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Location-based social networks (LSBNs) are emerging services that have gained
considerable popularity in recent years with the rapid advancement of mobile technology.
LSBNSs enable users to log their locations by recording entries, including various forms of
contextual information (CI). Reality mining (RM) involves collecting and analyzing
environmental and behavioral data from mobile devices to uncover predictable patterns,
such as human mobility trends, which can enhance sequential next Point of Interest (POI)
recommendations in recommender systems. Probabilistic models and sequence-based
algorithms are among the most widely used approaches for learning mobility patterns in
RM, although each presents its own challenges. In this study, for the first time, incorporate
Cl from LBSNs in a reality mining framework to predict users’ next POI within
recommender systems. To this end, we propose a Contextual Extended Gated Recurrent
Unit (CEGRU) architecture designed to separately investigate the impact of Cl on location
prediction. The CEGRU model extends the traditional GRU by introducing two distinct
attention gates to better capture the impact of contextual variables on user movement
behavior. Furthermore, this research introduces a novel experimental setup that evaluates
model performance under two different dataset density conditions. This innovation enables
the determination of the optimal dataset density for effectively assessing the proposed
model. Comprehensive experiments were conducted on three large-scale real-world LBSN
datasets, including Brightkite, Gowalla, and Foursquare. The results demonstrate that
CEGRU outperforms competitive baseline methods on the Brightkite and Gowalla datasets
in terms of Acc@10.
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I. Introduction

Location-based social networks (LSBNSs) services such as
ride-hailing, targeted advertising, and food delivery have
become an integral part of daily life with the rapid
advancement of smartphone technology [1]. To deliver more
effective services in such applications, it is essential to
accurately predict users’ future locations by recommending
successive points of interest (POIs) [2]. LSBNs allow users
to record their locations through check-ins that include
various forms of contextual information (CI), such as
geographical and temporal contextual information (GTCI).
The GTCI associated with user check-ins plays a crucial role
in analyzing movement patterns and predicting users’ next
POls. Effective successive POl recommendation not only
supports intelligent, location-based advertising and
personalized user experiences but also helps service
providers optimize user engagement and promote
exploration of new places [3, 23, 25].

Reality mining (RM) is defined as the collection and
analysis of environmental data from mobile devices
associated with human social interaction, with the aim of
identifying predictable behavioral patterns [4, 5, 6, 7]. One
key area of RM research involves predicting human mobility
patterns, which can be utilized to improve successive POI
recommendations and monitor individuals’ locations during
pandemic situations [5, 8, 9]. RM investigates human
behavior through wireless devices such as smartphones and
Global Positioning System (GPS) sensorsto construct an
accurate  representation of individuals® activities,
movements, and social interactions [4, 5]. With advances in
machine learning (ML) and statistical analysis, RM now
provides a broader understanding of both collective and
individual human behavior [8]. To further enhance this
capability, we propose employing deep learning (DL)
techniques and predictive big data analytics on LBSN check-
in data to generate more accurate mobility predictions. The
primary objective of this study is to develop a Recurrent
Neural Network (RNN)-based RM model capable of
forecasting user movement patterns by incorporating ClI
derived from LBSN check-ins, with the potential for
application to other types of CI in the future. Previous RM
studies [5, 10] have largely overlooked the integration of
contextual data such as temporal and geographical factors
captured through user check-ins on LBSNs. However, Cl
plays a critical role in modeling user mobility behavior and
has a distinct influence on predicting users’ future locations.

This study focuses on RM by modeling sequences of user
check-ins while separately considering the influence of
GTCI. To achieve this, we propose a novel contextual
extended gated recurrent unit (CEGRU) architecture for
location prediction, consisting of four layers: input, output,
embedding, and recurrent. Compared with other deep
learning—based recurrent models, the Gated Recurrent Unit
(GRU) architecture is relatively simple and requires fewer
parameters. Furthermore, unlike conventional Recurrent
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Neural Networks (RNNs), the GRU architecture can
selectively disregard the hidden state of the previous unit when
it is not relevant [11, 12]. As a result, a GRU network was
developed to model check-in sequences by incorporating the
time intervals (At) and geographical distances (Ag) between
two successive check-ins [13]. Fig.1 illustrates an example of
a user's check-in sequence.

Atrl At At

19:00 €—>  15:00 8:00 17:00
2025-1-10 2025-1-12 2025-1-15 2025-1-30

or]

Ag™1=10 Km

Agl=2 Ag=3 Km

Fig.1. An example of a user's check-in sequence

Since the effects of CI on user behavior vary, any type of
GTCI should be considered individually during modeling [14,
15]. The GRU network was extended by introducing two extra
attention gates to independently capture the influence of
important Cl, inspired by the attention mechanism (AM). In
the output layer of the CEGRU architecture, the preference
score is computed using the dot product operation, and the top-
k POls are recommended to users based on these prediction
scores. A higher score indicates a greater likelihood that the
user will visit the corresponding location. The CEGRU
parameters were optimized using the Bayesian Personalized
Ranking (BPR) framework [16]. In the final stage, extensive
experiments were conducted on three benchmark datasets ,
including Brighkite, Gowalla, and Foursquare to evaluate our
proposed model. The performance of CEGRU was compared
against five state-of-the-art location methods.

A. Problem Statement

Probabilistic models and sequence-based algorithms are the
most widely used approaches for learning user movement
patterns in RM. However, probabilistic approaches, which
often use the Markov model, struggle to capture behavioral
patterns in long movement sequences, while sequence-based
methods perform poorly when predicting users’ future
locations in low-repetition or sparsely visited areas. Users can
record check-ins on various LSBNs to share their locations.
The check-ins collected in LBSNs contain GTCI, each
exerting a distinct influence on predicting a user's next location
[15, 19]. Previously, no GTCI was incorporated into sequence
modeling in RM investigations (Challenge #1). In addition,
several LBSN-based approaches for successive POI
predictions, such as collaborative filtering (CF) and RNNs,
used the CI of user trajectory data to forecast future POls.
However, CF methods ignore the sequential nature of the data,
despite the fact that successive POI prediction is inherently a
time-sequence problem (Challenge #2). Although recurrent
models address sequential data modeling, they often overlook
the role of CI, which can significantly influence predictions
(Challenge #3). The CEGRU model was presented in this
study to address these limitations.
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B. Main Contributions
The following are significant contributions to this work:

1) Mobile phones equipped with sensors and GPS
receivers are the primary data sources for RM applications.

Consequently, most research in this field has focused on
analyzing location-based data obtained from GPS, which is
often affected by noise and dispersion. In this study, the RM
data source is users’ registered check-ins on LBSNs, which
include the GTCI of trajectory data. This represents the first
time that contextual data has been incorporated into RM.
Secondly, the construction of a GRU-based model for RM is
proposed for the first time. The proposed architecture
enhances the traditional GRU model by introducing two
additional attention gates in the recurrent layer, leveraging
an attention-based mechanism: the Geographical Contextual
Attention Gate (GAG) and the Temporal Contextual
Attention Gate (TAG). These gates regulate the influence of
the previous recurrent unit’s hidden state based on time
intervals and geographical distances between successive
check-ins. Notably, the time-stamp attention gate was
excluded due to its minimal impact on prediction accuracy
[26], reducing model parameters and computational
overhead. Thirdly, this research investigates, for the first
time, the effect of dataset density on model performance.
This analysis aims to identify the optimal density for
selecting datasets when evaluating the proposed model.
Experiments were conducted under two distinct dataset
density states, examining each dataset at multiple levels of
change, following the methodology of [23]. This novel
experimental design provides a framework for future dataset
selection in RM research. Finally, extensive experiments
were performed on three large-scale, real-world datasets,
Gowalla [20], Brightkite [20], and Foursquare [21] widely
used in related studies for predicting user POIs in LBSNs.
The results demonstrate the effectiveness of the proposed
CEGRU architecture.

Reality Mining aims to extract meaningful behavioral
patterns from large scale real world data generated by human
activities. With the rapid growth of location based social
networks (LBSNs), massive volumes of user check-in data
have become available, providing rich spatiotemporal traces
that reflect users’ real-world mobility behaviors. These
check-in sequences can be regarded as observable
manifestations of human activities, making them a valuable
data source for Reality Mining studies. To this end, we
propose the CEGRU model, which explicitly incorporates
geographical and temporal contexts into the recurrent
learning process to mine latent spatiotemporal behavioral
patterns from real world user check-in data. The central
assumption of this work is that explicitly modeling
heterogeneous contextual factors, such as temporal intervals
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and geographical distances, within a recurrent architecture
enables more effective Reality Mining of human mobility
behaviors. Our experimental results demonstrate that this
approach effectively captures mobility patterns, leading to
superior performance in next location prediction compared to
existing benchmarks.

The remainder of this paper is organized as follows. Section
Il reviews the related work. Section Il presents the study’s
background, while Section IV describes the details of the
proposed model. The experimental results are reported in
Section V, and Section VI concludes the paper.

I1. Related Research

This section reviews related work on location prediction,
which is organized into three categories: Reality Mining
(RM) approaches, deep learning (DL) approaches, and
hybrid methods.

RM approaches: Ferrari et al. [18] proposed a method for
classifying and predicting users’ whereabouts patterns using
an RM dataset, which logs places visited as determined by
GSM-based geolocation.  Their approach involved
automatically labeling routine locations from mobility data
and developing a prediction mechanism to infer users’ future
whereabouts. Latent Dirichlet Allocation (LDA) was
employed to extract high-level patterns, referred to as
“themes,” from the mobility dataset. Farrahi et al. [9]
introduced an RM framework for large-scale, unsupervised
learning of human routines through simultaneous modeling
of user positions and proximity interactions. They proposed
a multimodal behavior bag that combines semantic modeling
of location changes across multiple time scales with
interaction types derived from Bluetooth proximity data.
LDA was applied to identify common multimodal human
activities captured in RM data, representing routine
behaviors. Jung et al. [10] focused on uncovering real-world
social relationships, such as those between family and
friends, using RM. They posited that an individual’s context
is intertwined with the contexts of socially connected peers,
and that neighbors’ contexts can significantly influence
personal behavior. This assumption underlies the concept of
social affinity, where stronger social ties result in greater
contextual influence from others. Based on RM, Eagle and
Pentland [6] explored the structure underlying daily human
behavior. Their models aggregated multimodal data from
individuals and communities within social networks. By
calculating a weighted sum of an individual’s principal eigen
behaviors, their approach could simulate daily behavior and,
if computed halfway through the day, predict the remaining
behaviors. This method leverages the vast amounts of rich
data collected continuously from mobile devices and nearby
phones. Choujaa and Dulay [22] employed information-
theoretic approaches to optimize the selection of time points
for predicting mobile phone users’ activities over the
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following three weeks. Their method analyzed RM cellular
data to minimize uncertainty and to infer an individual’s
activity at one time from the activities of others at different
times.

DL Approaches: DL-based recurrent models have
recently shown significant advances in representing
sequential user behavior and improving location
prediction. For instance, Liu et al. [29] proposed a Spatial-
Temporal Recurrent Neural Network (ST-RNN) to address
continuously valued spatial-temporal contextual input
challenges in location prediction. Zhao et al. [30]
introduced STLSTM, an extended version of Long Short-
Term Memory (LSTM) that incorporates distance and time
gates to capture spatiotemporal relationships between
successive check-ins. Specifically, separate distance and
time gates are designed to regulate short-term interest
updates, while additional gates capture latent location
transition patterns. A task-specific decoder is also
employed to enhance long-term interest modeling. To
reduce parameter complexity and improve efficiency, our
proposed model similarly integrates linked input and
forgets gates. Kumar and Nezhurina [31] analyzed Twitter
data and developed an ML model to predict users’ future
locations. ML methods enable systems to learn from past
data and apply this knowledge to forecasting and decision-
making for unseen instances. Yao et al. [19] presented a
Semantics-Enriched Recurrent Model (SERM) for jointly
learning embeddings of multiple factors (e.g., location,
user, keyword, and time) and the transition parameters of
an RNN within a unified framework. To better capture the
interaction between user activities and site preferences,
Zung et al. [32] proposed an Interactive Multi-Task
Learning (iMTL) framework. This model incorporates a
temporal-aware  activity  encoder  with  fuzzy
representations for uncertain check-ins to reveal latent
activity transition patterns, and a spatial-aware location
preference encoder that uses the learned patterns to
enhance both activity and location prediction tasks
interactively. Liu et al. [33] proposed the Context-Aware
RNN (CA-RNN), which replaces the constant input and
transition matrices of traditional RNNs with adaptive,
context-specific counterparts. These adaptive matrices
capture the external contextual settings of user behaviors
such as location, time, and weather and model how global
sequential transitions are influenced by varying time
intervals between consecutive actions. Moreover, attention
mechanisms in DL have recently proven highly effective
for improving interpretability and modeling long-term
dependencies [12, 17, 24, 34-36]. Vaswani et al. [36]
introduced the Transformer architecture, which eliminates
recurrence and relies entirely on attention mechanisms to
capture global input—output dependencies. Building on this
concept, Huang et al. [17] developed ATST-LSTM, an
attention-based spatiotemporal LSTM for next POI
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recommendation. Feng et al. [12] proposed the DeepMove
model, which employs an attentional RNN to predict user
mobility from long and sparse trajectories. Similarly, Huang
etal. [37] introduced a Deep Attentive Network (DAN-SNR)
for social-aware next POl recommendation. Despite these
advancements, traditional RNN-based techniques still
struggle to capture long-term dependencies effectively and
may suffer from vanishing or exploding gradient problems.
Table I summarizes the related studies and the corresponding

challenges addressed in this research.

TABLE I: Summary of related works

Model Name A;I;/pl)ggglch Method summery challenges
[1r?e]di-2(t)iglr(1; The presence of noise
ngechanism and data dispersion
9] ' RM Based Latent Dirichlet and weakness in
Multifaceted Allocation Algorithm  identifying temporal
Behavior order and sequential
Package dependencies in data
[10] Semi- Reality mining using  Lack of predictability
automatic  RM Based social and spatial data ~ of a person's next
method contextual information location if they are in
and statistical analysis low-density areas
. Analysis, prediction, and .
[GB] Speplal clustering of multimodal . We?lk”ess In
ehavior AR identifying temporal
. . RMBased data of individuals and -
Identification ithi ial order and sequential
Model groups within a socia dependencies in data
network
[22] Failure to properly

Quantitative
Predictability

extract behavioral
patterns from long

Presenting a method

RM Based  based on probability

Method theory sequences of people's
movements
[5] Detecting Weakness in extract
the dynamic Providing a method based behavioral patterns
structure ofa RM Based  on a Statistical Risk present in long
real contact Model movement sequences
network of persons
[8] Real-time
pattern RM Based K-means clustering Limited energy of
prediction algorithm mobile devices
system
Extending RNN and Vanishing gradient
[29] using atransit_ion matrix ~ problem in long
ST-RNN DL Based for capturing the sequence due to the
temporal cyclic effect and use of the traditional
geographical influence RNN
Modifying the basic ~ Considering the same
LSTM model slightly by  effect for temporal
[30] STGN DL Based introducing gates and and geographical
cells to capture short- and contextual
long-term preferences information
Jointly learning the
embedding of multiple Not taking into
factors (user, location, account the
[191 SERM DL Based time, and keywords) and geographical distance
the transition parameters in the training of this
of an RNN in a unified model
framework
. - Using a traditional
Employing gqaptlve RNN model and
context-specific input restrictions on paying
[33] CA-RNN DL Based matrices and adaptive - h
context-specific transition attenthn tod e
matrices contextual information,
low performance
Developing an attention-  Encountering with
[17I]S/:\I'-IF\/SIT_ DL Based  based spatiotemporal high complexity of

LSTM network to focus implementation and a
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Model

Model Name Approach

Method summery challenges

on the relevant historical lack of attention to the
check-in records in a scarcity
check-in sequence
selectively using the
spatiotemporal contextual
information

Makes use of the self-AM.  Using only the
By leveraging multi-head attention mechanism
self-attention, the DAN- and had low
SNR can model long-  performance rather
[37] DAN- DLAM range dependencies than applying
SNR Based  between any two historical  recurrent neural
check-ins efficiently and networks for
weigh their contributions modeling the
to the next destination  sequential influence
adaptively and social influence

1. Preliminaries
This section presents notations and definitions, as well as
the preliminary information that we used in our study.

A. Notations and Definitions
The primary notations utilized herein are listed in TABLE IlI.

TABLE Il. Notations and description

Notation Description

u, v, t user, location (longitude and latitude), venue or PO,
timestamp

latv, Ing v POI v's latitude and longitude (geographical
coordinates)

Cu vt user u-recorded check-in in POl v and timestamp t

Ag, At geographical distance and time interval between two
successive check-ins

st a set of all user u-generated check-ins

Us, V, T set of users, POls, and timestamps

v, POl visited by user u at timestep ©

t*, g vector representations of time interval and
geographical distance

try a sequence of chronologically-ordered check-ins
linked to u

u, gv, ¢t the latent factors of user u, POl v, and timestamp t

h h the hidden and candidate states of CEGRU

Z, Iy update and reset gates of GRU

g sigmoid function

Check-in data: A check-in refers to an action performed
by a user at a certain location and time. A check-in is an
LBSN registration of a location that includes geographical
and temporal data. The check-in record can be described as a
quadruple: cy, v, ¢ <u, I, v, t> when a user u checks in at a
location | (longitude and latitude) with venue-ld v at the
timestamp t. S* (user's check-in sequence) refers to a set of
all users' check-ins.

Trajectory: A trajectory t is a series of chronologically
ordered check-ins associated with a user u. For instance, try:
<, ly, vi, t>,...<u, li, vi, t>,...,<u, l, vk, &>, where try
denotes a user u's trajectory prior to time t. Here, a trajectory
set Tr (u) is employed to represent all user u's trajectories.

POl in LBSNs: A POl inan LBSN is a spatial item linked
to a geographical place and referred to as a venue, e.g., an
office or a hotel. Here, v represents POI, and V={vi, v»,...}
denotes a set of POIs. Each POl v has its own specific
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identifier and geographic coordinates, comprised of
geographical latitude/longitude.

POI recommendations task: The POl recommendation
task is to recommend the top-k POls favored by user u,
considering a collection of user check-in sequences S" and a set
of POIs V. The goal of the successive POl recommendation is
to forecast which location vy will be visited by a user u at a
certain point in time ty+1.

B. Deep Learning-based Recurrent Models

The primary challenge in successive POl recommendation
lies in the joint and efficient learning of user POI preferences
alongside the sequential correlations between check-ins [17].
This challenge is typically addressed by employing hidden
states that capture the sequential patterns embedded in the
input sequence [14, 15, 19]. Hidden states encode either the ClI
or the temporal dynamics of user trajectories. However,
conventional RNNs struggle to capture long-term
dependencies due to the exploding and vanishing gradient
problems [14, 37]. To mitigate these limitations, the Long
LSTM model was introduced, leveraging a gating mechanism
to retain and regulate long-term information [17, 38, 41]. Each
LSTM unit maintains a cell state (c;) and a hidden state (h;)
similar to RNNs. The information flow between LSTM cells is
governed by three gates: the input gate, forget gate, and output
gate. However, the presence of three gates makes LSTM
models computationally intensive and slower to train,
especially on large datasets. To overcome these drawbacks, the
GRU was proposed as a simplified yet effective alternative [11,
12, 38]. The GRU model replaces the three LSTM gates with
only two: the reset gate and the update gate, which control how
much of the previous hidden state should be forgotten or
retained in the current computation [15]. These mechanisms
enable GRU to learn temporal dependencies more efficiently
with fewer parameters. The three fundamental recurrent
models including RNN, LSTM, and GRU are illustrated in Fig.
1 as block diagrams [14, 30].
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Fig.2. Block diagram of the (a) RNN, (b) LSTM, and the (c) GRU cell.

The GRU model contains only two gates the reset gate and
the update gate as illustrated in Fig. 2. Compared to the
LSTM, the GRU architecture is computationally more
efficient and faster to train, particularly when the amount of
training data is limited. The gates in the GRU regulate the
update degree of each hidden state, thereby determining
which information should be retained and which should be
discarded in the transition to the next state [14, 15]. Ata given
time step 7, the GRU computes the hidden state h based on
the outputs of the update gate z,, the reset gate r;, the current
input x,, and the previous hidden state h,_;. The reset gate
determines how to combine the new input with the previous
memory to calculate the candidate hidden state h,, and
subsequently, the final hidden state h.is updated as follows
[39]:

2=0(Wyx; + Ushe; + by) 1)
r= 6(Wx; + U + by (2
h . = tanh(Wx+U (O h.) + by) ©))
h=(1-z) © he1+ z.O h, (4)

where o (-)denotes the sigmoid activation function, tanh(-
)is the hyperbolic tangent activation, and (represents the
element-wise multiplication operator. Moreover, Wand
Urepresent the weight matrices used during network training.
In this study, a feed-forward neural network was employed
to compute the alignment function, enabling the development
of an enhanced GRU model inspired by [14, 15].
Furthermore, two attention gates were introduced to account
for temporal intervals and geographical distances between
successive check-ins, thereby improving the model’s ability
to capture contextual dependencies in user mobility patterns.

IVV. Description of the Proposed Model

The CEGRU architecture, illustrated in Fig. 4, consists of
four main layers: input, embedding, recurrent, and output. The
subsequent sections describe each of these layers in detail,
along with the parameter learning process employed in the
model.

A. CEGRU Layers

The input layer stores the model inputs, which include
contextual information (CI) derived from user check-ins. It
should be noted that the input to the proposed model consists
of user check-in sequences. Each check-in record is
represented by a quadruple that can be described:
Cu v, t <U, I, v, t>, including the user identifier, the spatial
information of the visited location (i.e., latitude and
longitude), the venue or POI identifier, and the associated
timestamp. Based on these inputs, the Contextual
Information (CI) vector is constructed to embedding
spatiotemporal user's check-ins information at each time
step. Fig. 3 presents an illustrative example of the feature
construction pipeline using sample check-in data from the
Gowalla dataset.

[user]
196514
186514
196514
196514
196514
196514
126514
196514

[check

[latitude]
53.3628119

[location id]
145064
1275881
376497

98503

time] [longitude]

23465833

53.3679640626
53.364905

Fig.3. Feature Construction Pipeline from Sample Gowalla
Check-ins
In particular, the CI vector is formed by concatenating
four components derived directly from the user's check-ins:
(1) a location embedding associated with the venue or POI
identifier, (2) a temporal embedding obtained from
discretized timestamp features such as time of day and day
of week, and (3),(4) a user embedding representing
individual mobility preferences including geographical
distance (Ag) and time interval (At) between two successive
check-ins.
Within the recurrent layer of the CEGRU model, this
transition CI is emphasized through two specially designed
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attention gates. As a result, the time interval (At) and
geographical distance (Ag) between successive check-ins
are computed within this layer. Given a user u, a venue v,
and a timestamp ¢ at timestep 7, the time interval and
geographical distance between wv,and the previously
visited venue v,at timestep t — 1are computed as: At, =t~
t.—1and Ag. = dist(lat vi, Ing v, lat v2, Ing v2), respectively
(Eq.10). The geographical distance Ag;is calculated using
the Haversine formula, which computes the angular
distance between two points on the surface of a sphere. In
this calculation, the latitude serves as the first coordinate
and the longitude as the second, both measured in radians.
Two data dimensions are required for this computation:
latitude and longitude.

D(x,y)=2

arcsin[\/sinz (Xl;—h) + cos(x;)cos(y;)sin? (%)]
(5)

Before entering the recurrent layer, the embedding
layer is used to embed inputs from a sequence of check-
ins. In this layer, latent factors for the user, POI (venue),
and time are generated, denoted as, uie U, @vieV and
time @t°e T, respectively. The set of parameters for the
embedding layer is defined as 6. = {U, V, T}. The venue
latent factor q)jr, the time latent factor ¢, , and the
contextual transition features (Ag, and At;) are
subsequently passed to the recurrent layer for CEGRU
training. In the recurrent layer, the GRU model is
enhanced with two attention gates: the GAG and the TAG,
as proposed by Manotumruksa et al. [14] and Kala et al.
[15]. These gates control the influence of the previous
recurrent unit’s hidden state based on the geographical
distance and time interval between successive check-ins,
reflecting the observation that contextual information
impacts users’ dynamic preferences differently. The
output of this layer is the hidden state of the recurrent unit
at timestep , denoted as h,, and is formally defined as
follows:

h. = f (@vF, Ot°,At,,AQ,,6r) (6)

The following describes how the traditional GRU is
extended to incorporate absolute and CI. To estimate the
hidden state h., the update and reset gates of the GRU are
employed, taking into account the user’s check-in
sequence S, and the user’s dynamic preferences at timestep
T

Z.= o(W BVt Uzh. - + by) (7
r.=o(W,@vit+ Uh. - + by) (8)
h . = tanh(W@V5 +U (r.® h.) + by) C))

h-[:(l' Zr) @ hrl+ ZT@ B‘r (10)
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Output Layer:
Ranked List of the
next POI

Recurrent Layer: Developing GRU by two Attention Gates to Capture Sequential Patterns
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inputs into vectors

| ¢u. latent factor of user

| ¢t: latent factor of timestamp

| @1 latent factor of location (latitude & longitude)

| @v: latent factor of venue

Fig.4. General CEGRU Architecture; historical check-ins are collected in LBSNs and used as input in the proposed model; the proposed
CEGRUF's output is a ranked POI list that might be interesting to a user in the future based on historical sequences of check-ins at time t

In the equations above, ¢1{Tdenotes the latent factor of the

venue vvisited by the user at timestep t. Besides, tanh() and
a() denote the hyperbolic tangent and sigmoid functions,
respectively. Moreover, U implies a recurrent connection
weight matrix used to capture sequential signals between
every two neighboring hidden states, namely h.and h,-1, by
employing®, indicating the element-wise product. In
addition, W and bare indicate the transition matrix between
the venues' latent factors and corresponding biases,
respectively. Furthermore, 6, = {W, U, b} represents the set
of recurrent layer’s parameters.

To effectively model users’ check-ins in sequential order, the
relevant Cl must be examined independently. To address this,
the proposed GAG and TAG were introduced. The GAG is
designed to capture spatial transition dynamics and takes as
input the geographical distance between two consecutive
check-ins, together with the previous hidden state h.;. This
enables the model to adaptively regulate the influence of
spatial proximity on the hidden state update. Formally, GAG
is defined as Eq.(11), where Ag denotes the geographical
distance between two consecutive check-ins. The TAG
focuses on temporal transition patterns and takes as input the

time interval between two consecutive check-ins, together with
the previous hidden state h..;. By explicitly modeling temporal
gaps, this gate allows the network to dynamically adjust the
impact of irregular temporal behaviors in user mobility
sequences. Formally, the TAG is formulated as Eq.(12) in our
manuscript, where At represents the time interval between two
consecutive check-ins.

GAG= 0 (Weagh -1t Weagt AQ® + beac) (11)
TAG= 0 (Wraehhe1tWragg At + brag) (12)

where the attention gates, GAG and TAG, capture the
influence of both time intervals and geographical distances
between successive check-ins. For instance, if the distance
between two check-ins is short, the impact of the previous
hidden state h,_,is likely to remain significant even when
the time interval between them is long. Together, the GAG,
TAG, and the reset gate r.regulate the contribution of the
previous hidden state h,_,to the current hidden state h,.

The proposed attention gates (GAG and TAG), together with
the traditional GRU update and reset gates, are integrated to
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compute the next hidden state. Accordingly, the conventional
GRU equations are modified to incorporate these attention
gates, resulting in the CEGRU architecture as follows:

z.= o(W,0v'+ Uh. - +Wo((¢t° + (GAGOAQ") +

(TAGOAL))+by) (13)
r.=o(W:ovi+ Uh: - + W((¢t" +( GAGOAQG") +
(TAGOALY)) +hby) (14)

h . = tanh(W@V5 +U (1O het) +Wi((ot+ (GAGOAQT) +
(TAGOAL)) + by) (15)

The hidden state h.is updated according to the steps
described above and serves as the output of the recurrent unit
at timestep 7. At the same timestamp, the output layer
estimates user u’s preference for venue vas follows:

h=(1- z)) © he1+ zOtanh(W@VT +U (1O hy) +Wi((ot™+
(GAGQOAQ") + (TAGOALY)) + by) a7

At timestamp t, the output layer estimates user u's
preference for venue v as follows:

Cuv=0u, h™™ (18)
Previous studies have shown that pairwise loss functions
outperform classification-based loss functions in capturing
patterns from sequential data and offer more efficient training
for recurrent-based recommender systems [14, 15, 41, 16].
Specifically, as noted by Manotumruksa et al. [14, 41], the
BPR framework [16] can be used to estimate the parameters
of both the recurrent and embedding layers, as well as the
probability distribution over all venues, taking into account
the hidden state h,.

B. Network training

In this study, the datasets consist of sampled triplets, each
containing one user and two POls: one positive (visited) and
one negative (unvisited). As previously discussed, the
pairwise BPR framework is employed to learn the parameters
of both the embedding and recurrent layers (0 = {6,,6,}).
BPR leverages the relative ranking of POI pairs, operating
under the assumption that a user prefers observed POIs over
all unobserved POIs [11, 17]. Within this framework,
CEGRU aims to maximize the probability at each sequential
position kas follows [11, 16, 17]:

n— 1

P(U, t, v >v") =—— (Outy— Ousv) (19)
where, vand v’denote the positive (visited) and negative
(unvisited) POIs, respectively. To optimize the network’s
objective function for next POl recommendation, a
regularization term is incorporated into the loss function, as
expressed below [16]:

== San P LY > V40720 | (20)
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where denotes the regularization strength, and @represents the
set of model parameters. Following Manotumruksa et al. [14] and
Kala et al. [15], the dimensions of the hidden layers h.and latent
factors d(set to d = 10) in the CEGRU architecture were fixed
consistently across both datasets. All parameters of the recurrent
and embedding layers were initialized randomly using a Gaussian
distribution. At the start of training, the batch size and learning
rate were set to 256 and 0.001, respectively. Model parameters
were optimized using the Adam optimizer. The recurrent layer of
CEGRU includes parameter sets U, W, and bfor the reset gate as
well as for the GAG and TAG update gates. The model outputs a
score for each POI, reflecting the probability of being the next
POI in a user’s sequence. A summary of the CEGRU learning

algorithm is provided below [23,26]:

Algorithm 1: Training of CEGRU

Input: Set of users Us and set of historical check-in sequences S*

/[construct training instances

1. Initialize D=Us, D" = @ D" is a set of check-in trajectory
samples combined with negative POls of «

2 For each user z €5 do

3 For each check-in sequence S" = {su", s¢", ..., sy } do

4, Get the set of negative samples v’

5. For each check-in activity in S" do

6 Compute the embedded vector v,*

7 Compute the geographical contexts vector g

8 Compute the temporal contexts vector t"

9. End for

10. Add a training instance ({v., g , t },{¥'}) into D
11. End for

12. End for

[ftrain the model

13.  Initialize the parameter set @

14.  While (exceed(maximum number of iterations)==FALSE) do
15. For each user zin & do

16. Randomly select a batch of instances D+ from D
17. Find & minimizing the objective (23) with Dy»

18. End for

19.  End While
20.  Return the set of parameter @

V. Experimental Results

To evaluate the effectiveness of the proposed method,
empirical experiments were conducted on three publicly
available LBSN datasets. These experiments were designed to
address the following research questions corresponding to the
challenges outlined in Section 1.1: RQ1: How can users’
check-in CI be effectively utilized in RM? RQ2: RQ2: How
can the basic GRU architecture be extended to separately
consider transition Cl associated with check-in sequences for
RM? RQ3: Does CEGRU, which incorporates multiple types
of contextual data via two additional attention gates, improve
POI prediction and outperform existing methods?

The experiments were conducted using three publicly
available LBSN datasets: Brightkite, Gowalla, and Foursquare.
To mitigate data sparsity and the cold-start problem, users with
fewer than ten check-ins and POIs with fewer than ten visits
were removed from all three datasets, following the approach
of Manotumruksa et al. [14]. For data preprocessing, intelligent
sampling [27] which considers the intrinsic characteristics of
the data rather than relying on simple random sampling was
employed. This approach ensured the inclusion of all POls
while maintaining their original frequency distribution and
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prevented bias toward any particular geographical region. To
preserve both geographical and temporal diversity and to
reflect the true data distribution, a combination of controlled
oversampling and undersampling was applied. Oversampling
was used to increase the number of check-ins for users with
fewer records, while undersampling was used to reduce the
number of check-ins for users with excessively frequent
activity. In this study, each check-in record is represented as
a quadruple containing a user identifier, check-in timestamp,
geographical coordinates, and POI (location ID). Sequential
user trajectories were constructed based on each user's check-
in history across the three datasets. The data density for each
dataset was computed using Equation (21) [42]:

Density = (|check — ins|)/(|users| x |POIs|) (21)

In this research, the effect of dataset density on model
performance is investigated for the first time. This
innovation enables the identification of an optimal density
range for selecting appropriate datasets when evaluating the
proposed model. To achieve this, a series of experiments was
conducted under two experimental states. In each state, the
dataset described in [23] was considered the main level, and
each dataset was examined at multiple levels of variation.
This experimental design provides a novel framework that
can guide dataset selection in future studies. In the first
experimental state, the number of users was kept constant
while the number of check-ins in each dataset was adjusted
to 50% and 150% of the main level. Table 1 presents the
datasets selected for this state. As shown in the table, dataset
density increases nonlinearly as the number of check-ins
grows. A summary of the statistics for the three datasets in
the first experimental state is provided in Table I1I..

TABLE Ill. Statistics of the three datasets in the First State of
experiments
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TABLE 1V. Statistics of the three datasets in the Second State of
experiments

Dataset Level%  #users  #check-ins  #POI Density
50% 458 3763 0.3928
Brightkite 100% 915 676721 7527 0.0982
150% 1373 11290  0.0522
50% 524 2506 0.4680
Gowalla 100% 1047 614340 5011 0.1170
150% 1571 7516 0.0521
50% 308 9623 0.0364
Foursquare  100% 615 108195 19245  0.0091
150% 923 28868  0.0041

Dataset Level%  #users  #check-ins  #POI Density
50% 338361 15054 0.0245
Brightkite 100% 915 676721 7527 0.0928
150% 921510 3341 0.2635
50% 307170 10022 0.0293
Gowalla 100% 1047 614340 5011 0.1170
150% 921510 3341 0.2163
50% 54098 38490 0.0023
Foursquare 100% 615 108195 19245 0.0091
150% 162293 12830 0.0206

In the second experimental state, and again considering
the dataset described in [23] as the main level, the number of
selected users was modified to 50% and 150% of the main
level, while keeping the number of check-ins in each dataset
constant. Table 2 presents the datasets used in this
experimental state. As illustrated in the table, dataset density
decreases nonlinearly as the number of users increases. The
statistical characteristics of the three datasets in the second
experimental state are summarized in Table IV.

Figure 5 illustrates the impact of varying parameters on dataset
density across all experimental datasets. As shown in Fig. 5(a),
when the number of check-ins increases while the number of
users remains constant, the density increases exponentially.
Among the datasets, Gowalla exhibits the highest sensitivity to
the increase in check-ins, whereas Foursquare maintains a
relatively low density, even with higher numbers of check-ins
ndicating a broader spatial distribution of POls. In contrast, Fig.
5(b) demonstrates that when the number of users increases while
the number of check-ins remains constant, the density decreases
nonlinearly. The density variations in Gowalla and Brightkite are
nearly similar, while Foursquare consistently shows a lower
density across all user levels. Following prior research [14, 15],
the leave-one-out cross-validation approach was employed to
evaluate the performance of the proposed CEGRU architecture.
In this method, each user’s most recent check-in was used as the
test instance, while 100 randomly selected POls that the user had
not previously visited were included as negative samples. These,
together, formed the testing set, whereas the remaining check-ins
were used as the training set. The CEGRU model’s objective was
to rank the 100 candidate venues according to their likelihood of
being the next visited POI, considering temporal, geographical,
and contextual transition information with the actual (ground-
truth) check-in expected to rank highest. In line with
Manotumruksa et al. [14] and Kala et al. [15], the hidden layer
dimension h.and latent factor dimension d = 10were fixed. As
previously noted, the parameters of the recurrent layer were
randomly initialized using a Gaussian distribution [28]. The
Adam optimizer [43] was utilized for parameter learning, owing
to its faster convergence compared to traditional Stochastic
Gradient Descent (SGD), which relies on a fixed learning rate
across iterations. To further prevent overfitting, the batch size
was set to 256, and the dropout rate was adjusted to 0.2.
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a: Impact of Varying Check-ins on Density in the First Sate of Experiments
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b: Impact of Varying Users on Density in the Second Sate of Experiments
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Fig.5. Impact of varying parameters on density  Corporation of
the Two Experiment States

The experimental procedure was designed and conducted
in two distinct states to analyze the impact of dataset density
on model performancep: First state: the number of check-
ins was increased while keeping the number of users
constant. Second state: the number of users was increased
while keeping the number of check-ins constant. First state:
While keeping the number of users constant, the number of
check-ins in each dataset was varied to 50% and 150% of the
main level. This manipulation aimed to examine how
changes in check-in volume influence model performance.
The training and testing accuracy@10 and loss@10 for the
Brightkite, Gowalla, and Foursquare datasets across different
epochs in the CEGRU model are illustrated in Fig. 6. Second
state: In this experiment, the number of selected users was
varied to 50% and 150% of the main level, while keeping the
number of check-ins in each dataset constant. This setup
aimed to analyze how user population size affects the
model’s performance. The training and testing accuracy@10
and loss@10 for the Brightkite, Gowalla, and Foursquare
datasets across epochs in the CEGRU maodel for the second
experimental state are presented in Fig. 7. The results
comparing the two experimental states are presented in
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TABLE V. It should be noted that this table is provided to
evaluate the effect of dataset density at different levels and to
identify the optimal density for model performance. The optimal
density of a dataset refers to the range of density values at which
the model achieves its highest prediction accuracy, indicating the
most effective balance between data sparsity and redundancy.
In recommender systems, low data density indicates that
limited information is available for learning user preferences,
which consequently reduces prediction accuracy. Conversely,
excessively high data density introduces redundant information,
resulting in only marginal improvements in accuracy. Therefore,
identifying the optimal density, a concept first introduced in the
pioneering experiments of this study, represents finding a
“golden point” of data density. Beyond this range, prediction
accuracy either declines due to data sparsity or plateaus because
of redundant information. ~ As described in Section V of the
original manuscript, in the first experimental state, and using the
dataset from [23] as the main reference, the number of check-ins
in each dataset was varied to 50% and 150% of the main level,
while keeping the number of users constant. In the second
experimental state, again considering the [23] dataset as the main
reference, the number of selected users was adjusted to 50% and
150% of the main level, while maintaining a constant number of
check-ins in each dataset.
TABLE V. The results of the comparison of two states of experiments

Sate Dataset Level Density Acc Loss
@0 @10

50% 00245  0.758  0.250

Brightkite 10006 00028 0798  0.196
150% 02635  0.834  0.134

First 50% 00293 0727 0238
Gowalla 1000 01170 0741 0.199

150% 02163 0796  0.120

50% 00023 0674 0273

Foursquare . h00 00001 0724 0477
150% 00206 0760  0.128

50% 03928 0824 0127

Brightkit® 10006 00982 0800  0.80
150% 00522 0765  0.254

Second 50% 04680 0791 0139
Gowalla 1000 01170 0775 0177

150% 00521 0709  0.251

50% 00364 0786 0142

Foursquare 10006 00091 0693  0.183
150% 00041 0689  0.251
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Brightkite Dataset_First State (L=50%)
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Gowalla Dataset_First State (L=50%)

Foursquare Dataset_First State (L=50%)
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Fig.6. Training and testing accuracy @10 and loss @10 for three datasets vs. epochs in the first sate of experiments and in the three levels (%L). (a)
Brightkite Dataset; (b) Gowalla Dataset; (c) foursquare dataset.
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Brightkite Dataset_Second State (L=50%)
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Fig.7. Training and testing accuracy @10 and loss @10 for three datasets vs. epochs in the second sate of experiments and in the three
levels (%L). (a) Brightkite Dataset; (b) Gowalla Dataset; (c) foursquare dataset.

The comparison of the two experimental states is illustrated in
Fig. 8. From the results, it is observed that in the first
experimental state, across all three datasets, the highest accuracy
was achieved at the 150% check-in level. In other words,
increasing dataset density by raising the number of user check-
ins while keeping the number of users constant, enhances the
performance of the proposed CEGRU model.

By analyzing the results from the second experimental state, it
is observed that across all three datasets, the highest accuracy was
achieved at the 50% user level. In other words, increasing dataset
density by reducing the number of users while keeping the

number of check-ins constant, improves the performance of
the proposed CEGRU model. Based on the findings from
both experimental states, the optimal density range for each
dataset in the context of the proposed architecture is
summarized in TABLE VI:

TABLE VI. The optimal density range in each of the datasets for the CEGRU

architecture

Dataset Frist Second Optimized Density
State State
Brightkite 0.2635 0.3928 (0.2635,0.3928)
Gowalla 0.2163 0.4680 (0.2163,0.4680)
Foursqure 0.0206 0.0364 (0.0206,0.0364)
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Fig 8. Comparison of two states of experiments

A. Comparison Methods
In this section, the performance of the proposed CEGRU

model in the next POI recommendation task is evaluated by
comparing it with six state of the art methods. Table VII
summarizes these methods into different aspects. Based on data,
they are categorized into RNN-, and AM-based approaches. The
compared models are also classified according to the use of GCI
and TCI.

Table VII. Summary of all the baseline methods used in this study
Approaches and Contextual

Methods Information
RNN AM  GCI TCI

STGN [30] v x v Vi
LLRec [38] v v N N
Flashback [40] v x N N
GeoSAN [43] x v N N
DRCF [44] v x x x
CARA[14] v v N v
CEGRU N v N N

Note. RNN: Recurrent neural network; AM: Attention mechanism; GCI:
Geographical contextual information; TCI: Temporal contextual
information; STGN: Spatiotemporal gated network; LLRec: Light
Location Recommender System; Flashback; DRCF: Deep Recurrent
Collaborative Filtering; CARA: Contextual attention recurrent
architecture; CEGRU: Contextual extended gated recurrent unit.

A Dbrief description of these models is given below:

STGN: The Spatiotemporal Gated Network (STGN),
proposed by Zhao et al. [30], enhances the traditional LSTM
model by incorporating spatiotemporal gates (STGs) to
capture the spatiotemporal relationships between successive
check-ins. By introducing additional gates and memory cells
to model both short- and long-term user preferences, STGN
effectively extends the basic LSTM architecture for
improved next POI prediction.

LLRec: Wang et al. [38] proposed LLRec, a model designed
to capture long-term and short-term user preferences, as well as

the textual features of POIs and the complex dependencies
among user preferences. The model leverages embedding
layers, recurrent components, and an attention mechanism to
effectively integrate these factors for improved next POI
recommendation.

Flashback: Yang et al. [40] proposed Flashback, a model
designed to handle sparse user mobility data by performing
flashbacks on the hidden states of RNNs. The model
computes a weighted average of historical hidden states to
more effectively capture spatiotemporal dependencies and
improve the accuracy of next POI prediction.

GeoSAN: Lian et al. [43] proposed GeoSAN, which
addresses the data sparsity problem by introducing a novel loss
function. The model represents the hierarchical gridding of
each GPS point and employs a self-attention-based geography
encoder to effectively capture and utilize geographical
information for improved next POI prediction.

DRCF: Manotumruksa et al. [44] proposed DRCF,
which extends NeuMF to leverage traditional RNNs for
modeling the sequential order of users’ check-ins. The
model consists of two components, each containing its
own recurrent layer, to capture both user preferences and
sequential dependencies for next POl recommendation.

CARA: CARA: Manotumruksa et al. [14] proposed
the Contextual Attention Recurrent Architecture
(CARA), a model designed to capture users’ dynamic
preferences by integrating feedback sequences with the
Cl associated with those sequences. This approach
enables a more accurate modeling of user behavior in next
POI recommendation tasks.

To evaluate the performance of the aforementioned
methods, we used the recall metric (Acc@k, k = 10),
which measures whether the ground-truth POl appears in
the top-k recommended list. The general definition of
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Acc@k is provided in Eqg. (22) [3].

TP+TN
Accuracy = —— 22
y TP+TN+FP+FN ( )

In the above equations, the terms TP, FP, TN, and FN are
defined as follows:

= TP or true positive detection (in reality it is correct
and correctly predicted)

= FP or false positive detection (in reality it is
incorrect but incorrectly predicted correctly)

= TN or true negative detection (in reality it is
incorrect and correctly predicted incorrectly)

=  FNor false negative detection (in reality it is correct
but incorrectly predicted incorrectly)

Generalizing the above definitions for evaluating user location
prediction models in recommender systems, we obtain:

= TP, the number of predicted next POI that is
actually present in the user's location recording
sequence.

= FP, the number of predicted next POI that is
actually not present in the user's location recording
sequence.

=  TN. the number of unpredicted next POI that is
actually not present in the user's location recording
sequence.

= FN. the number of unpredicted next POI that is
actually present in the user's location recording
sequence.

Since the output of the proposed CEGRU architecture is a
ranking model, the evaluation criteria from Eq. (22) can be
generalized to assess the model’s performance in top-K
prediction recommendations as follows:

number of samples correctly predicted (22)

Accuracy@k =

total number of samples

B. Results and Discussion

TABLE VIII presents a comparison of the recommendation
performance of six methods across the three datasets. Bolded
numbers in each column indicate the best-performing results.
The results of the two experimental states are denoted as
CEGRU-1 and CEGRU-2, corresponding to increasing the
number of check-ins while keeping the number of users
constant and increasing the number of users while keeping
the number of check-ins constant, respectively.
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TABLE VIII. A comparison between different methods for
recommendation performance

Acc@10

Methods Brightkite Gowalla Foursquare
STGN 0.2020 0.5231 0.3017
LLRec - 0.3874 0.3542
Flashback - 0.3472 0.6236
GeoSAN 0.6425 0.6028 0.4867
DRCF 0.7363 - 0.8805
CARA 0.7385 - 0.8851
CEGRU-1 0.8340 0.7960 0.7600
CEGRU-2 0.8240 0.7910 0.7860

The experimental results indicate that methods that do not
employ recurrent models and do not account for the
temporal and geographical contextual information of users’
movement trajectories separately exhibit reduced prediction
accuracy in recommender systems.

Although the STGN model separately incorporates
geographical contextual information (GCI) and temporal
contextual information (TCI), it does not employ an attention
mechanism to adaptively weight these contextual factors.
Moreover, its reliance on an LSTM-based architecture limits
its ability to capture fine-grained sequential dynamics,
resulting in lower prediction accuracy compared to GRU-
based models such as CARA and the proposed CEGRU. The
LLRec model accounts for both long-term and short-term
user preferences through embedding representations, a
recurrent component based on an RNN architecture, and an
attention mechanism. However, it does not explicitly model
temporal intervals and geographical distances as independent
contextual signals within users’ movement trajectories, which
constrains  its  effectiveness in  handling irregular
spatiotemporal patterns. In addition, models built upon
traditional RNN architectures often suffer from degraded
performance when modeling long user check-in sequences
due to vanishing gradient issues, limiting their ability to
capture long-range dependencies. Similarly, the Flashback
model leverages an RNN architecture and aggregates
historical hidden states using a weighted mechanism to model
spatiotemporal effects. Nevertheless, like LLRec, it lacks
explicit modeling of spatial distances and temporal gaps
between consecutive check-ins, leading to inferior
performance compared to GRU-based approaches. GeoSAN
employs a self-attention mechanism for POl recommendation
and incorporates  geographical-temporal  contextual
information (GTCI). Despite this, its performance remains
lower than that of DRCF and CARA, as it primarily focuses
on modeling spatial relationships among locations and does
not sufficiently capture sequential transition dynamics in user
trajectories. The DRCF model improves upon STGN by
employing a recurrent architecture to model sequences of
previously visited venues, thereby achieving higher
prediction accuracy. However, it does not explicitly
incorporate contextual information associated with individual
check-ins, such as temporal intervals and geographical
distances. This observation highlights that a strong sequential
modeling architecture alone is insufficient; explicit
integration of rich spatiotemporal contextual information is
essential for accurate next POl recommendation. The CARA
model further improves prediction performance by separately
incorporating TCI and GCI and by jointly leveraging
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recurrent and attention mechanisms. Although this model
demonstrates superior performance compared to other models, it
incurs additional computational overhead due to the
incorporation of a time-stamp attention gate. Building upon this
idea, the proposed CEGRU model introduces a novel architecture
that embeds two attention gates within the GRU framework to
more effectively capture spatiotemporal transition dynamics.
Specifically, the Temporal Attention Gate (TAG) and the
Geographical Attention Gate (GAG) explicitly model time
intervals and geographical distances between successive check-
ins. The outputs of these gates independently influence the reset
and update gates of the GRU, enabling CEGRU to adaptively
handle irregular user mobility patterns and thereby achieve
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In response to RQ1, it can be stated that location prediction
in LBSNs is a key application of RM. The CI of users’
movement trajectories in LBSNs, including temporal and
geographical data, provides valuable input for predicting
movement patterns. By collecting and feeding this information
into deep recurrent neural network models, it can be effectively
utilized for RM tasks. To address RQ2, two attention gates were
implemented as a feed-forward network to extend the GRU
model. The outputs of these gates influence the GRU’s reset and
update gates, controlling the impact of users’ GTCI in modeling
their trajectory data. Regarding RQ3, the effectiveness of the
proposed CEGRU model was evaluated by comparing its
Accuracy@10 in the first and second experimental states
against existing architectures, as shown in Fig. 10. The results
indicate that CEGRU achieves higher accuracy than competing
models on the Brightkite and Gowalla datasets. In the
Foursquare dataset, however, due to its low density and high
POI diversity, CEGRU’s accuracy is 11.2% lower than CARA
and 10.7% lower than DRCF, exhibiting a different behavior.
Overall, the CEGRU model demonstrates an average
improvement of 64.6% compared to the baseline methods.

From a computational perspective, the proposed CEGRU
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superior predictive performance. Overall, due to the adoption
of the GRU architecture and the explicit modeling of
heterogeneous spatiotemporal contextual factors through dual
attention gates, the proposed CEGRU model consistently
outperforms models based on traditional RNNSs (e.g., LLRec,
Flashback, and DRCF), as well as approaches relying
primarily on recurrent architectures without adaptive
contextual weighting (e.g., STGN) or attention mechanisms
alone (e.g., GeoSAN). As shown in Fig. 9, experimental
results demonstrate that this design improves prediction
accuracy, confirming the effectiveness of the CEGRU
architecture.

Accuracy@10 Comparison
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Fig. 9. A comparison between CEGRU and the baseline methods for Accuracy@10 on Brightkite, Gowalla and Foursquare datasets.

Models

model maintains a complexity comparable to standard GRU
and LSTM architectures. Similar to GRU, the dominant
computational cost per time step arises from matrix
multiplications associated with hidden state updates,
resulting in a time complexity of O(ds * di + dn2), where dh
and d; denote the hidden and input dimensions,
respectively[45]. CEGRU introduces two lightweight
attention gates that operate on scalar spatiotemporal
transition features, namely the geographical distance and
time interval between consecutive check-ins. The additional
computations introduced by these gates are linear with
respect to the hidden dimension and therefore add only a
modest constant factor overhead without changing the
asymptotic complexity. As a result, CEGRU achieves
improved predictive performance while preserving
computational efficiency comparable to GRU/LSTM based
models .

From a Reality Mining (RM) perspective, the proposed
CEGRU model serves as a computational framework for
extracting latent spatiotemporal behavioral patterns from
real world human mobility data. By modeling temporal
intervals and geographical distances through dual attention
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gates embedded within a GRU architecture, CEGRU
effectively captures irregular and personalized mobility
behaviors reflected in user check-in sequences.

It is important to note that prior RM studies typically focus on
sensor based or communication data and adopt different
experimental settings and evaluation metrics. In contrast, this
work represents one of the first attempts to apply recurrent
neural architectures to Reality Mining using large scale LBSN
datasets. Despite these differences, the experimental results
validate that the proposed model successfully mines meaningful
behavioral regularities, thereby reinforcing the central role of
Reality Mining in this study.

Point of Interest Recommendation by Reality Mining Approach/ Ghanaati

VI1.Conclusion

RM seeks to uncover predictable behavioral patterns by
collecting and analyzing machine-sensed ambient data
related to human social interactions. With the increasing
availability of large scale LBSN data, user check-ins has
emerged as an important source of real world behavioral
traces that reflect human mobility and activity patterns. In
recent years, next location prediction has become
increasingly important for a wide range of LBSN
applications. GTCI plays a critical role in assessing
individual activities for personalized POI recommendation.

Improvement Percentage of CEGRU Over Competing Models

Improvement Percentage (%)

STGN LLRec

129.9%

Models

- Enghtote
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B

e
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Fig. 10. Percentage of Improvement of CEGRU

Despite the relevance of contextual information obtained
from users’ trajectory data in LBSNs, such information has
not been fully explored within the Reality Mining
framework. To address the limitations of previous studies,
this research proposed a novel CEGRU model for location
prediction in Reality Mining using check-in data from
LBSNs. The proposed architecture extends the standard
GRU by separately incorporating geographical and temporal
contextual information extracted from user check-ins.
Inspired by attention mechanisms, two additional contextual
attention gates are introduced to explicitly emphasize the
impact of temporal intervals and geographical distances
when modeling sequential user behavior. POls are ranked for
recommendation based on users’ prior check-ins. In
particular, the explicit modeling of heterogeneous
spatiotemporal contextual factors for Reality Mining
applications constitutes a key novelty of the proposed
CEGRU architecture. The value of independently evaluating
contextual information is evident from the comparison with
baseline techniques. The proposed CEGRU architecture,
enhanced with two contextual attention gates, demonstrated
superior performance in next-location prediction and POI
recommendation tasks. Extensive experiments on three
large-scale LBSN datasets, including Gowalla, Brightkite,
and Foursquare, showed that CEGRU  consistently
outperformed contemporary recurrent and attention-based

models. Moreover, this study is among the first to
systematically investigate the impact of dataset density
on model performance in a RM setting by conducting
experiments under two different density states. These
experiments identify an optimal density range for each
dataset, providing practical guidance for future Reality
Mining research when selecting datasets for model
evaluation. From a broader perspective, this work
demonstrates that recurrent neural architectures equipped
with explicit spatiotemporal contextual attention
mechanisms provide an effective framework for mining
latent human mobility patterns from real world social
sensing data. In future work, the CEGRU architecture
could be extended to incorporate social relationships
among users in LBSNs, enabling more comprehensive
RM analyses. Additionally, richer contextual
information, such as textual and visual data from check-
ins or environmental factors like weather, could be
integrated to further enhance prediction accuracy and
broaden the applicability of RM research.
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Appendix A

1-Realituy Mining (RM)

2-Location Based Social Network (LBSN)

3- Contextual Information (Cl)

4- Point of Interest (POI)

5- Contextual Extended Gated Recurrent Unit (CEGRU)
6- Attention Mechanism (AM)

7- Collaboration Filtering (CF)

8- Geographical Contextual Attention Gate (GAG)
9- Temporal Contextual Attention Gate (TAG)
10- Machine Learning (ML)

11-Deep Learning (DL)

12- Recurrent Neural Network (RNN)

13- Global Positioning System (GPS)
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