithm A5 emerged as the most effective, utilizing 

innovative solution-updating strategies that adapt to search space conditions. By 

balancing exploration and exploitation, Algorithm A5 mitigates the entrapment in local 

optima, enhances population diversity, and leverages collective intelligence to navigate 

the search space efficiently. 
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The rest of this paper is structured as follows: Section 2 reviews related work on SBST 

and PSO applications. Section 3 outlines the theoretical background supporting the 

proposed approach. Section 4 introduces the improved PSO algorithms, details the 

experimental setup, and presents a comparative analysis of their performance. Finally, 

Section 5 summarizes the findings, emphasizing the superiority of Algorithm A5, and 

discusses potential directions for future research. 

2- Related Work 

 Test data generation is a critical challenge in software testing, with random testing 

often failing under complex constraints. Search-based software testing (SBST) employs 

meta-heuristic algorithms, such as Particle Swarm Optimization (PSO) [3], Hill Climbing 

[4], and Differential Evolution (DE) [7], to address these issues by efficiently navigating 

large search spaces without assumptions about problem characteristics [1, 2]. Liang et al. 

[10] improved DE with a one-test-at-a-time strategy, while Malhotra et al. [11] showed 

ABC's superiority in path coverage due to its robust parallelism. Srivatsava et al. [12] 

optimized test paths using the Firefly Algorithm (FA), and Lv et al. [15] proposed a 

metamorphic relations-based approach as an alternative to PSO despite its reliance on 

domain expertise. 

PSO has demonstrated notable success in testing, with Tiwari et al. [3] applying it to 

regression testing and Sahoo [14] enhancing it with a fitness function to achieve 100% 

path coverage. Saadatjoo [16] and Ghiduk [17] demonstrated the potential of 

evolutionary and PSO-based methods for optimizing test data generation. Recent efforts, 

including Damia's adaptive PSO [21, 22] and Esnaashari's hybrid memetic algorithm 

[23], have addressed the limitations of PSO, such as entrapment in local optima and 

convergence issues. Researchers such as Semujju [19] and Rajagopal [20] have 

developed adaptive and hybrid approaches, enhancing efficiency in challenging testing 

scenarios. 

These studies affirm the versatility of PSO and its variants in tackling diverse software 

testing challenges, with continuous innovations improving adaptability, efficiency, and 

coverage. 

 

3- Background 

This section describes the theoretical background being used in our proposed 

approach. This section introduces the basic concepts of software testing, path testing, 

and fitness functions, which will help us understand the test data generation based on 

the PSO algorithm. 
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 3 

 

3-1- Control Flow Graph  

The control flow graph was constructed using source code. Source code is taken as 

input, and the instrumented code is generated [1]. After that, instrumented code is parsed 

and stored, line by line, in the adjacency list. CFG  for a program 𝑃 is a directed graph 𝐺 

= (𝑁, 𝐸) consisting of N as a set of nodes and E as a set of edges. A node represents a 

statement or a basic block of statements [2]. An edge represents the flow of control 

between nodes. CFG is generated using software such as Visustin or the pycfg or staticfg 

library in the Python programming language, and then extracts the paths of this graph 

from the desired graph. An example of the flow graph with the resulting program from 

Visustin output is shown in Fig.1. 

 

Figure 1: Corresponding CFG sample method, b: a sample source code c: instrumented method 

3-2- Initial Population 

The initial population of particles in the PSO algorithm can be considered the initial 

test data set. Each particle (or test data set) is initialized with a random set of values 

within the defined bounds of the search space [3]. The data structure considered here for 
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PSO-improved algorithms is a matrix structure, where the number of matrix columns 

equals the product of the number of program variables and their paths [4]. Suppose there 

are m execution paths, 𝑃1 to 𝑃𝑚, to be covered by n test data, X1 to X𝑛. Each test data, X𝑖, 

is a vector (𝑥𝑖1
, 𝑥𝑖2

, ..., 𝑥𝑖𝑚
), of m elements where each element is an input variable. 

 

3-3- Fitness Function 

The fitness function is a crucial component of search algorithms used to assess the 

quality of various solutions. The solution (test data) needs to be provided as input to the 

program under test, which is then executed, and its path coverage is measured. If the 

number of paths of the program under test is denoted as NP and the number of paths 

covered by the PSO algorithm is denoted as TP, in all implementation algorithms, the 

fitness of each solution (i) is calculated using Eq. (1): 

 

𝐹𝑖 =  
𝑇𝑃

𝑁𝑃
 

(1) 

 

3-4- Brief explanations of the Improved PSO algorithms  

In this section, the simple PSO algorithm is first described according to the algorithm 

presented by Mao et al. [5]. Next, the improvements to the PSO algorithm are briefly 

outlined. 

3-4-1- Basic Particle Swarm Optimization 

In the PSO algorithm, which models the collective behavior of bird flocking, a swarm 

of particles changes their positions in the search space depending on their previous 

experience and the swarm's experience to find the global optimum. In general, the 

personal best position of particle i is denoted by pbesti, while the global best position of 

the entire population is called gbest. Suppose the population size is s in the D-dimensional 

search space; a particle represents a potential solution. The velocity and position of the 

dth dimension of the ith particle can be updated by formulas (2) and (3) [5], respectively. 

In Figure 2, you can see the pseudocode of the basic PSO algorithm. 

 

Algorithm. Simple PSO 

ŒInput: (1) the program under test P, and 

             The variable (a1, a2, a3, …., an) is the variable list of 

P ; 

            (2) structural coverage criterion target path ; 
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 5 

            (3) algorithm parameter of PSO. n, w, c1, c2, and Vmax
; 

            (4) the maximum evolution generation max_gen. 

ŒOutput: test data set TS satisfying the target path. 

01 encode input list variable into a m-dimension position 

vector; 

02 instrument program P for gathering structural coverage  

information; 

03 initialize the velocity vector 𝑉𝑖
𝑑  and position vector 𝑋𝑖

𝑑 

ŒTest Suite Generation 

04 while(Max_iteration) 

06      for each particle i in the population with size n 

07          for each dimension (1 ≤ 𝑑 ≥m ) of particle i 

08               Calculate the current velocity 𝑉𝑖
𝑑  

                   of particle i in dimension d; 

09             if 𝑉𝑖
𝑑  exceeds the boundary 𝑉𝑚𝑎𝑥  then 

10                 adjust it within the boundary; 

11          endif 

12      calculate the current position 𝑋𝑖
𝑑 

13     endfor 

14      decode vector 𝑋𝑖 into a test case tci ∈ TS ; 

15      execute the program with the test case tci and collect the 

          coverage information to calculate the fitness f (Xi) ; 

16      if 𝑓(𝑋𝑖) > 𝑓 (𝑝𝑏𝑒𝑠𝑡𝑖) then 

17          pbesti = Xi 
18     endif 

19     if 𝑓(𝑋𝑖) > 𝑓 (𝑔𝑏𝑒𝑠𝑡)  then 

               gbest=Xi 

20     endif 

21   end for 

22 end while 

23 return TS = (tci ) ; 

Figure 2: Algorithm simple Pso 
 

We must encode the input list (a1, a2, a3,…, an) into an m-dimensional position vector 

at the initialization stage. Path coverage is a criterion commonly applied in structural 

methods of test data generation. To calculate the fitness value of each particle (test case), 

we should instrument the program under test P to gather the coverage information about 

construct elements. On the other hand, some random values are utilized to initialize the 

velocity vector V_i^dand position vector X_i^d. In the algorithm body, the procedure 

between lines 07 and 14 is used to determine the current position X_i^d of particle i at 

different dimensions d. In line 14, each particle vector Xi in the population is decoded 

into a test case. Then, the fitness of each test case f (Xi) is evaluated. Based on the fitness 

value of each particle (test case), the personal best position, pbesti, and the global best 

position, best, can be updated (lines 16-20). The termination condition in line 05 controls 

the whole particle evolution process. For the testing problem, the termination condition 
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can be the following two cases: (1) all construct elements have been covered, or (2) the 

maximum evolution generation max_gen is reached 

 

3-4-2- Improved PSO Algorithms 

This section compares the ten most recent improved versions introduced by the 

particle swarm optimization algorithm for automatic test data generation. Particle swarm 

optimization (PSO) has been widely applied in various optimization fields due to its ease 

of implementation and high efficiency. However, it suffers from limitations, such as slow 

and premature convergence, when solving high-dimensional optimization problems. This 

paper attempts to address these critical issues. A1 to A10 are, respectively, different 

versions of PSO-improved algorithms. In research A1 [6], writers propose a novel PSO 

algorithm called Chaos Adaptive Particle Swarm Optimization (CAPSO), which 

adaptively adjusts the inertia weight parameter w and acceleration coefficients c1, c2, and 

introduces a controlling factor γ based on chaos theory to adaptively adjust the range of 

chaotic search. A2 is the standard particle swarm algorithm. 

In A3 [7], a new method of parameter adjustment, known as piecewise nonlinear 

acceleration coefficients, is introduced to the simplified particle swarm optimization 

algorithm (SPSO). An improved algorithm, referred to as piecewise-nonlinear-

acceleration-coefficients-based SPSO (P-SPSO), is then proposed. Then, a mean 

differential mutation strategy is developed for the update mechanism of P-SPSO, and 

another improved algorithm named mean-differential-mutation-strategy embedded P-

SPSO (MP-SPSO) is proposed. A4 [8] introduced appropriate improvements to PSO and 

proposed a novel chaotic PSO variant with arc tangent acceleration coefficient (CPSO-

AT). A5 [31] presents a new particle swarm optimization (EBPSO) algorithm. Firstly, 

based on an adaptive adjustment mechanism, the algorithm can select a more effective 

strategy from two search equations to balance exploration and exploitation abilities. 

Secondly, to utilize the information from individual historical optimal solutions and the 

optimal solution of the current population, a weight is introduced to adjust their influence 

in the search equation. Thirdly, by introducing population diversity, a dynamic equation 

for adjusting the algorithm's searchability is proposed. Finally, to avoid falling into a 

local optimum and to explore potential locations, a dynamic random search mechanism 

is proposed, which utilizes information from the current optimal solution.  

In A6 [9], a constraint factor is introduced to control the velocity weight and reduce 

blindness in the search process. A dual-update (DU) strategy is based on new speed and 

position update strategies that are designed. Research A7 [10] proposed a PSO algorithm 

with an adaptive two-population strategy (PSO-ATPS), which adaptively divides a 
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 7 

population into two groups representing excellent and ordinary populations. Inspired by 

animal hunting behavior, a new velocity–position update method is proposed for the 

general population. A velocity update formulation with decreasing inertia weights based 

on logistic chaotic mapping is applied to the excellent population. In A8 [11], an improved 

particle swarm optimization (PSO) with adaptive weighted delay velocity (PSO-AWDV) 

is proposed. 

A new scheme blending weighted delay velocity is first presented for a new PSO with 

a weighted delay velocity (PSO-WDV) algorithm. Then, to adaptively update the velocity 

inertia weight, an adaptive PSO-AWDV algorithm is developed based on the 

evolutionary state of the particle swarm evaluated via a new estimation method. 

 In A9 [12], a hybrid HPSO-SSM algorithm is developed in which three significant 

improvements are made to the original PSO: First, a logistic map sequence is used to 

adjust the inertial weight 𝜔, which provides sufficient variety and facilitates the 

avoidance of optimal solutions throughout the selection process. Second, a significantly 

improved update equation for creating the next-generation position is proposed, which 

can more effectively integrate exploration and exploitation. Third, a spiral-shaped 

mechanism (SSM) is coupled to the original PSO as a local search strategy for the known 

optimum solution. In A10 [13], a novel randomized particle swarm optimizer (RPSO) is 

proposed. The Gaussian white noise with adjustable intensity is utilized to randomly 

perturb the acceleration coefficients to explore the problem space more thoroughly.    

 

4-  Experiments and results   

This study conducted two distinct experiments employing ten advanced Particle 

Swarm Optimization (PSO) algorithms (A1 through A10) to address five benchmark 

software problems. The first experiment focused on a comparative analysis of the meta-

heuristics discussed in the paper, utilizing predetermined control parameter values. This 

comparison assessed the algorithms' performance based on the coverage metric and 

included a runtime analysis, emphasizing the importance of time efficiency in algorithm 

selection. Given that the fitness function directs the algorithms within the search space, 

the effectiveness of these functions was evaluated against the path coverage criterion. 

The second experiment conducted a comparative analysis of the success rates of 

algorithms derived from the first experiment, providing deeper insights into their 

performance and effectiveness. 

4-1- Experimental setup   

An architecture based on actual value execution was used for the experiments. It 
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consisted of a program analyzer, a path selector, and a test data generator. A program 

analyzer is provided with source code and generates a suitable representation (e.g., a 

control flow graph, a data dependence graph, or a program dependence graph) for 

subsequent analysis. Following the generation of test paths by the path selector, the test 

data generator generates path information for the specified test paths. The path selector 

utilizes this path information to regenerate the paths until a coverage criterion is met. The 

study utilized five benchmark problems, which comprised the following: triangle, 

quadratic equation, Max-Min number, leap year, and Fibonacci of marks. Triangle: The 

program checks whether a triangle can be formed using the given sides. If a triangle is 

formed, the program classifies the type of triangle as isosceles, equilateral, or scalene. 

Quadratic Equation: The program checks whether three input scans form a quadratic 

equation. If a quadratic equation is formed, then the roots of the equation are found. Max-

Min: The program finds the largest and smallest numbers among input numbers. Leap: 

The program checks whether a given year is a leap year. Fibonacci: A Fibonacci program 

is a program that generates the Fibonacci sequence. The Fibonacci sequence is a series 

of numbers where each is the sum of the two preceding ones, starting from 0 to 1. In all 

of the problems, solutions were encoded using integer representation. Experiments were 

conducted on a platform equipped with an Intel(R) Core(TM) i7-6820HQ CPU at 2.70 

GHz and 16 GB of RAM. All code fragments of the problems in Table 1 were 

implemented using the Python programming language. 

 

Table 1: Properties of the benchmark problems used in the experiments 

 Program 

title 

Line 

count 

Number 

of paths 

CFG 

node 

size 

No. of 

variables 

References 

1 Triangle 23 3 23 3 [14-16] 

2 QuadEq 15 6 12 3 [15, 17] 

3 Max-Min  31 25 21 5 [18] 

4 Leap  7 6 8 3 [15] 

5 Fibonacci 14 5 10 3 [17] 

6 Bessj 49 30 32 2 [14] 

 

4-2- Experiment 1: Comparison of Improved PSO Algorithms 

The decision for the termination criteria is based on whether at least one test datum 

has traversed the target path or if the number of evolution iterations has reached the preset 

value. In either case, the evolution process will stop. Table 2 compares the results based 

on the coverage, evaluation, and time(s) criteria. Regarding the mean evaluations for the 

Quadratic Equation program, A5 generates path-oriented data more efficiently than other 
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algorithms, and A4 has the worst mean evaluations among all algorithms. Regarding the 

search time for each approach, the mean A5 has the least search time, while A7 has the 

worst time. 

Regarding the mean coverage for the Quadratic Equation program, A3, A5, and A9 

have achieved 100% coverage, while A10 has the lowest coverage. It shows that the 

paper performs best in this test code sample. Regarding the mean evaluations for the 

triangle classifier program, the paper for generating path-oriented data has the lowest 

evaluations compared to other Algorithms, and A2 has the worst mean evaluations among 

all algorithms. Regarding the mean coverage for the triangle classifier program, A3, A5, 

and A9 have reached 100% coverage. And A2 has the worst coverage. It shows that the 

paper performs best in this test code sample. 

Regarding the mean evaluations for the Leap program, A4 for generating path-oriented 

data has the lowest mean evaluations compared to other Algorithms, and A7 has the worst 

mean evaluations among all algorithms. Regarding the search time for each approach, 

the mean A2 has the least search time, while A8 has the worst time. Regarding the mean 

coverage for the Leap program, A1, with a coverage of 0.94, is the best, and A7 has the 

worst coverage. It shows that the paper performs best in this test code sample. Regarding 

the mean evaluations for the Max-Min program, A3 generates path-oriented data more 

efficiently than other algorithms, and A8 has the worst mean evaluations among all 

algorithms. For the search time of each approach, the mean A3 has the least search time, 

while A9 has the worst time. In terms of the mean coverage for the Max-Min program, 

A2, A3, A5, A6, A8, and A9 have reached 100% coverage. And A4 and A7 have the worst 

coverage. It shows that the paper performs best in this test code sample.  

Regarding the mean evaluations for the Fibonacci program, A5 yields the lowest 

results among other algorithms for generating path-oriented data, and A3 has the worst 

mean evaluations among all algorithms. Regarding the search time for each approach, 

the mean A3 and A5 have the shortest search times, while A8 has the longest time. 

Regarding the mean coverage for the Fibonacci program, A5 with 100% coverage is the 

most effective, while A10 has the worst coverage. It shows that the paper performs best 

in this test code sample. The experiments were repeated for the search space bounded by 

the range [-100, 100] to observe the algorithms' behavior in a constrained search space. 

We reported the mean and standard deviation in the first line, the median, and the rank 

of each algorithm in the second line of each cell. The number of evaluations and CPU 

times (in seconds) required to achieve maximum coverage were also reported in Table 2. 

The results produced by the algorithms were different versions of the PSO algorithm, 

ranging from A1 to A10, which were used, respectively. For a better understanding of 

Table 2, its structure is further explained in Figure 3. 
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 Program title Coverage Evaluation Time (s) 

Algorithms 

Test program 

Mean standard 

deviation 

Mean ± standard 

deviation 

Mean ± standard 

deviation 

Median value ranks Median value Median value 

Figure 3: Structure of Table 2 

Table 2: The results of the algorithms designed using a fitness function. Mean ∓ standard deviation are 

reported. Median values are given in parentheses, and ranks are presented next to the median. 

 

program 

title 

Rang  Rang 

[-100, +100] [-100, +100] 

Coverage Evaluation Time 

(s) 

A6 

Coverage Evaluation Time 

(s) 

A1 

QuadEq 

0.635 0.150 20000 ± 

0.0 

0.610 ± 

0.153 

0.926 0.09705 15950.6 ± 

4017.664 

0.617 ± 

0.134 

(0.5) 3 20000.0 0.54276 (1.0) 2 15630.0 0.623 

Triangle 

0.62 0.34897 14080 ± 

9252.425 

0.437 ± 

0.292 

0.76 0.12649 17782 ± 

5963.089 

0.572 ± 

0.192 

(0.5) 4 20000.0 0.59599 (0.7) 4 20000.0 0.614 

Leap 

0.947 0.12669 10899.6 ± 

6699.727 

0.593 ± 

0.382 

0.91 0.14491 13224 ± 

6307.299 

0.793 ± 

0.337 

(1.0) 2 9950.0 0.543 (1.0) 3 11920.0 0.793 

Max-Min 

0.998 0.0199 2392 ± 

3626.663 

0.613 ± 

0.982 

1.0 0.0 3960 ± 3601.481 1.379 ± 

1.290 

(1.0) 1 330.0  0.076 (1.0) 1 3190.0 1.121 

Fibonachi 

0.561 0.083 20000  ± 
0.0 

0.624 ± 
0.049 

0.778 0.08478 19793.8 ± 
1024.060 

0.835 ± 
0.06 

(0.6) 5 20000.0 0.611 (0.8) 3 20000.0 0.825 

A2 

QuadEq 

0.78 0.20986 15304 ± 

6908.013 

0.512 ± 

0.234 

A7 

0.92 0.10328 18628 ± 

1621.883 

0.405 ± 

0.078 

(0.8) 3 20000.0 0.638 (1.0) 1 19150.0 0.403 

Triangle 

0.5 0.21082 20000 ± 

0.0 

0.605 ± 

0.096 

0.76 0.12649 18864 ± 

3536.486 

0.393 ± 

0.172 

(0.5) 5 20000 0.572 (0.7) 4 20000.0 0.335 

Leap 

0.92 0.17512 8348 ± 

7001.702 

0.469 ± 

0.441 

0.8 0.18257 13372 ± 

9011.692 

0.498 ± 

0.352 

(1.0) 2 4870.0 0.239 (0.7) 2 20000.0 0.679 

Max-Min 

1.0 0.0 1982  ± 
1527.130 

0.537 ± 
0.417 

0.92 0.06324 17216 ± 
5179.513 

2.659 ± 
0.967 

(1.0) 1 1850.0 0.529 (0.9) 1 20000.0 2.874 

Fibonacci 

0.584 0.09289 19924.2 ± 

758.0 

1.366 ± 

0.522 

0.78 0.11353 19692 ± 973.981 0.439 ± 

0.023 

(0.6) 4 20000.0 1.221 (0.8) 3 20000.0 0.447 

A3 

QuadEq 

1.0 0.0 680 ± 

751.236 

0.026 ± 

0.032 

A8 

0.984 0.05453 6179.4  ± 

5711.668 

2.208 ± 

2.055 

(1.0) 1 470.0 0.016 (1.0) 2 3800.0 1.260 

Triangle 

1.0 0.0 896 ± 

803.923 

0.063 ± 

0.099 

0.73 0.09487 18778 ± 

3864.303 

5.201 ± 

1.071 

(1.0) 1 510.0 0.01402 (0.7) 5 20000.0 5.449 

Leap 

0.911 0.17049 11260.4 ± 

6880.619 

0.583 ± 

0.358 

0.91 0.15472 11564 ± 

6943.920 

6.221 ± 

3.796 

(1.0) 3 11240.0 0.557 (1.0) 3 11260.0 6.444 
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Max-Min 

1.0 0.0 585 ± 

407.112 

0.151 ± 

0.105 

1.0 0.0 1325.8  ± 

1122.246 

3.931  ± 

3.475 

(1.0) 1 500.0 0.125 (1.0) 1 1010.0 2.883 

Fibonacci 

0.994 0.03428 4222.4 ± 

5122.860 

0.152 ± 

0.187 

0.778 0.12679 18313.6 ± 

4367.161 

18.445 

± 

99.342 

(1.0) 2 2270.0 0.076 (0.8) 4 20000.0 8.525 

A4 

QuadEq 

0.759 0.13714 2559.4 ± 

2232.137 

0.128 ± 

0.117 

A9 

1.0 0.0  974.6 ± 

1121.560 

 0.071  

± 0.082 

(0.8) 4 1960.0 0.089 (1.0) 1 600.0 0.042 

Triangle 

0.73 0.09487 8350 ± 

2374.405 

0.402 ± 

0.159 

1.0 0.0 722 ± 1493.346 0.034 ± 

0.066 

(0.7) 5 8850.0 0.382 (1.0) 1 230.0 0.012 

Leap 

0.834 0.18489 6815.6 ± 

5913.631 

0.521 ± 

0.457 

0.923  0.14829 10829 ± 

7183.708 

1.397  ± 

0.932 

(1.0) 3 5200.0 0.394 (1.0) 2 10120.0 1.349 

Max-Min 

0.92 0.04714 765.8 ± 

701.780  

0.289 ± 

0.272 

1.0 0.0 3116 ± 3056.596 8.658 ± 

8.604 

(0.9) 1 550.0 0.200 (1.0) 1 2060.0 5.513 

Fibonacci 0.838 0.12615 13156.8 ± 

4674.743 

0.726 ± 

0.259 

0.812 0.17481 15287.8 ± 

7030.108 

1.696 ± 

0.953 

(0.8) 2 12150.0 0.689 (0.8) 3 20000.0 1.922 

A5 

QuadEq 

1.0 0.0 303.8 ± 
219.396 

0.016 ± 
0.011 

A10 

0.664 0.18064  19157  ± 
3061.330 

0.998  ± 
0.194 

(1.0) 1 260.0 0.013 (0.5) 3 20000.0 0.995 

Triangle 

1.0 0.0 364 ± 

263.447 

0.016 ± 

0.012 

0.61 0.23309 18982 ± 

3219.198 

0.767 ± 

0.206 

(1.0) 1 310.0 0.013 (0.7) 4 20000.0 0.760 

Leap 

0.824 0.19904 14311 ± 

6757.116 

1.093 ± 

0.522 

0.881 0.17678 12282 ± 

7529.841 

 0.962  

± 0.591 

(1.0) 2 18620.0 1.381 (1.0) 2 13050.0 1.03169 

Max-Min 

1.0 0.0 2309 ± 

2184.217 

0.825 ± 

0.790 

0.998 0.019 3892.2±3990.593 1.672 ± 

1.723 

(1.0) 1 1650.0 0.569 (1.0) 1 2220.0 0.953 

Fibonacci 

1.0 0.0 2640.2  ± 

2220.973 

0.158 ± 

0.135 

0.522  0.09804  20000 ± 0.0 1.189 ± 

0.078 

(1.0) 1 2100.0 0.119 (0.6) 5 20000.0 1.175 

 

4-3- Experiment 2: comparison of success rate criteria 

The next criterion for evaluating the efficiency of algorithms is the success rate. The 

success rate is calculated based on Eq. 4.   

 

𝑆𝑅 =  
∑ 𝑏𝑏𝑐𝑖

𝑝𝑠
𝑖

𝑝𝑠
 

(2) 

 

In Eq.4, ps is the number of executions of the algorithm, and bbc is a Boolean flag. If 

the algorithm reaches the maximum coverage from a fixed limit of calling the fitness 

function of the answer, this flag will be set to one. Otherwise, it will be similar to zero. 
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Figure 2 illustrates the success rates of ten Particle Swarm Optimization (PSO) 

algorithms (A1 to A10) across six test programs, highlighting their effectiveness in 

generating test data to achieve the desired path coverage. Among the algorithms, A5 

stands out with a 100% success rate in three programs (Quadratic Equation, Triangle, and 

Fibonacci) and consistently high performance across all test scenarios, demonstrating its 

robustness and adaptability. Algorithms like A3 and A9 also show strong performance in 

specific programs, such as Max-Min and Fibonacci, but lack the consistent reliability of 

A5. Other algorithms, such as A1, A2, A4, A6, A7, A8, and A10, exhibit variable success 

rates, with some struggling in more complex programs like Fibonacci, indicating 

sensitivity to program complexity. A5's ability to maintain high success rates across both 

simple and complex programs underscores its superior balance of exploration and 

exploitation, as well as its innovative solution-updating strategies. This analysis 

emphasizes the significance of algorithmic enhancements in PSO for optimizing software 

testing processes, with A5 being the most effective and reliable option for automated test 

data generation. Future research could further enhance these algorithms to address even 

more complex testing challenges. 
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                     Figure 4: Success rate of comparison to other algorithms on the test programs 

4-4- Experiment 3: Convergence Evaluation 

Figure 3 presents the convergence behavior of the ten improved Particle Swarm 

Optimization (PSO) algorithms (A1 to A10) across six test programs. In automated 

software test data generation, the fitness function is a critical measure of an algorithm's 

ability to generate test cases that achieve the desired path coverage. The convergence 

behavior of the fitness function over iterations provides valuable insights into the 

efficiency, stability, and overall performance of different Particle Swarm Optimization 

(PSO) algorithms. Figure 3 illustrates the average fitness function values for ten 

improved PSO algorithms (A1 to A10) across six test programs. Each test program 

presents unique challenges, ranging from simple control flow structures to more complex 

decision-making processes, allowing for a comprehensive evaluation of the algorithms' 

capabilities. 



In
fo

rm
a
ti

o
n

 T
ec

h
n

o
lo

g
y

 i
n

 E
n

g
in

ee
ri

n
g
 D

es
ig

n
 

14 

    

 

The following analysis focuses on five key observations derived from Figure 3, which 

collectively highlight the strengths and weaknesses of the algorithms in terms of 

convergence speed, solution quality, stability, and adaptability to varying levels of 

program complexity. These observations are crucial for understanding how different 

algorithmic improvements impact the performance of PSO in the context of automated 

test data generation. By examining these aspects, we can identify which algorithms are 

most effective in achieving high path coverage while maintaining computational 

efficiency, ultimately guiding future research and practical applications in software 

testing. 

 Convergence Speed 

The convergence speed of the algorithms varies significantly across the test programs. 

Algorithms converging faster to a lower fitness value are generally more efficient, 

requiring fewer iterations to generate optimal or near-optimal test data. In most test 

programs, A5 demonstrates rapid convergence, often reaching the lowest fitness value 

earlier than the other algorithms. This indicates that A5 is highly effective in balancing 

exploration and exploitation, allowing it to navigate the search space and find optimal 

solutions quickly. 

 Fitness Value at Convergence 

 The final fitness value at convergence is another important metric. Lower fitness values 

indicate better performance, corresponding to higher path coverage and more effective test 

data generation. A5 consistently achieves the lowest fitness values across all test programs, 

further confirming its superiority in terms of solution quality. This is particularly evident 

in programs like the Quadratic Equation and Triangle classifier, where A5 converges 

quickly and reaches the lowest possible fitness value. 

 Stability and Robustness 

Some algorithms exhibit fluctuations in fitness values during the iterations, indicating 

instability or difficulty in maintaining a consistent search direction. For example, A7 and 

A8 show more variability in their fitness values across different test programs, suggesting 

they may struggle with local optima or premature convergence. In contrast, A5 exhibits a 

more stable convergence pattern, characterized by smooth and consistent decreases in 

fitness values. This stability is a sign of robustness, as the algorithm is less likely to get 

trapped in local optima and can reliably find high-quality solutions. 

 Comparison with Other Algorithms 

While A5 stands out as the best-performing algorithm, other algorithms, such as A3 and 

A9, also demonstrate competitive performance in certain test programs. For instance, A3 
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performs well in the Max-Min and Fibonacci programs, achieving low fitness values with 

relatively fast convergence. 

However, these algorithms do not consistently outperform A5 across all test programs. 

A10, for example, shows poor performance in several test programs, with slower 

convergence and higher final fitness values, indicating that it may not be as effective in 

navigating complex search spaces. 

 Test Program Complexity 

The complexity of the test programs also plays a role in the performance of the algorithms. 

Programs with more complex control flow graphs (e.g., Max-Min and Fibonacci) tend to 

challenge the algorithms more, resulting in slower convergence and higher fitness values 

for most algorithms. 

Despite the increased complexity, A5 maintains its superior performance, suggesting 

that its adaptive mechanisms for balancing exploration and exploitation are particularly 

effective in handling complex search spaces. 

The analysis highlights the superior performance of A5, which consistently achieves 

faster convergence, lower fitness values, and greater stability compared to the other 

algorithms. This makes A5 a highly effective choice for automated test data generation, 

particularly in scenarios where path coverage and efficiency are critical. The results also 

underscore the importance of algorithmic improvements in PSO, as they can significantly 

enhance the performance of meta-heuristic approaches in software testing applications. 

 

 

 



In
fo

rm
a
ti

o
n

 T
ec

h
n

o
lo

g
y

 i
n

 E
n

g
in

ee
ri

n
g
 D

es
ig

n
 

16 

    

 

 
Figure 5: Mean Fitness function 

 

5-  Conclusion 

This study has explored the latest advancements in Particle Swarm Optimization 

(PSO) algorithms for automated software test data generation, with a focus on achieving 

comprehensive path coverage in software systems. Through a comparative analysis of 

ten improved PSO variants (A1 to A10), the research evaluated their performance across 

multiple benchmark programs, considering key metrics such as coverage, runtime, and 

success rates. Among the algorithms tested, A5 emerged as the most effective, 

demonstrating superior performance in balancing exploration and exploitation, 

maintaining population diversity, and achieving efficient convergence. Its innovative 

solution-updating strategies, which adapt to the search space conditions, enabled it to 

consistently outperform other algorithms in terms of fitness evaluations, success rates, 

and coverage. 
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The experimental results underscore the efficacy of meta-heuristic approaches, 

particularly PSO, in navigating large and complex search spaces to generate high-quality 

test data. The success of A5 underscores the importance of algorithmic improvements in 

addressing common challenges, such as local optima entrapment and premature 

convergence, which are crucial for optimizing software testing processes. Furthermore, 

the study reaffirms the versatility of PSO and its variants in tackling diverse software 

testing challenges, making them valuable tools for enhancing the efficiency and 

effectiveness of automated test data generation. 

Future research could extend this work by incorporating object-oriented programming 

constructs and multi-objective fitness functions to enhance the applicability of these 

algorithms further. Additionally, exploring parallelism in test data generation could 

improve scalability and reduce computational overhead, making these approaches more 

practical for large-scale software systems. Overall, this study contributes to the growing 

knowledge in search-based software testing, offering valuable insights into the potential 

of advanced PSO algorithms for optimizing software testing processes. 
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