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Abstract: The mechanical and barrier properties of sago starch film incorporated with different percentages of euparin (0.02, 

0.04, 0.06, 0.08, and 0.1) were evaluated. With regard to mechanical properties, tensile strength and Young’s modulus 

increased when the percentage of extract Elongation at break (%) decreased. and increased with the increasing percentage of 

extract from 0.02 to 10.1,  
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        Introduction 

The development of starch-based bioplastics has 

been given considerable attention as an 

environmentally friendly biodegradable alternative to 

hydrocarbon-based plastics [1]. When starch films are 

used for food packaging it is required to have good 

transparency, sufficient strength and low moisture 

absorption so as be able to improve the shelf life of 

food. Solution casting is one of common method for 

preparing starch film, especially at the laboratory level. 

During this preparation, some defects resulting in 

inhomogeneous structures may occur. These 

inhomogeneous structure results from incompletely 

soluble starch granules often called ghosts [2]. This 

can decrease the transparency of starch film [3]. Ghost 

formation is a result of cross-linking of polysaccharide 

chains within swollen granules [4]. Previous studies 

found that ultrasonication is effective in reducing 

insoluble and agglomerated starch [5-6]. 

This is because sound energy from ultrasonication 

produces acoustic cavitation: the formation, growth, 

and collapse of starch granules within the liquid matrix 

[7-8].  

 

*Corresponding author: Tel: 0098-9111251481; Fax: 0098-

112145047, E-mail: ma_hosseinzadeh@yahoo.com  

Physical and mechanical properties of a maize starch 

film after ultrasonication of the starch gel improve due 

to an increase in homogeneity of the structural starch 

film resulting in increased transparency and tensile 

strength of the film along disappearance of the ghosts 

[9-10]. In contrast, another previous study claimed that 

a high ghost phase fraction enhanced the tensile 

(elongation at break and tensile stress) properties of 

corn starch film [11-14]. These dissimilarities in 

results could be due to differences in the starch sources 

used for preparing starch films. To the best of our 

knowledge, there is no publication in the literature 

related to the mechanical properties of edible films 

incorporated with euparin. Therefore, the objectives of 

this research were to characterize the mechanical and 

barrier properties of sago starch-based film 

incorporated with euparin. 

Materials and methods  

Purification of phycocyanin 

Petasites hybridus dried roots (1 kg) were cut into 

small pieces and extracted with a mixture of 

MeOH:THF (1:1) for 5 h. Next, the solvent was 

evaporated under reduced pressure and euparin was 

obtained as yellow needle crystals [14]. 

 

 



Iranian Journal of Organic Chemistry Vol. 14, No. 2 (2022) 3343-3347                                           M. Hosseinzadeh et. al. 

 

3344 

 

Chemicals and reagents 

Sago starch with approximately 12% moisture, 

glycerol, sorbitol and the other chemicals were 

supplied by Sigma-Aldrich. 

Film preparation 

2.2.1 Sago starch –based film was explained [15]. 

First 4% (w/w) sago starch was added to distilled 

water and followed by heating to 90 ◦C for 

gelatinization of starches and stirred continuously for 

45 min to complete homogeneity and gelatinization in 

solution. A mixture of plasticizer (sorbitol: 3/glycerol: 

1) that was previously reported as having the best heat 

seal ability at 40%, was also added. This mixture was 

cooled to 40–45 ◦C. Different amount of suspension 

euparin dissolve in methanol   (0.0 2, 0.0 4,0.0 6, 0. 

08, and 0.1 w/V) was added into the mixture of EU1, 

EU2, EU3, EU4, and EU 5 films respectively. Film 

without the addition of EU (EU0) served as control. 

Each suspension was cast on Perspex plates and fitted 

with rims to yield a 16 cm × 16 cm film-forming area. 

Then the films were dried in the oven at 40 ◦C for 20 h 

and peeled off after drying, and kept at,23 ± 2 ◦C and 

the dried and peeled were film put into a desiccator 

with 50% relative humidity until further analyses. 

Mechanical properties 

The mechanical properties of were films were 

determined using ASTM D882 [22-24] with a slight 

modification. Film strips were cut into 100 mm × 20 

mm sections and were kept for 48 h at 23 ◦C and 53% 

RH to be conditioned. The mechanical properties were 

then measured using a universal testing machine ( 

SANTAM )in an initial grip separation with crosshead 

speeds of 50 mm/s and 1 mm/s. Deformation and force 

were recorded by the software during extension and 

expressed in graph format. Elongation and tensile 

strength at breaking as well as Young’s modulus were 

calculated. At least five replicates were carried out for 

each sample 

 

Results and Discussion  

Tensile strength, elongation, at break and Youngs 

modulus 

 

Tensile strength (TS) expresses the maximum force 

per area that the film can tolerance before breaking, 

while elongation at break (EB), elongation shows 

flexibility of the film when subjected to mechanical 

stress and tension and Young's modulus (YM) Films 

made from high amylose starches showed the highest 

values of TS and YM. Several studies have reported 

this behavior [16-17]. which has been attributed to the 

capability of linear amylose chains to interact through 

hydrogen bonds to a higher extent than the branched 

amylopectin chains Fig. 1 indicates that increasing the 

concentration of the euparin extract increased tensile 

strength from 6.98±0.05 MPa to 9.12±0.125 MPa, 

probably caused by the euparin coat formed on the 

surface reinforcing the films and increasing the tensile 

strength. Furthermore, the changes in the orientation of 

the helices of starch molecules within the semi-

crystalline lamellae could have resulted in a compact 

structure which also increased TS but increased 

control. 

 

 

 

 
Figure 1. Tensile strength of sago starch films incorporated euparin Bars represent mean (n = 10) ± SD. 

 

Elongation at break (%E) showed the opposite behavior 

of TS and YM in euparin films.  

%E values increased control when the 

concentration of euparin and Fig.2 decreased the 



Iranian Journal of Organic Chemistry Vol. 14, No. 2 (2022) 3343-3347                                           M. Hosseinzadeh 

et. al. 

 

3345 

 

percentage of elongation at break from 19±0.07 to 

11±0.705, decreased to control this result is 

consistent with several reports [18-19]. 

 
 

Figure 2. Elongation at break of sago starch films incorporated euparin. Bars represent mean (n = 10) ± SD. 

 

 
 

Figure 3. Young's modulus of sago starch films incorporated euparin. Bars represent mean (n = 10) ± SD. 

 

Young’s modulus was also improved by 

increasing the concentration of euparin as 

observed in Fig. 3. Apparently, euparin increased 

the film rigidity as the short-range crystallinity 

increased resulting in higher YM values Results 

showed that by increasing the amount of euparin 

to film structure TS and YM significantly 

increased and EB of the sago starch films 

significantly decreased. It is likely that euparin 

plays a role as a plasticizing agent and improves 

the flexibility of the starch films. Such behavior of 

other EOs reported by other researchers [20-21]. 

Conclusion 

The results demonstrated that films containing 

phycocyanin (0.2, 0.4, 0.6, 0.8 and 1.0) had a good 

tensile strength and Youngs modulus decreased 

and elongation at break increased when percentage 

of incorporated extract in the film increased. 
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