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Abstract: Most features of carbon nanotubes such as electrical, mechanical and thermal properties are depended on the length 

of them. Thereby, the applications of carbon nanotubes significantly developed by controlling this key factor. In this paper, we 

predict the length of carbon nanotubes in chemical vapor deposition (CVD) by using an artificial neural network. First, the 

effective parameters in CVD for synthesizing carbon nanotubes include the thickness of catalyst, temperature and time of heat 

treatment, rate of reactant gas; collected from various studies and they were determined as the input. Then, the length of carbon 

nanotube considered as the output of the artificial neural network. A Feed-forward backpropagation network was designed with 

16 and 12 neurons in the first and second hidden layers, respectively. The predicted outcomes were very close to the 

experimental results, and the created model with 5.6% root mean square error was able to predict the length of carbon 

nanotubes. It is expected that the designed model can be helpful for researchers to adjust and regulate the suitable parameters 

among different effective variables in the CVD method. Furthermore, the result of the sensitivity analysis showed that the 

temperature and rate of reactant gas and thickness of catalyst have the highest impact on the length of carbon nanotubes, 

respectively.  
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Introduction 

 Carbon nanotubes (CNTs) are the fourth allotrope of 

carbon [1] which were observed in 1952 by 

Radushkevich and et al. [2]. Especial and symmetric 

structure, nano-metric radius, low density, high special 

surface area, conductive and semi-conductive type, 

absorbing and transferring energy, strong π and σ 

bonds, 1 TP young modulus and 100 GP tensile strength 

are the unique properties of CNTs [3]. According to 

these features; carbon nanotubes have large range 

applications; such as used in medicine [4], agriculture 

[5], lithium battery [6], solar cells [7], energy storage 

[8], etc.  
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There are different methods for synthesizing carbon 

nanotubes, and the way of approach can specify 

properties of CNTs [9]. Arc discharge, laser ablation, 

and chemical vapor deposition are the main methods for 

fabrication the carbon nanotubes [3]. However, 

chemical vapor deposition has a superiority than other 

methods; because in CVD method mechanism is simple, 

the process is done in low temperature, growth 

condition is controllable, obtained coating of CNTs is 

well-aligned, the procedure is inexpensive and suitable 

for mass production [10-12]. Basically, all of the 

properties of CNTs are specified by quantum 

mechanics, but length and diameter are two key major 

parameters that affect a lot of properties of carbon 

nanotubes [3]. Hence, exact determining the length of 
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CNTs leads to optimizing using the CVD process. There 

are a huge number of investigations for fabrication 

CNTs by the CVD method, but a few of them perform a 

study that focuses on the prediction length of carbon 

nanotubes base on machine learning. The artificial 

neural network (ANN) is one of the most powerful 

modeling tools for approaching different datasets and 

reaching an exact solution [13]. This modeling 

technique is based on learning and subsequently the 

prediction of output responses [14]. ANN has been 

widely used in CVD and owing to the different 

significant parameters in the CVD process, it can 

helpful to predict desired outputs. In this paper, we 

collect important variables in the CVD method, include 

the thickness of catalyst, time and temperature of heat 

treatment, time and rate of gas reactant, and length of 

CNTs from valid related papers. Then, the gathered data 

were used to design an artificial neural network for 

prediction the length of carbon nanotubes. Finally, the 

Neurosolution software was used for specifying the 

most important parameters on the length of CNTs in the 

CVD method. 

Result and Discussion  

There are different CVD methods for synthesizing 

CNTs such as plasma and laser-assisted CVD or water 

or oxygen assisted CVD, etc [3, 15]. In this 

investigation for homogeneous datasets and precise 

prediction; dataset only collected from the articles that 

used simple CVD, thermal CVD or catalytic chemical 

vapor deposition (CCVD), because they follow a similar 

process for fabrication CNTs. Most protective gases in 

CVD are noble such as Ar, He, and H2. In most 

experiments, a mixture of these gases, especially Ar and 

H2, are used for producing CNTs. These protective 

gases usually have not important influence in the 

synthesis of CNTs [3]; as a result, they were not 

considered in the data collection. Different reaction 

gases in the CVD method are Methane, Ethane, 

Acetylene, Ethylene, and Carbon Monoxide [16]. 

Among these gases, unsaturated hydrocarbon Acetylene 

was more applied in many articles, due to the 

appropriate rate for fabrication alignment of carbon 

nanotubes [17]; therefore Acetylene selected as the 

reactant gas for data collection. Co, Ni, and Fe are the 

most useful catalysts that alone or mixed with other 

metals used for synthesizing of CNT by CVD method 

[8, 16]. In this study, Fe due to the abundant number of 

research, more accessibility, and low cost selected for 

the catalyst. Furthermore, the thickness of Fe catalysts 

in all collected resources was not more than 50 nm for 

homogeneity of datasets. All information with the above 

conditions were collected and listed in Table 1. 

 

Table. 1: The collected dataset with detail of major parameters in the CVD method for producing CNTs. 

No Source 

Thickness 

of catalyst 

(nm) 

Temperature 

of heat 

treatment (C˚) 

Time of 

heat 

treatment 

(min) 

Rate of 

reactant 

gas 

(sccm) 

Time of 

reactant 

gas 

(min) 

Temperature 

of reactant 

gas (C˚) 

Length 

of 

CNTs 

 (nm) 

1 [18] 30 750 20 30 10 950 5000 

2 [18] 30 850 20 30 10 950 10000 

3 [18] 30 950 20 30 10 950 20000 

4 [19] 2 800 40 10 10 800 114 

5 [19] 2 800 40 30 10 800 157 

6 [19] 2 800 40 20 10 800 150 

7 [19] 2 800 40 40 10 800 97 

8 [19] 2 800 40 50 10 800 57 

9 [20] 5 750 8 100 10 750 20780 

10 [20] 5 750 12 100 10 750 19000 

11 [20] 5 750 10 100 10 750 17000 

12 [20] 5 750 14 100 10 750 20780 

13 [21] 2.8 750 15 12 15 750 24.5 

14 [21] 2.8 900 15 12 15 900 23.8 

15 [22] 50 950 120 30 10 950 18000 

16 [22] 50 950 20 30 3 950 3600 

17 [22] 50 950 20 30 20 950 20000 

18 [22] 50 950 20 30 30 950 28000 

19 [22] 50 950 20 30 10 950 12000 
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20 [22] 50 950 240 30 10 950 8000 

21  [23] 1 725 15 3 15 650 149000 

22  [23] 1 725 15 3 15 700 290000 

23  [23] 1 725 15 3 15 725 340000 

24  [23] 1 725 15 3 5 725 175000 

25  [23] 1 725 15 3 10 725 229000 

26  [23] 1 725 15 3 15 725 350000 

No Source 

Thickness 

of catalyst 

(nm) 

Temperature 

of heat 

treatment (C˚) 

Time of 

heat 

treatment 

(min) 

Rate of 

reactant 

gas 

(sccm) 

Time of 

reactant 

gas 

(min) 

Temperature 

of reactant 

gas (C˚) 

Length 

of 

CNTs 

 (nm) 

27  [23] 1 725 15 3 15 725 349000 

28 [24] 8 700 30 120 30 800 6500 

29 [24] 8 700 30 120 30 900 1500 

30 [25] 5 580 30 400 60 750 100000 

31 [26] 7 700 25 10 20 750 3460 

32 [26] 5 700 25 10 20 750 3460 

33 [27] 27 900 5 30 20 900 35000 

34 [28] 1 750 3 5 30 750 100000 

35 [29] 2 650 30 75 40 750 5000 

36 [29] 10 650 30 75 40 750 80000 

37 [29] 20 650 30 75 40 750 35000 

38 [29] 20 650 30 44.4 40 750 44500 

39 [20] 20 650 30 109.2 40 750 29000 

40 [30] 50 950 20 30 10 950 10000 

41 [31] 30 850 20 30 5 850 15830 

 

ANN Results 

In order to test the accuracy of the network 

performance, regression analysis was performed for 

training and testing data sets. The result of the 

regression analysis is shown in Figure 2. According to 

this graph, the total regression (total regression of test, 

train, and validation) was 0.99973. Better regression 

leads to less scattering between datasets and predicted 

values. Thereby, it is completely reasonable that the 

error percentage of the measured regression will be 

less and the obtained relation would be more accurate, 

due to being very close to 1. It can be seen that the 

artificial neural network has been able to reach a very 

close relation between the experimental variables and 

the prediction values and the network has been able to 

find an appropriate equation. For verification of the 

network, a comparison between experimental and 

predicted values datasets was carried out. Regarding 

equation 4, the average error of the network was 

calculated by 5.6%. Based on this result, it can be 

expected that the modeled ANN network can predict 

other similar results in order to predict the length of 

CNT with such high accuracy and reliability. 

Moreover, with attention to the many variables 

involved in the CVD method, the proposed model 

reduces the time and costs of experimental research.   

 
Figure 1: Diagrams of the designed ANN architecture. 
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Figure 2: Schematic of regression based on the designed 

ANN model for prediction length of CNTs in the CVD 

method. 

Sensitivity Analysis 

Although neural network modeling can predict the 

outcome parameter, it is not able to determine the 

effect of each parameter. In this study, due to the use 

of Neurosolution, we can find and specify the least and 

the most important factors [40]. Indeed, the influence 

of each parameter can be determined by using SA. 

This analysis explains which of input more important 

than the others and so it is very useful and acts as the 

supplement of the ANN. Figure 3 provides information 

about the result of Neurosolution from the sensitivity 

analysis of collected datasets. According to the results, 

the temperature and rate of reactant gas, and the 

thickness of the catalyst have the highest impact 

function, respectively.  

 

 
 

Figure. 3: Sensitivity analysis of synthesized CNTs via the 

CVD method based on collected data. 

  

According to these results, the temperature of the 

reaction gas is the most important parameter in the 

sensitivity analysis of the CVD process. Similarly, 

some studies reports [18, 41] that the temperature of 

reactants has a major effect on the growth of CNTs. 

Based on the nucleation and the growth mechanism for 

fabrication carbon nanotubes in the presence of 

catalyst [11, 42], nucleation and growth of nanotubes 

perform on the catalytic particles. By reducing the 

solubility and deposition of carbon atoms in the 

solution of carbon atoms and metal catalysts; carbon 

atoms by SP
2
 bonds are bonded. Generally, the 

temperature of reactant gas prepares a suitable 

condition for connecting carbon atoms in the substrate. 

Likely, the temperature of acetylene increases the 

solubility of carbon and the small change in it leads to 

a transformation in the length of the carbon nanotube. 

The second important parameter is the rate of reactant 

gas (C2H2). According to the other researches [43, 44], 

the rate of reactant gas influenced the structure of 

CNTs and can handle the rate of connecting carbon 

atoms for production carbon nanotubes. Indeed, 

acetylene acts as a precursor and rate of it characterize 

when and where bonds of carbon atoms could be 

extended or cease, with attention to the supersaturated 

condition in the solution of carbon atoms and Fe 

catalyst.  

Conclusion 

The ANN model with 16 and 12 neurons in hidden 

layers 1 and 2, respectively, is a useful method for the 

prediction of length of carbon nanotubes synthesized 

by the CVD method. In this study, the designed ANN 

model predicted the length of CNTs with an average 

error of 5.6%.The results of the network and length of 

carbon nanotubes have a remarkable agreement with 

the experimental data. According to the sensitivity 

analysis, the rate and temperature of reactant gas, and 

the thickness of the catalyst have the highest impact on 

the length of carbon nanotubes, respectively.  

Experimental 

ANN Modeling Procedure 

ANN network generally contains interconnected 

units known as neurons or nods. Neurons are the 

smallest computing elements which interconnected to 

weighted links and they aggregate into layers. These 

layers affect their input information and can be trained 

by a process [32-35]. Indeed, ANN consists of input 

layers, output layers, and hidden layers and neuron 

signals transmitted several times from input to the 

output. The training process of ANN continuous 

intermittently by changing weights until the network 

could approach the desired output and reaches to the 
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acceptable error. After training, the network can 

predict the output of untrained data by using the 

designed model that was learned at the training step. 

The relationship of neurons can be expressed by 

relation (1):  

 

      (1) 

 

 

Where the output  produced by the neuron in the 

layer,  is the number of elements in the layer,  

is the weight, and b is the offset or bias. 

ANN Architecture  

Among the total number of data, 33 and 8 datasets 

were used randomly for training and verification of the 

network, respectively. Feed-forward backpropagation 

(FFBP), which is one of the most suitable ways for the 

training of the network in ANN [36], was used for 

training the model. This method presents effective 

solutions for approaching different factors in order to 

find a solution [37, 38]. The number of neurons in the 

hidden layers during the training process was 

determined by trial and error. This network includes an 

input layer, two hidden layers and, an output layer. 

There are 16 and 12 neurons in the first and second 

hidden layers, respectively. Figure. 1 provides 

information about the schematic diagrams of the ANN 

model configuration. As can be seen, there are 6 inputs 

and 1 output. The input variables are the thickness of 

catalyst, temperature and time of heat treatment; rate, 

time, and temperature of reactant gas; and the length of 

carbon nanotube considered as the output.  

The network modeling was written in MATLAB 

software version R2014a and the Levenberg–

Marquardt (LM) algorithm [39] was used to train the 

network. Furthermore, the log-sigmoid transfer 

function was applied as an activation function for 

hidden and output layers. The data sets have been 

normalized between 0.1 to 0.9 for homogenization 

according to relation (3): 

                                        

N                                                          (3) 

 

Where  and  are the maximum and 

minimum values of the parameters, respectivelly. 

The root mean square errors (RMSE) for the 

designed network was computed by: 

 

 
 

Where N is the total number of training patterns.  

 

The thickness of the catalyst is the third important 

factor and commonly mentioned in some reports [45-

47] as a key parameter for synthesizing CNT via CVD. 

Fe catalyst which covered in the surface, decomposed 

during the process and with Root or Tip growth 

mechanism, leads to bonding carbon atoms with SP
2
 

hybridization. Moreover, the thickness of catalyst 

influence in the growth location and alignment of 

CNTs and consequently it is so much effective in the 

length of carbon nanotubes. It is noticeable that despite 

the limited size of Fe catalyst (˂ 50 nm), this parameter 

still has a considerable impact on the Length of CNTs 

in the CVD method. 
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