

Synthesis of 3-oxo-4-benzoyl-1-phenylsuccinimide and its reactions with 1,2dinucleophiles

Hassan Kabirifard,^{*} Natasha Ataeimehr and Zeinab Alimardani Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran

Received: January 2011; Revised: March 2011; Accepted: March 2011

Abstract: The base-catalyzed reaction of ethyl benzoylpyruvate (1) with phenyl isocyanate yields the 3-oxo-4-benzoyl-1-phenylsuccinimide (2). Reactions of compound 2 with hydrazine and phenylhydrazine afforded the corresponding pyridazine-3,6-dione derivatives **3a,b**. The 3-oxo-4-benzoyl-1-phenylsuccinimide (2) reacts with 1-aminoguanidine, semicarbazide and thiosemicarbazide to form the corresponding *N*-phenyl maleimide derivatives **4a-c**, respectively. The analytical data of these compounds - IR, ¹H, and ¹³C NMR spectral data are reported.

Keywords: Benzoylpyruvate; Phenyl isocyanate; 3-Oxo-4-benzoyl-1-phenylsuccinimide; Pyridazine-3,6-dione; *N*-Phenyl maleimide; Hydrazone.

Introduction

In recent years N-substituted maleimides and 5vlidenepyrrole-2(5H)-ones have received growing attention, since the former have potential utility as fluorescent reagents for labeling different mutant proteins [1] and the latter have interesting features associated with regioselective synthesis when different substituents are bonded to position 3 and 4 of the skeleton [2-4]. Fused or functionalized maleimides are synthetically useful intermediates for the preparation of polycyclic and fused pyridazine derivatives [5,6]. They are also active as dienophiles in Diels-Alder reactions or as 1,3-dipolar reagents [7-9]. A variety of N-substituted maleimides provide Michael adducts in excellent yields [10]. Substituted maleimides are a convenient molecular system for the production of thermally cured and/ or photo cured polymers with a wide range of properties and applications. In addition, substituted maleimides are intermediates in the cross linking reactions of PMR-15, a leading candidate for high temperature resins for aerospace applications [11]. Most of the methods reported for the synthesis of maleimides are based on the reaction of the corresponding maleic anhydride with an amine or ammonium acetate [12,13]. Similarly, the

reaction of maleamic acid with triethylamine in either toluene or benzene, yielding *N*-maleoylamino esters, can be considered as being in the same class as the previous reaction [14,15]. A series of *N*-substituted maleimides and *N*-substituted succinimides are active as antimicrobial and antibacterial [16,17]. In addition, a series of 1-methyl-3-phenylmaleimide analogues act as inhibitors of enzyme monoamine oxidase B (MAO-B) [18].

Herein, we report a simple reaction between 3-oxo-4benzoyl-1-phenylsuccinimide (2), derived from the addition of ethyl benzoylpyruvate to phenyl isocyanate, and corresponding 1,2-dinucleophiles leading to pyridazine-3,6-dione (3a,b) and *N*-phenyl maleimide (4a-c) derivatives (Schemes 1-3).

Results and discussion

1. Synthesis of 3-benzoyl-4-hydroxy-1-phenyl-2,5dihydro-1H-pyrrole-2,5-dione (2)

In present work, it has been found that treatment of the acidic methylene compound **1** with phenyl isocyanate in boiling toluene containing a catalytic amount of triethylamine afford 3-benzoyl-4-hydroxy-1phenyl-2,5-dihydro-1H-pyrrole-2,5-dione (**2**) (Scheme **1**).

^{*}Corresponding author. Tel: +98 21 22423386; Fax: +98 21 22404843, E-mail: hkabirifardlz@yahoo.com

Assignment of the product 2 was based on IR, ¹H, and ¹³C NMR spectral data. The IR spectrum showed absorption bands at 3065, 1750, 1711, 1649 and 1605 cm⁻¹ attributable to the enolic OH, two bands for imidic C=O [19], ketonic C=O and C=C, functions, respectively. The low frequency of the ketonic C=O stretching absorption is probably the result of the conjugation of the C=C bond and participation of the C=O group in an intramolecular hydrogen bond with the hydroxyl group of enol fragment. Its ¹H NMR spectrum showed a broad singlet at δ 10.70 ppm for the enolic OH proton and multiplet signals integrated for 10 protons at δ 7.30-7.69 ppm (aromatic protons). In the ¹H-NMR spectrum of product 2 the resonance signal of a methine proton was absent. The compound 2 could also be readily distinguished using ¹³C NMR spectroscopy. The ¹³C NMR spectrum of 2 revealed four signals at δ 170.8, 99.5, 165.0 and 177.6 ppm due to the C²ONPh, =C³-COPh, =C⁴-OH, and C⁵ONPh carbons, respectively of the maleimide, besides eight signals at δ 126.6-140.7 ppm attributable to the aromatic carbons and a signal at δ 189.6 ppm for the ketonic carbon.

2. Reactions of the compound 2 with 1,2-dinucleophiles

The compound 2 was used as a precursor for synthesis of heterocycles. It has been found that interaction of hydrazine, phenylhydrazine, 1-aminoguanidine, semicarbazide and thiosemicarbazide with 2 generally lead to formation of nucleophile condensation products.

These 1,2-dinucleophiles add to different reaction centers of **2**: either to imidic (atoms C-2 and C-5, see Scheme **2**) or to enolic fragments (atom C-4, see Scheme **3**). The nucleophile condensation pathways and regioselectivity depend on the nucleophile and reaction conditions.

2.1. Reactions of the compound (2) with hydrazines

It is know that the *N*-alkylphetalimide with hydrazine undergo *Gabriel Synthesis* through the nucleophilic displacement of imidic fragment to give the pyridazine structure [20]. We have found that the compound **2** with hydrazinium sulfate and phenylhydrazine hydrochloride on refluxing in ethanol in the presence of AcONa form the substituted pyridazines-3,6-dione **3a,b** (Scheme **2**).

Structures **3a,b** was assigned on the basis of their IR, ¹H, and ¹³C NMR spectra. For example, the IR spectrum of compound **3b** showed six characteristic absorption bands at 3462, 3056, 1758, 1697, 1640 and 1493 cm⁻¹ attributable to the NH, enolic OH, two bands for amimidic C=O, ketonic C=O and C=C, functions, respectively. Its ¹H NMR spectrum displayed a broad singlet at δ 3.36 ppm for the NH, OH, and nH₂O protons and multiplet signals integrated for 10 protons at δ 7.30-7.54 ppm (aromatic protons). The ¹³C NMR spectrum of **3b** revealed four signals at δ 174.4, 164.5, 97.8 and 170.4 ppm due to the CONH, =C-OH, =C-COPh, and CONPh carbons, respectively of the pyridazine, besides eight signals at δ 126.6-141.3 ppm attributable to the aromatic carbons and a signal at δ 187.1 ppm for the ketonic carbon.

Scheme 2

2.2. Reactions of the compound **2** with 1aminoguanidine and semicarbazides

In our investigation, condensation of the compound 2 with each of 1-aminoguanidine, semicarbazide and thiosemicarbazide in ethanol and in the presence of AcONa yielded the 4-amino-maleimide derivatives 4a-c (Scheme 3).

Structures 4a-c was confirmed according to their IR, ¹H and ¹³C NMR spectral data. The IR and ¹³C NMR spectra of the isolated products showed the presence of C=N (amidino) in 4a by absorption band at 1579 cm⁻¹ and signal at δ 158.9 ppm, the presence of C=O (semicarbazido) in **4b** by absorption band at 1576 cm⁻¹ and signal at δ 157.3 ppm, and the presence of C=S (thiosemicarbazido) in 4c by absorption band at 1385 cm⁻¹ and signal at δ 181.2 ppm. In the ¹H NMR spectra of **4a-c** we observed signals for -NH-NH- protons at δ 10.49-10.55 and 11.12-11.41 ppm. The low shielding of the -NH-NH- protons is probably the participation of the C=O groups in an intramolecular hydrogen bond with the NH groups (Scheme 3). Their ${}^{1}H$ NMR spectra displayed signals at δ 7.07, 5.85 and 7.46 ppm due to the protons of NH=C-NH₂, CONH₂ and CSNH₂ groups, respectively. On shaking the compounds 4a-c

with D_2O , the broad band signals attributable to NH, NH_2 disappeared.

Scheme 3

Conclusion

We report a facile route for the formation of pyridazine-3,6-dione and *N*-phenyl maleimide derivatives based on 3-oxo-4-benzoyl-1-phenylsuccinimide.

Experimental

Melting points were measured in open capillaries and are reported uncorrected. Infrared spectra were measured from KBr disk using a FT-IR Perkin Elmer GX spectrometer and frequencies are reported in cm⁻¹. ¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker Ultra ShieldTM-500MHz instrument using TMS as an internal standard and the chemical shifts are reported in ppm. Thin-layer chromatography was performed on "Silufol-UV 254" plates.

1. Material

Ethyl 2,4-dioxo-4-phenylbutanoate (1) was prepared from diethyl oxalate and acetophenone by known methods [21].

2. Synthesis of 3-benzoyl-4-hydroxy-1-phenyl-2,5dihydro-1H-pyrrole-2,5-dione (2)

A mixture of compound **1** (2.20 g, 10 mmol) and phenyl isocyanate (1.19 g, 10 mmol) in toluene (25 ml) containing a few drops of TEA was refluxed for 3h. The toluene was evaporated, the residue was recrystallized from isopropyl alcohol, and dried.

Greenish crystal (Yield 53%), m.p. 143-145°C; IR: 3065 (OH, enol), 1750, 1711 (C=O, imide), 1649 (C=O, ketone), 1605 (C=C) cm⁻¹; ¹H NMR (CDCl₃) δ : 7.30 (2H, d, ³J_{HH}=8.7 Hz, 2CH_{ortho} of C₆H₅-N), 7.38-7.47 (6H, m, 2Ph), 7.69 (2H, d, ³J_{HH}=8.5 Hz, 2CH_{ortho} of C₆H₅-CO), 10.70 (1H, br.s, OH) ppm; ¹³C NMR (CDCl₃) δ : 99.5 (=C-COPh), 126.6, 127.0, 127.4, 128.5, 128.6, 130.4 (10C, 2Ph), 132.3 (C_{ipso} of Ph-CO), 140.7 (C_{ipso} of Ph-N), 165.0 (=C-OH), 170.8 (C²ONPh), 177.6 (C⁵ONPh), 189.6 (COPh) ppm.

3. Reactions of the compound 2 with 1,2dinucleophiles. General Procedure

A mixture of 2 (0.292g, 1.0 mmol) and each of the 1,2-dinucleophiles (hydrazinium sulfate, phenylhydrazine hydrochloride, 1-aminoguanidinium hydrogen carbonate, semicarbazide hydrochloride, and thiosemicarbazide) (1.0 mmol) in ethanol (15 ml), in the presence of AcONa (0.082g, 1.0 mmol) was refluxed for 2-4 h. The solid that separated in each case was filtered off and was crystallized from ethanol to give **3a,b** and **4a-d**, respectively.

4-Benzoyl-5-hydroxy-1,2,3,6-tetrahydropyridazine-3,6dione (**3a**)

White crystal (Yield 33%), m.p. 241-243°C; IR: 3437, 3182 (NH), 3066 (OH, enol), 1733 (C=O, amide), 1636 (C=O, ketone), 1606 (C=C) cm⁻¹; ¹H NMR (DMSO- d_6) & 3.38 (br.s, 2NH, OH, nH₂O), 7.32 (2H, t, ³ J_{HH} =7.6Hz, 2CH_{meta} of Ph), 7.40 (1H, t, ³ J_{HH} =7.3Hz, CH_{para} of Ph), 7.53 (2H, d, ³ J_{HH} =7.4Hz, 2CH_{ortho} of Ph) ppm; ¹³C NMR (DMSO- d_6) & 99.9 (=C-COPh), 127.0, 128.3, 131.1 (5C, Ph), 132.7 (C_{ipso} of Ph), 165.4 (=C-OH), 171.4 (CONH), 177.7 (CONH), 189.8 (COPh) ppm.

5-Benzoyl-4-hydroxy-1-phenyl-1,2,3,6tetrahydropyridazine-3,6-dione (**3b**)

Yellowish crystal (Yield 50%), m.p. 198-200°C; IR: 3462 (NH), 3056 (OH, enol), 1758, 1697 (C=O, amide), 1640 (C=O, ketone), 1606 (C=C) cm⁻¹; ¹H NMR (DMSO- d_6) δ : 3.36 (br.s, NH, OH, nH₂O), 7.30 (2H, d, ³ J_{HH} =8.0 Hz, 2CH_{ortho} of Ph-N), 7.32-7.45 (6H, m, 2Ph), 7.54 (2H, d, ³ J_{HH} =7.5 Hz, 2CH_{ortho} of Ph-CO) ppm; ¹³C NMR (DMSO- d_6) δ : 97.8 (=*C*-COPh), 126.6, 126.8, 127.1, 128.3, 128.4, 129.8 (10C, 2Ph), 132.9 (C_{ipso} of Ph-CO), 141.3 (C_{ipso} of Ph-N), 164.5 (=C-OH), 170.4 (CONPh), 174.4 (CONH), 187.1 (COPh) ppm.

3-Benzoyl-4-(2-amidino)hydrazino-1-phenyl-2,5dihydro-1H-pyrrole-2,5-dione (4a)

Yellow crystal (Yield 60%), m.p. 199-201°C; IR: 3421, 3341, 3153, 1598 (NH), 1749 and 1707 (C=O, imide), 1622 (C=O, ketone), 1605 (C=C), 1579 (C=N) cm⁻¹; ¹H NMR (DMSO- d_6) δ : 7.07 (3H, br.s, NH=C-NH₂, exchangeable with D₂O), 7.31 (2H, d, ³ J_{HH} =7.0 Hz, 2CH_{ortho} of Ph-N), 7.34-7.45 (6H, m, 2Ph), 7.56 (2H, d, ³ J_{HH} =7.0 Hz, 2CH_{ortho} of Ph-CO), 10.52, 11.36 (2H, 2br.s, 2NH, exchangeable with D₂O) ppm; ¹³C NMR (DMSO- d_6) δ : 97.7 (=C-COPh), 126.4, 126.7, 127.0, 128.2, 128.3, 129.7 (10C, 2Ph), 133.0 (C_{inso} of

Ph-CO), 141.4 (C_{ipso} of Ph-N), 158.9 (C=N), 164.5 (=C-NH), 170.2 (C^{2} ONPh), 174.2, (C^{5} ONPh), 186.9 (COPh) ppm.

3-Benzoyl-4-semicarbazido-1-phenyl-2,5-dihydro-1H-pyrrole-2,5-dione (4b)

Yellow crystal (Yield 66%), m.p. 188-190°C; IR: 3443, 3328, 3288, 1595 (NH), 1759 and 1696 (C=O, imide), 1661 (C=O, ketone), 1610 (C=C), 1576 (C=O) cm⁻¹; ¹H NMR (CDCl₃) δ : 5.85 (2H, br.s, NH₂, exchangeable with D₂O), 7.32 (2H, d, ³*J*_{HH}=7.6 Hz, 2CH_{ortho} of Ph-N), 7.41-7.66 (6H, m, 2Ph), 7.71 (2H, d, ³*J*_{HH}=7.8 Hz, 2CH_{ortho} of Ph-CO), 10.49, 11.12 (2H, 2br.s, 2NH, exchangeable with D₂O) ppm; ¹³C NMR (CDCl₃) δ : 99.6 (=C-COPh), 125.9, 126.4, 127.3, 128.0, 128.5, 130.7 (10C, 2Ph), 131.7 (C_{ipso} of Ph-CO), 140.0 (C_{ipso} of Ph-N), 157.3 (CONH₂), 165.7 (=C-NH), 170.3 (C²ONPh), 177.8 (C⁵ONPh), 190.5 (COPh) ppm.

3-Benzoyl-4-thiosemicarbazido-1-phenyl-2,5-dihydro-1H-pyrrole-2,5-dione (4c)

Yellow crystal (Yield 75%), m.p. 158-160°C; IR: 3365, 3268, 3176,1597 (NH), 1747 and 1711 (C=O, imide), 1648 (C=O, ketone), 1608 (C=C), 1385 (C=S) cm⁻¹; ¹H NMR (CDCl₃) δ : 7.27 (2H, d, ³*J*_{HH}=8.0 Hz, 2CH_{ortho} of Ph-N), 7.46 (2H, br.s, NH₂, exchangeable with D₂O), 7.31-7.44 (6H, m, 2Ph), 7.67 (2H, d, ³*J*_{HH}=7.9 Hz, 2CH_{ortho} of Ph-CO), 10.55, 11.41 (2H, 2br.s, 2NH, exchangeable with D₂O) ppm; ¹³C NMR (CDCl₃) δ : 100.0 (=C-COPh), 127.0, 127.4, 127.8, 128.9, 129.0, 130.9 (10C, 2Ph), 132.7 (C_{ipso} of Ph-CO), 141.1 (C_{ipso} of Ph-N), 165.4 (=C-NH), 171.2 (C²ONPh), 175.8 (CSNH₂), 178.0 (C⁵ONPh), 190.1 (COPh) ppm.

Acknowledgements

The authors acknowledge Prof. Issa Yavari for excellent technical assistance.

References

- [1] Corrie, J. E. T. J. Chem. Soc., Perkin Trans. 1 1994, 2975.
- [2] Gill, G. B.; James, G. D.; Oates, K. V.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1993, 2567.
- [3] Corrie, J. E. T.; Moore, M. H.; Wilson, G. D. J. *Chem. Soc., Perkin Trans. 1* **1996**, 777.
- [4] Alizadeh, A.; Movahedi, F.; Esmaili, A. A. *Tetrahedron Lett.* **2006**, *47*, 4469.
- [5] Tominaga, Y.; Komiya, K., Itonaga, S.; Yoshioka, N., Kataoka, S.; Sasaki, K.; Hirota, T. *Heterocycles* 1997, 46, 41.
- [6] Katrisky, A. R.; Fan, W.-Q.; Li, Q.-L.; Bayyuk, S. J. Heterocycl. Chem. 1989, 26, 885.
- Huisgen, R. In *1,3-Dipolar Cycloaddition* Chemistry; Padwa, A., Ed.; John Wiley & Sons, 1984; Vols. 1 and 2.
- [8] Vedejs, E.; West, F. G. Chem. Rew. 1986, 86, 941.
- [9] Kumar, V.; Kaushik, M. P. Tetrahedron Lett. 2006, 47, 1457.
- [10] Bai, J.-F.; Peng, L.; Wang, L.-L.; Wang, L.-X.; Xu, X.-Y. *Tetrahedron* **2010**, *66*, 8928.
- [11] Wilson, D. Br. Polym. J. 1988, 20, 405.
- [12] Mehta, N. B.; Philips, A. P.; Lui, F. F.; Brooks, R. E. J. Org. Chem. 1960, 25, 1012.
- [13] Earl, R. A.; Clough, F. W.; Townsend, L. B. J. *Heterocycl. Chem.* 1978, 15, 1479.
- [14] Tsou, K. C.; Barnett, R. J.; Seligman, A. M. J. Am. Chem. Soc. 1955, 77, 4613.
- [15] Rich, D. H.; Gesellchen, P. D.; Tong, A.; Cheung, A.; Buckner, C. K. J. Med. Chem. 1975, 18, 1004.
- [16] Zentz, F.; Valla, A.; Guillou, R. L.; Labia, R.; Mathot, A.-G.; Sirot, D. *IL Farmaco* 2002, 57, 421.
- [17] Zentz, F.; Guillou, R. L.; Labia, R.; Sirot, D.; Linard, B.; Valla, A. *IL Farmaco* 2004, 59, 879.
- [18] Manley-King, C. I.; Blanche, G. T.; Castagnoli, N., Jr.; Bergh, J. J.; Petzer, J. P. *Bioorg. Med. Chem.* 2009, 17, 3104.
- [19] Corsaro, C.; Parker, S. F. Physica B 2004, 350, e591.
- [20] Gabriel, S. Ber. 1887, 20, 2224.
- [21] Shick, H.; Eichhorn, I. Synthesis 1989, 477.