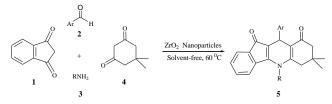


ZrO_2 nanoparticles: a highly efficient catalyst for solvent-free and mild synthesis of indeno[1,2-b]quinoline derivatives

Shahrzad Abdolmohammadi^{a*} and Maryam Afsharpour^b

Received: August 2013; Revised: September 2013; Accepted: October 2013


Abstract: A novel and practically useful protocol has been designed herein, by a one-pot four-component coupling reaction of 1,3-indanedione, aromatic aldehydes, primary amines, and dimedone catalyzed by commercially available ZrO₂ nanoparticles (ZrO₂ Nps) to afford the corresponding indeno[1,2-b]quinolinediones in high yields under solvent-free conditions.

Keywords: Indeno[1,2-b]quinoline, One-pot four-component, Solvent-free, ZrO₂ nanoparticles.

Introduction

In the last few years, nanoscale inorganic solid oxides as catalysts have gained tremendous importance due to their good activation of adsorbed compounds which cannot be achieved by their bulk counterparts [1-3]. Nanoscale heterogeneous catalysts offer higher surface area and low coordination sites, which are responsible for the higher catalytic activity [4-9]. The most preferred surface of solids would be those which possess easy preparation, potent catalytic activity, possible processability, high stability and ease of recyclability.

Thus, according to our previous works aimed at development of new facile routes in heterocyclic synthesis, we considered ZrO₂ nanoparticles (ZrO₂ NPs) to be an efficient catalyst for the synthesis of indeno[1,2-b]quinolinedione derivatives as a class of important biologically active compounds *via* a four-component coupling reaction of 1,3-indanedione, aromatic aldehydes, primary amines, and dimedone catalyzed by commercially available ZrO₂ nanoparticles (ZrO₂ Nps) with an average size of 15 nm (Scheme 1).

Scheme 1: Synthesis of indeno[1,2-b] quinolinediones.

The indenoquinoline derivatives constitute an important group of bioactive compounds displaying a broad range of biological activities, such as antitumor [10, 11], acetylcholinesterase inhibitors [12], antimalarials [13], steroid reductase inhibitors [14], and new potential topo I/II inhibitors activities [15,16]. Therefore, the preparation of this heterocyclic nucleus is of particular importance to the organic chemists [17-20].

Various methods have been reported for the synthesis of compounds belonging to this class [21–25] which have their own advantages. Meanwhile, some of them are not fully satisfactory with regard to operational simplicity, cost of the reagent and isolated yield. Thus, there is always the need for better and improved methodology. In this paper, we have demonstrated a very efficient and environmental

^aDepartment of Chemistry, Faculty of Science, East Tehran Branch, Islamic Azad University, PO Box 33955-163, Tehran, Iran and Fax: +98-21-3359 4332.

^bChemistry & Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.

^{*}Corresponding author. Tel: (+98) 21 33594950, Fax: (+98) 21 33594332, E-mail: s.abdolmohamadi@iauet.ac.ir

friendly process for the synthesis of indeno[1,2-b] quinolinediones.

Results and discussion

Firstly, 4-bromobenzaldehyde was chosen as a model for the reaction with 1,3-indanedione, methylamine,

and dimedone with various amounts of ZrO₂ NPs and under different conditions (Table 1). The best result was obtained when 10 mol% of ZrO₂ has been used in solvent-free conditions (Table 1, entry 2).

Table 1: The synthesis of 10-(4-bromophenyl)-5,7,7-trimethyl-6,7,8,10-tetrahydro-5*H*-indeno[1,2-*b*]quinoline-9,11-dione (**5a**) under different conditions.

Entry	Solvent	Catalyst (mol%)	Temp. (°C)	Time (h)	Yield (%) ^a
1	neat	ZrO ₂ NPs (5%)	80	3	53
2	neat	ZrO ₂ NPs (10%)	80	1	98
3	neat	ZrO ₂ NPs (20%)	80	1	97
4	CH ₃ CN	ZrO ₂ NPs (10%)	80	6	37
5	CH ₂ Cl ₂	ZrO ₂ NPs (10%)	80	6	45
6	DMF	ZrO ₂ NPs (10%)	80	6	49

^aIsolated yield.

Scheme 2: Propsed mechanism for the synthesis of indeno[1,2-b]quinolinediones catalyzed by ZrO₂ NPs under solvent-free conditions.

To prove the generality of the protocol, benzaldehydes with various functionalities and primary amines with different substitutents were employed. The results are summarized in Table 2.

According to both Lewis acid and Lewis base character of metal oxides [26], a suggested mechanism for the formation of indeno[1,2-b]quinolinediones 5 is

presented in Scheme 2. It is reasonable that ZrO₂ NPs catalyzes the formation of carbocation 7 which then undergoes a Knoevenagel condensation with enolized 1,3-indanedione 6, which produces alkene 8. The enamine 9, which is obtained from the reaction of of dimedone 4 and primary amine 3, adds to alkene 8 to produce the Michael adduct 10. Intramolecular

cyclization of 10 gives product 5, after dehydration of intermediate 11.

Table 2: Synthesis of indeno[1,2-b]quinolinediones 5(a-j) using ZrO₂ NPs as catalyst.

Decdust	Δ.,.	R	Yield (%) ^{a,b}	MP (°C)	
Product	Ar	K		Obs.	Lit.
5a	4-BrC ₆ H ₄	CH ₃	98	230-231	228-230 ²²
5b	4-BrC ₆ H ₄	$4-CH_3C_6H_4$	96	254-256	255-256 ²¹
5c	4-BrC ₆ H ₄	C_6H_5	94	279-281	280-283 ²³
5d	4 -BrC $_6$ H $_4$	4 -BrC $_6$ H $_4$	98	272-274	271-273 ²³
5e	2-ClC ₆ H ₄	$4-CH_3C_6H_4$	96	264-266	263-265 ²³
5f	4-ClC ₆ H ₄	Cyclopropyl	98	296-298	295-297 ²²
5g	4-CH ₃ OC ₆ H ₄	Cyclopropyl	95	220-221	220-222 ²²
5h	$4-CH_3OC_6H_4$	CH ₃	96	231-233	230-233 ²²
5i	$4-CH_3C_6H_4$	$4-CH_3C_6H_4$	95	281-283	283-285 ²¹
5j	$4-NO_2C_6H_4$	Cyclopropyl	97	269-271	268-270 ²²

^aYields refer to those of pure isolated products characterized by IR, ¹H NMR spectroscopy and elemental analysis.

The structures of known compounds **5a-j** were established by their satisfactory elemental analyses, IR and ¹H NMR spectroscopy, which were found to be identical with those described in the literature. Selected spectroscopic data are reported.

The catalyst could be recovered from the reaction mixture after adding DMF, and dried in vacuum. It could then be reused for further catalytic reactions. In each cycle >85% of the catalyst was easily recovered. As shown in Table 3, the yields of the model reaction after second and third uses of the catalyst were almost same without loss of catalytic activity.

Table 3: Using of recovered ZrO₂ NPs for the synthesis of 5a.

No. of uses	Yield(%) ^a	Recovery of ZrO ₂ NPs (%)
1	98	94
2	95	81
3	94	78

^aIsolated yield.

Conclusion

We have developed a practically efficient and novel protocol for the synthesis of indeno[1,2-b]quinolinedione derivatives using ZrO₂ NPs as the catalyst under solvent-free conditions. The yields and the reaction time completely highlight the practical synthetic efficiency of this novel protocol.

Experimental

All chemicals used in this work purchased from *Fluka* and used without further purification. Melting points were determined with *Electrothermal 9100* melting point apparatus and were uncorrected. IR spectra were obtained on an *ABB FT-IR* (FTLA 2000) spectrometer. ¹H NMR spectra were run on a *Bruker DRX-500 AVANCE* at 500 MHz using TMS as internal standard and DMSO-*d*₆ as solvent. Elemental analyses were carried out using a *Heraues CHN* rapid analyzer.

General Procedure for Preparation of Compounds 5aj:

A mixture of 1,3-indanedione (1, 1 mmol), aromatic aldehydes 2 (1 mmol), primary amines 3 (1 mmol), dimedone (4, 1 mmol) and ZrO₂ NPs (12.3 mg, 10

^bIn all cases, reaction time was 1 h stirring at 60 °C.

mol%) was stirred at 60 °C for 1 h. The progress of the reaction was monitored with TLC. Upon completion of the reaction, DMF (3 mL) was added to the reaction mixture, and ZrO_2 NPs was removed by filtration. The organic solution was then poured into cold water (15 mL), filtered and washed with aqueous ethanol to afford the pure products 5 after drying at 80 °C for several hours in vaccum.

Selected spectral data:

10-(4-Bromophenyl)-5,7,7-trimethyl-6,7,8,10-tetra hydro-5H-indeno[1,2-b]quinoline-9,11-dione (5a):

Orange powder, yield: 0.439 g (98%), m.p. 230-231°C. IR (KBr): 3004, 2947, 2859, 1671, 1636, 1624, 1544 cm⁻¹. ¹H NMR (DMSO- d_6) δ : 1.00 (s, 3 H, CH₃), 1.07 (s, 3 H, CH₃), 2.17 (m, 2 H, CH₂), 2.54 (d, 2J = 17.0 Hz, 1 H, CH₂), 2.91 (d, 2J = 17.0 Hz, 1 H, CH₂), 3.73 (s, 3 H, NCH₃), 4.78 (s, 1 H, H-10), 7.17 (d, 3J = 8.5 Hz, 2 H, H_{Ar}), 7.34 (m, 2 H, H_{Ar}), 7.40 (d, 3J = 8.5 Hz, 2 H, H_{Ar}), 7.45 (m, 1 H, H_{Ar}), 7.66 (d, 3J = 7.5 Hz, 1 H, H_{Ar}) ppm. Anal. Calc. for C₂₅H₂₂BrNO₂ (448.36): C 66.97, H 4.95, N 3.12; Found: C 66.84, H 5.07, N 3.06.

10-(4-Bromophenyl)-7,7-dimethyl-5-phenyl-6,7,8,10-tetrahydro-5H-indeno[1,2-b]quinoline-9,11-dione (5c):

Brick red powder, yield: 0.480 g (94%), m.p. 279-281 °C. IR (KBr): 3035, 2957, 2864, 1682, 1641, 1577, 1542 cm⁻¹. ¹H NMR (DMSO- d_6) δ : 0.81 (s, 3 H, CH₃), 0.93 (s, 3 H, CH₃), 2.01 (d, 2J = 17.1 Hz, 1 H, CH₂), 2.06 (d, 2J = 16.4 Hz, 1 H, CH₂), 2.25 (d, 2J = 16.4 Hz, 1 H, CH₂), 2.42 (d, 2J = 17.1 Hz, 1 H, CH₂), 4.85 (s, 1 H, H-10), 5.08 (d, 3J = 7.5 Hz, 1 H, H_{Ar}), 6.98 (t, 3J = 7.5 Hz, 1 H, H_{Ar}), 7.35 (d, 3J = 8.1 Hz, 2 H, H_{Ar}), 7.45 (d, 3J = 8.1 Hz, 2 H, H_{Ar}), 7.70 (br s, 5 H, H_{Ar}) ppm. Anal. Calc. for C₃₀H₂₄BrNO₂ (510.43): C 70.59, H 4.74, N 2.74; Found: C, 70.67; H, 4.86; N, 2.88.

5,10-Bis(4-bromophenyl)-7,7-dimethyl-6,7,8,10-tetrahydro-5H-indeno[1,2-b]quinoline-9,11-dione (5d):

Brick red powder, yield: 0.578 g (98%), m.p. 272-274°C. IR (KBr): 3076, 2963, 2879, 1688, 1644, 1611, 1592, 1549 cm⁻¹. ¹H NMR (DMSO- d_6) & 0.81 (s, 3 H, CH₃), 0.94 (s, 3 H, CH₃), 1.99 (d, ²J = 17.4 Hz, 1 H, CH₂), 2.04 (d, ²J = 16.2 Hz, 1 H, CH₂), 2.26 (d, ²J = 16.2 Hz, 1 H, CH₂), 2.40 (d, ²J = 17.4 Hz, 1 H, CH₂), 4.82 (s, 1 H, H-10), 5.25 (d, ³J = 7.5 Hz, 1 H, H_{Ar}), 7.10 (m, 1 H, H_{Ar}), 7.22 (m, 2 H, H_{Ar}), 7.34 (d, ³J = 8.0 Hz, 2 H, H_{Ar}), 7.71 (br

s, 2 H, H_{Ar}), 7.89 (d, ${}^{3}J$ = 8.0 Hz, 2 H, H_{Ar}) ppm. Anal. Calc. for C₃₀H₂₃Br₂NO₂ (589.32): C 61.14, H 3.93, N 2.38; Found: C 61.05, H 3.84, N 2.47.

10-(2-Chlorophenyl)-7,7-dimethyl-5-(4-methylphenyl)-6,7,8,10-tetrahydro-5H-indeno[1,2-b]quinoline-9,11-dione (5e):

Brick red powder, yield: 0.460 g (96%), m.p. 264-266°C. IR (KBr): 3047, 2961, 2929, 1665, 1641, 1586, 1557 cm⁻¹. ¹H NMR (DMSO- d_6) & 0.82 (s, 3 H, CH₃), 0.93 (s, 3 H, CH₃), 2.00 (d, ²J = 16.5 Hz, 2 H, 2 CH₂), 2.22 (d, ²J = 16.2 Hz, 1 H, CH₂), 2.37 (d, ²J = 16.8 Hz, 1 H, CH₂), 2.49 (s, 3 H, NCH₃), 5.19 (d, ³J = 7.8 Hz, 1 H, H_{Ar}), 5.24 (s, 1 H, CH₂), 7.01 (m, 1 H, H_{Ar}), 7.17 (m, 3 H, H_{Ar}), 7.28 (m, 2 H, H_{Ar}), 7.53 (m, 5 H, H_{Ar}) ppm. Anal. Calc. for C₃₁H₂₆ClNO₂ (480.00): C 77.57, H 5.46, N 2.92; Found: C 77.49, H 5.33, N 2.80.

5-(Cyclopropyl)-7,7-dimethyl-10-(4-nitrophenyl)-6,7,8,10-tetrahydro-5H-indeno[1,2-b]quinoline-9,11-dione (5j):

Orange powder, yield: 0.427 g (97%), m.p. 269–271°C. IR (KBr): 3007, 2962, 2870, 1681, 1642, 1566, 1524 cm⁻¹. ¹H NMR (DMSO- d_6) δ : 0.96 (m, 2 H, CH₂), 1.04 (s, 6 H, CH₃), 1.30 (m, 2 H, CH₂), 2.19 (d, 2J = 16.2 Hz, 1 H, CH₂), 2.27 (d, 2J = 16.2 Hz, 1 H, CH₂), 2.75 (d, 2J = 17.2 Hz, 1 H, CH₂), 3.13 (d, 2J = 17.2 Hz, 1 H, CH₂), 3.61 (t, 3J = 3.5 Hz, 1 H, CH), 4.63 (s, 1 H, H-10), 7.32 (d, 3J = 7.5 Hz, 1 H, H_{Ar}), 7.36 (d, 3J = 8.5 Hz, 2 H, H_{Ar}), 7.47 (m, 2 H, H_{Ar}), 7.83 (d, 3J = 7.5 Hz, 1 H, H_{Ar}), 8.11 (d, 3J = 8.5 Hz, 2 H, H_{Ar}) ppm. Anal. Calc. for C₂₇H₂₄N₂O₄ (440.50): C 73.62, H 5.49, N 6.36; Found: C 73.54, H 5.57, N 6.41.

Acknowledgments

Partial support of this work by East Tehran Branch, Islamic Azad University is gratefully acknowledged.

References

- [1] Yamaguchi, A.; Uejo, F.; Yoda, T.; Uchida, T.; Tanamura, Y.; Yamashita, T.; Teramae, N. *Nat. Mater.*, **2004**, *3*, 337.
- [2] Claus, P.; Brückner, A.; Mohr, C.; Hofmeister, H. J. Am. Chem. Soc., 2000, 122, 11430.
- [3] Kidwai, M.; Bansal, V.; Mirsha, N. K.; Kumar, A.; Mozumdar, S. *Synlett*, **2007**,1581.
- [4] Parida, K. M.; Dash, S.S.; Das, D. P. J. Colloid Interface Sci., 2006, 298, 787.
- [5] Roucoux, A.; Schulz, J.; Patin, H. Chem. Rev., 2002, 102, 3757.
- [6] Hernández-Santos, D.; González-García, M. B.; Garcia, A. C. Electroanal., 2002, 14, 1225.
- [7] Mihara, M.; Ishino, Y.; Minakata, S.; Komatsu, M. *Synlett*, **2002**, 1526.

- [8] Abdolmohammadi, S.; Balalaie, S. Comb. Chem. High T. Scr., 2012, 15, 395.
- [9] Abdolmohammadi, S.; Afsharpour, M. Chin. Chem. Lett., 2012, 23, 257.
- [10] Yamato, M.; Takeuchi, Y.; Hashigaki, K.; Ikeda, Y.; Chang, M. C.; Takeuchi, K.; Matsushima, M.; Tsuruo, T.; Tashiro, T.; Tsukagoshi, S.; Yamashito, Y.; Nakano, H. *J. Med. Chem.*, **1989**, *32*, 1295.
- [11] Deady, L. W.; Desneves, J.; Kaye, A. J.; Finaly, G. J.; Chang, K.; Baguley, B. C.; Denny, W. A. *Bioorg. Med. Chem.*, 2000, 8, 977.
- [12] Rampa, A.; Bisi, A.; Belluti, F.; Gobbi, S.; Valenti, P.; Andrisano, V.; Cavrini, V.; Cavalli, A.; Recanatini, M. *Bioorg. Med. Chem.*, **2000**, *8*, 497.
- [13] Venugopalan, B.; Bapat, C. P.; Desouza, E. P.; Desouza, N. J. Indian J. Chem., Sect. B: Org. Chem. Lncl. Med. Chem., 1992, 31, 35.
- [14] Brooks, J. R.; Berman, C.; Hichens, M.; Primka, R. L.; Reynolds, G. F.; Rasmusson, G. H. *Proc. Soc. Exp. Biol. Med.*, **1982**, *169*, 67.
- [15] Deady, L. W.; Kaye, A. J.; Finaly, G. J.; Baguley, B. C.; Denny, W. A. J. Med. Chem., 1997, 40, 2040.
- [16] Deady, L. W.; Desneves, J.; Kaye, A. J.; Thompson, M.; Finaly, G. J.; Baguley, B. C.; Denny, W. A. *Bioorg. Med. Chem.*, **1999**, *7*, 2801.
- [17] Bu, X.; Deady, L. W. Synth. Commun., 1999, 29, 4223.
- [18] Deady, L. W.; Desneves, J.; Kaye, A. J.; Finaly, G. J.; Baguley, B.C.; Denny, W. A. *Bioorg. Med. Chem.*, 2001, 9, 445.
- [19] Lu, X. L.; Petersen, J. L.; Wang, K. K. Org. Lett., 2003, 5, 3277.
- [20] Le, C. G.; Lee, K. Y.; Sankar, S. G.; Kim, J. N. Tetrahedron Lett., 2004, 45, 7409.
- [21] Tu, S. J.; Jiang, B.; Jia, R. H.; Zhang, J. Y.; Zhang, Y.; Yoa, C. S.; Shi, F. *Org. Biomol. Chem.*, **2006**, *4*, 3664.
- [22] Tu, S. J.; Jiang, B.; Zhang, J. Y.; Jia, R. H.; Zhang, Y.; Yoa, C. S. *Org. Biomol. Chem.*, **2006**, *4*, 3980.
- [23] Wang, X. S.; Zhang, M. M.; Jiang, H.; Yao, C. S.; Tu, S. J. Tetrahedron, 2007, 63, 4439.
- [24] Chen, Y.; Tu, S. J.; Jiang, B.; Shi, F. Heterocyclic Chem., 2007, 44, 1201.
- [25] Heravi, M. M.; Alinejhad, H.; Bakhtiari, K.; Daroogheha, Z.; Bamoharram, F. F.; Alimadadi, B. Synth. Commun., 2010, 40, 2191.
- [26] Tanabe, K. Solid acids and bases, Academic Press, New York 1970.