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Location-based social networks (LSBNs) are emerging services that have gained 

considerable popularity in recent years with the rapid advancement of mobile technology. 

LSBNs enable users to log their locations by recording entries, including various forms of 

contextual information (CI). Reality mining (RM) involves collecting and analyzing 

environmental and behavioral data from mobile devices to uncover predictable patterns, 

such as human mobility trends, which can enhance sequential next Point of Interest (POI) 

recommendations in recommender systems. Probabilistic models and sequence-based 

algorithms are among the most widely used approaches for learning mobility patterns in 

RM, although each presents its own challenges. In this study, for the first time, incorporate 

CI from LBSNs in a reality mining framework to predict users’ next POI within 

recommender systems. To this end, we propose a Contextual Extended Gated Recurrent 

Unit (CEGRU) architecture designed to separately investigate the impact of CI on location 

prediction. The CEGRU model extends the traditional GRU by introducing two distinct 

attention gates to better capture the impact of contextual variables on user movement 

behavior. Furthermore, this research introduces a novel experimental setup that evaluates 

model performance under two different dataset density conditions. This innovation enables 

the determination of the optimal dataset density for effectively assessing the proposed 

model. Comprehensive experiments were conducted on three large-scale real-world LBSN 

datasets, including Brightkite, Gowalla, and Foursquare. The results demonstrate that 

CEGRU outperforms competitive baseline methods on the Brightkite and Gowalla datasets 

in terms of Acc@10. 
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I. Introduction 

Location-based social networks (LSBNs) services such as 

ride-hailing, targeted advertising, and food delivery have 

become an integral part of daily life with the rapid 

advancement of smartphone technology [1]. To deliver more 

effective services in such applications, it is essential to 

accurately predict users’ future locations by recommending 

successive points of interest (POIs) [2]. LSBNs allow users 

to record their locations through check-ins that include 

various forms of contextual information (CI), such as 

geographical and temporal contextual information (GTCI). 

The GTCI associated with user check-ins plays a crucial role 

in analyzing movement patterns and predicting users’ next 

POIs. Effective successive POI recommendation not only 

supports intelligent, location-based advertising and 

personalized user experiences but also helps service 

providers optimize user engagement and promote 

exploration of new places [3, 23, 25]. 

Reality mining (RM) is defined as the collection and 

analysis of environmental data from mobile devices 

associated with human social interaction, with the aim of 

identifying predictable behavioral patterns [4, 5, 6, 7]. One 

key area of RM research involves predicting human mobility 

patterns, which can be utilized to improve successive POI 

recommendations and monitor individuals’ locations during 

pandemic situations [5, 8, 9]. RM investigates human 

behavior through wireless devices such as smartphones and 

Global Positioning System (GPS) sensorsto construct an 

accurate representation of individuals’ activities, 

movements, and social interactions [4, 5]. With advances in 

machine learning (ML) and statistical analysis, RM now 

provides a broader understanding of both collective and 

individual human behavior [8]. To further enhance this 

capability, we propose employing deep learning (DL) 

techniques and predictive big data analytics on LBSN check-

in data to generate more accurate mobility predictions. The 

primary objective of this study is to develop a Recurrent 

Neural Network (RNN)-based RM model capable of 

forecasting user movement patterns by incorporating CI 

derived from LBSN check-ins, with the potential for 

application to other types of CI in the future. Previous RM 

studies [5, 10] have largely overlooked the integration of 

contextual data such as temporal and geographical factors 

captured through user check-ins on LBSNs. However, CI 

plays a critical role in modeling user mobility behavior and 

has a distinct influence on predicting users’ future locations. 

 This study focuses on RM by modeling sequences of user 

check-ins while separately considering the influence of 

GTCI. To achieve this, we propose a novel contextual 

extended gated recurrent unit (CEGRU) architecture for 

location prediction, consisting of four layers: input, output, 

embedding, and recurrent. Compared with other deep 

learning–based recurrent models, the Gated Recurrent Unit 

(GRU) architecture is relatively simple and requires fewer 

parameters. Furthermore, unlike conventional Recurrent 

Neural Networks (RNNs), the GRU architecture can 

selectively disregard the hidden state of the previous unit when 

it is not relevant [11, 12]. As a result, a GRU network was 

developed to model check-in sequences by incorporating the 

time intervals (∆t) and geographical distances (∆g) between 

two successive check-ins  [13]. Fig.1 illustrates an example of 

a user's check-in sequence. 

 

 

 

 

 

 

Fig.1. An example of a user's check-in sequence 

 Since the effects of CI on user behavior vary, any type of 

GTCI should be considered individually during modeling [14, 

15]. The GRU network was extended by introducing two extra 

attention gates to independently capture the influence of 

important CI, inspired by the attention mechanism (AM). In 

the output layer of the CEGRU architecture, the preference 

score is computed using the dot product operation, and the top-

k POIs are recommended to users based on these prediction 

scores. A higher score indicates a greater likelihood that the 

user will visit the corresponding location. The CEGRU 

parameters were optimized using the Bayesian Personalized 

Ranking (BPR) framework [16]. In the final stage, extensive 

experiments were conducted on three benchmark datasets , 

including Brighkite, Gowalla, and Foursquare to evaluate our 

proposed model. The performance of CEGRU was compared 

against five state-of-the-art location methods. 

A. Problem Statement 

Probabilistic models and sequence-based algorithms are the 

most widely used approaches for learning user movement 

patterns in RM. However, probabilistic approaches, which 

often use the Markov model, struggle to capture behavioral 

patterns in long movement sequences, while sequence-based 

methods perform poorly when predicting users’ future 

locations in low-repetition or sparsely visited areas. Users can 

record check-ins on various LSBNs to share their locations. 

The check-ins collected in LBSNs contain GTCI, each 

exerting a distinct influence on predicting a user's next location 

[15, 19]. Previously, no GTCI was incorporated into sequence 

modeling in RM investigations (Challenge #1). In addition, 

several LBSN-based approaches for successive POI 

predictions, such as collaborative filtering (CF) and RNNs, 

used the CI of user trajectory data to forecast future POIs. 

However, CF methods ignore the sequential nature of the data, 

despite the fact that successive POI prediction is inherently a 

time-sequence problem (Challenge #2). Although recurrent 

models address sequential data modeling, they often overlook 

the role of CI, which can significantly influence predictions 

(Challenge #3). The CEGRU model was presented in this 

study to address these limitations.   
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B. Main Contributions 

The following are significant contributions to this work: 

1) Mobile phones equipped with sensors and GPS 

receivers are the primary data sources for RM applications.  

 

 

Consequently, most research in this field has focused on 

analyzing location-based data obtained from GPS, which is 

often affected by noise and dispersion. In this study, the RM 

data source is users’ registered check-ins on LBSNs, which 

include the GTCI of trajectory data. This represents the first 

time that contextual data has been incorporated into RM. 

Secondly, the construction of a GRU-based model for RM is 

proposed for the first time. The proposed architecture 

enhances the traditional GRU model by introducing two 

additional attention gates in the recurrent layer, leveraging 

an attention-based mechanism: the Geographical Contextual 

Attention Gate (GAG) and the Temporal Contextual 

Attention Gate (TAG). These gates regulate the influence of 

the previous recurrent unit’s hidden state based on time 

intervals and geographical distances between successive 

check-ins. Notably, the time-stamp attention gate was 

excluded due to its minimal impact on prediction accuracy 

[26], reducing model parameters and computational 

overhead. Thirdly, this research investigates, for the first 

time, the effect of dataset density on model performance. 

This analysis aims to identify the optimal density for 

selecting datasets when evaluating the proposed model. 

Experiments were conducted under two distinct dataset 

density states, examining each dataset at multiple levels of 

change, following the methodology of [23]. This novel 

experimental design provides a framework for future dataset 

selection in RM research. Finally, extensive experiments 

were performed on three large-scale, real-world datasets, 

Gowalla [20], Brightkite [20], and Foursquare [21] widely 

used in related studies for predicting user POIs in LBSNs. 

The results demonstrate the effectiveness of the proposed 

CEGRU architecture.  

Reality Mining aims to extract meaningful behavioral 

patterns from large scale real world data generated by human 

activities. With the rapid growth of location based social 

networks (LBSNs), massive volumes of user check-in data 

have become available, providing rich spatiotemporal traces 

that reflect users’ real-world mobility behaviors. These 

check-in sequences can be regarded as observable 

manifestations of human activities, making them a valuable 

data source for Reality Mining studies.  To this end, we 

propose the CEGRU model, which explicitly incorporates 

geographical and temporal contexts into the recurrent 

learning process to mine latent spatiotemporal behavioral 

patterns from real world user check-in data. The central 

assumption of this work is that explicitly modeling 

heterogeneous contextual factors, such as temporal intervals 

and geographical distances, within a recurrent architecture 

enables more effective Reality Mining of human mobility 

behaviors. Our experimental results demonstrate that this 

approach effectively captures mobility patterns, leading to 

superior performance in next location prediction compared to 

existing benchmarks. 

The remainder of this paper is organized as follows. Section 

II reviews the related work. Section III presents the study’s 

background, while Section IV describes the details of the 

proposed model. The experimental results are reported in 

Section V, and Section VI concludes the paper. 

 

II.  Related Research 

This section reviews related work on location prediction, 

which is organized into three categories: Reality Mining 

(RM) approaches, deep learning (DL) approaches, and 

hybrid methods. 

RM approaches: Ferrari et al. [18] proposed a method for 

classifying and predicting users’ whereabouts patterns using 

an RM dataset, which logs places visited as determined by 

GSM-based geolocation. Their approach involved 

automatically labeling routine locations from mobility data 

and developing a prediction mechanism to infer users’ future 

whereabouts. Latent Dirichlet Allocation (LDA) was 

employed to extract high-level patterns, referred to as 

“themes,” from the mobility dataset. Farrahi et al. [9] 

introduced an RM framework for large-scale, unsupervised 

learning of human routines through simultaneous modeling 

of user positions and proximity interactions. They proposed 

a multimodal behavior bag that combines semantic modeling 

of location changes across multiple time scales with 

interaction types derived from Bluetooth proximity data. 

LDA was applied to identify common multimodal human 

activities captured in RM data, representing routine 

behaviors. Jung et al. [10] focused on uncovering real-world 

social relationships, such as those between family and 

friends, using RM. They posited that an individual’s context 

is intertwined with the contexts of socially connected peers, 

and that neighbors’ contexts can significantly influence 

personal behavior. This assumption underlies the concept of 

social affinity, where stronger social ties result in greater 

contextual influence from others. Based on RM, Eagle and 

Pentland [6] explored the structure underlying daily human 

behavior. Their models aggregated multimodal data from 

individuals and communities within social networks. By 

calculating a weighted sum of an individual’s principal eigen 

behaviors, their approach could simulate daily behavior and, 

if computed halfway through the day, predict the remaining 

behaviors. This method leverages the vast amounts of rich 

data collected continuously from mobile devices and nearby 

phones. Choujaa and Dulay [22] employed information-

theoretic approaches to optimize the selection of time points 

for predicting mobile phone users’ activities over the 



 

 

 

54                                                                                                                                                              Point of Interest Recommendation by Reality Mining Approach/ Ghanaati 

  
following three weeks. Their method analyzed RM cellular 

data to minimize uncertainty and to infer an individual’s 

activity at one time from the activities of others at different 

times. 

DL Approaches: DL-based recurrent models have 

recently shown significant advances in representing 

sequential user behavior and improving location 

prediction. For instance, Liu et al. [29] proposed a Spatial-

Temporal Recurrent Neural Network (ST-RNN) to address 

continuously valued spatial-temporal contextual input 

challenges in location prediction. Zhao et al. [30] 

introduced STLSTM, an extended version of Long Short-

Term Memory (LSTM) that incorporates distance and time 

gates to capture spatiotemporal relationships between 

successive check-ins. Specifically, separate distance and 

time gates are designed to regulate short-term interest 

updates, while additional gates capture latent location 

transition patterns. A task-specific decoder is also 

employed to enhance long-term interest modeling. To 

reduce parameter complexity and improve efficiency, our 

proposed model similarly integrates linked input and 

forgets gates. Kumar and Nezhurina [31] analyzed Twitter 

data and developed an ML model to predict users’ future 

locations. ML methods enable systems to learn from past 

data and apply this knowledge to forecasting and decision-

making for unseen instances. Yao et al. [19] presented a 

Semantics-Enriched Recurrent Model (SERM) for jointly 

learning embeddings of multiple factors (e.g., location, 

user, keyword, and time) and the transition parameters of 

an RNN within a unified framework. To better capture the 

interaction between user activities and site preferences, 

Zung et al. [32] proposed an Interactive Multi-Task 

Learning (iMTL) framework. This model incorporates a 

temporal-aware activity encoder with fuzzy 

representations for uncertain check-ins to reveal latent 

activity transition patterns, and a spatial-aware location 

preference encoder that uses the learned patterns to 

enhance both activity and location prediction tasks 

interactively. Liu et al. [33] proposed the Context-Aware 

RNN (CA-RNN), which replaces the constant input and 

transition matrices of traditional RNNs with adaptive, 

context-specific counterparts. These adaptive matrices 

capture the external contextual settings of user behaviors 

such as location, time, and weather and model how global 

sequential transitions are influenced by varying time 

intervals between consecutive actions. Moreover, attention 

mechanisms in DL have recently proven highly effective 

for improving interpretability and modeling long-term 

dependencies [12, 17, 24, 34–36]. Vaswani et al. [36] 

introduced the Transformer architecture, which eliminates 

recurrence and relies entirely on attention mechanisms to 

capture global input–output dependencies. Building on this 

concept, Huang et al. [17] developed ATST-LSTM, an 

attention-based spatiotemporal LSTM for next POI 

recommendation. Feng et al. [12] proposed the DeepMove 

model, which employs an attentional RNN to predict user 

mobility from long and sparse trajectories. Similarly, Huang 

et al. [37] introduced a Deep Attentive Network (DAN-SNR) 

for social-aware next POI recommendation. Despite these 

advancements, traditional RNN-based techniques still 

struggle to capture long-term dependencies effectively and 

may suffer from vanishing or exploding gradient problems. 

Table I summarizes the related studies and the corresponding 

challenges addressed in this research. 

TABLE I: Summary of related works 

Model Name 
Model 

Approach 
Method summery challenges 

[18] Topic 
prediction 

mechanism, 

[9] 
Multifaceted 

Behavior 

Package  

RM Based 
Latent Dirichlet 

Allocation Algorithm 

The presence of noise 

and data dispersion  
and weakness in 

identifying temporal 

order and sequential 
dependencies in data 

[10] Semi-
automatic 

method 

RM Based 

Reality mining using 

social and spatial data 

contextual information 
and statistical analysis 

Lack of predictability 

of a person's next 

location if they are in 
low-density areas  

[6] Special 
Behavior 

Identification 

Model 

RM Based 

Analysis, prediction, and 

clustering of multimodal 

data of individuals and 
groups within a social 

network 

Weakness in 
identifying temporal 

order and sequential 

dependencies in data 

[22] 
Quantitative 
Predictability 

Method 

RM Based 

Presenting a method 

based on probability 

theory 

Failure to properly 
extract behavioral 

patterns from long 

sequences of people's 
movements  

[5] Detecting 

the dynamic 
structure of a 

real contact 

network 

RM Based 
Providing a method based 

on a Statistical Risk 

Model 

Weakness in extract 

behavioral patterns 
present in long 

movement sequences 

of persons 
[8] Real-time 

pattern 

prediction 

system 

RM Based 
K-means clustering 

algorithm 

Limited energy of 

mobile devices 

[29]  

ST-RNN 
DL Based 

Extending RNN and 

using a transition matrix 

for capturing the 
temporal cyclic effect and 

geographical influence 

Vanishing gradient 

problem in long 

sequence due to the 
use of the traditional 

RNN 

[30] STGN DL Based 

Modifying the basic 

LSTM model slightly by 
introducing gates and 

cells to capture short- and 

long-term preferences 

Considering the same 

effect for temporal 
and geographical 

contextual 

information 

[19] SERM DL Based 

Jointly learning the 

embedding of multiple 

factors (user, location, 
time, and keywords) and 

the transition parameters 

of an RNN in a unified 
framework 

Not taking into 

account the 
geographical distance 

in the training of this 

model 

[33] CA-RNN DL Based 

Employing adaptive 

context-specific input 

matrices and adaptive 
context-specific transition 

matrices 

Using a traditional 

RNN model and 
restrictions on paying 

attention to the 

contextual information, 
low performance 

[17] ATST-
LSTM 

DL Based 

Developing an attention-

based spatiotemporal 

LSTM network to focus 

Encountering with 

high complexity of 

implementation and a 
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Model Name 
Model 

Approach 
Method summery challenges 

on the relevant historical 

check-in records in a 
check-in sequence 

selectively using the 

spatiotemporal contextual 
information 

lack of attention to the 

scarcity 

[37] DAN-
SNR 

DLAM 
Based 

Makes use of the self-AM. 

By leveraging multi-head 
self-attention, the DAN-

SNR can model long-

range dependencies 
between any two historical 

check-ins efficiently and 

weigh their contributions 
to the next destination 

adaptively 

Using only the 

attention mechanism 
and had low 

performance rather 

than applying 
recurrent neural 

networks for 

modeling the 
sequential influence 

and social influence 

III. Preliminaries 

   This section presents notations and definitions, as well as 

the preliminary information that we used in our study.  

A. Notations and Definitions 

The primary notations utilized herein are listed in TABLE II. 

 

TABLE II. Notations   and description 

 

     Check-in data: A check-in refers to an action performed 

by a user at a certain location and time. A check-in is an 

LBSN registration of a location that includes geographical 

and temporal data. The check-in record can be described as a 

quadruple: cu, v, t <u, l, v, t> when a user u checks in at a 

location l (longitude and latitude) with venue-Id v at the 

timestamp t. Su (user's check-in sequence) refers to a set of 

all users' check-ins. 

     Trajectory: A trajectory t is a series of chronologically 

ordered check-ins associated with a user u. For instance, tru: 

<u, l1, v1, t1>,…,<u, li, vi, ti>,…,<u, lk, vk, tk>, where tru 

denotes a user u's trajectory prior to time tk. Here, a trajectory 

set Tr (u) is employed to represent all user u's trajectories. 

     POI in LBSNs: A POI in an LBSN is a spatial item linked 

to a geographical place and referred to as a venue, e.g., an 

office or a hotel. Here, v represents POI, and V={v1, v2,...} 

denotes a set of POIs. Each POI v has its own specific 

identifier and geographic coordinates, comprised of 

geographical latitude/longitude. 

     POI recommendations task: The POI recommendation 

task is to recommend the top-k POIs favored by user u, 

considering a collection of user check-in sequences Su and a set 

of POIs V. The goal of the successive POI recommendation is 

to forecast which location vk will be visited by a user u at a 

certain point in time tN+1. 

B. Deep Learning-based Recurrent Models 

      The primary challenge in successive POI recommendation 

lies in the joint and efficient learning of user POI preferences 

alongside the sequential correlations between check-ins [17]. 

This challenge is typically addressed by employing hidden 

states that capture the sequential patterns embedded in the 

input sequence [14, 15, 19]. Hidden states encode either the CI 

or the temporal dynamics of user trajectories. However, 

conventional RNNs struggle to capture long-term 

dependencies due to the exploding and vanishing gradient 

problems [14, 37]. To mitigate these limitations, the Long 

LSTM model was introduced, leveraging a gating mechanism 

to retain and regulate long-term information [17, 38, 41]. Each 

LSTM unit maintains a cell state (𝑐𝑡) and a hidden state (ℎ𝑡) 

similar to RNNs. The information flow between LSTM cells is 

governed by three gates: the input gate, forget gate, and output 

gate. However, the presence of three gates makes LSTM 

models computationally intensive and slower to train, 

especially on large datasets. To overcome these drawbacks, the 

GRU was proposed as a simplified yet effective alternative [11, 

12, 38]. The GRU model replaces the three LSTM gates with 

only two: the reset gate and the update gate, which control how 

much of the previous hidden state should be forgotten or 

retained in the current computation [15]. These mechanisms 

enable GRU to learn temporal dependencies more efficiently 

with fewer parameters. The three fundamental recurrent 

models including RNN, LSTM, and GRU are illustrated in Fig. 

1 as block diagrams [14, 30].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notation Description 

u, l, v, t user, location (longitude and latitude), venue or POI, 

timestamp 

lat v, lng v POI v's latitude and longitude (geographical 
coordinates) 

cu, v, t user u-recorded check-in in POI v and timestamp t 

Δg, Δt geographical distance and time interval between two 
successive check-ins 

Su a set of all user u-generated check-ins 

Us, V, T set of users, POIs, and timestamps 
vτ

u POI visited by user u at timestep 𝜏 
tτ

u, gτ
u vector representations of time interval and 

geographical distance 

tru a sequence of chronologically-ordered check-ins 
linked to u 

ϕu, ϕv, ϕt the latent factors of user u, POI v, and timestamp t 

ℎ̂, ℎ the hidden and candidate states of CEGRU 

zr, rr update and reset gates of GRU 

𝜎 sigmoid function 
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Fig.2. Block diagram of the (a) RNN, (b) LSTM, and the (c) GRU cell. 

   The GRU model contains only two gates the reset gate and 

the update gate as illustrated in Fig. 2. Compared to the 

LSTM, the GRU architecture is computationally more 

efficient and faster to train, particularly when the amount of 

training data is limited. The gates in the GRU regulate the 

update degree of each hidden state, thereby determining 

which information should be retained and which should be 

discarded in the transition to the next state [14, 15]. At a given 

time step 𝜏, the GRU computes the hidden state ℎ𝜏based on 

the outputs of the update gate 𝑧𝜏, the reset gate 𝑟𝜏, the current 

input 𝑥𝜏, and the previous hidden state ℎ𝜏−1. The reset gate 

determines how to combine the new input with the previous 

memory to calculate the candidate hidden state ℎ̂𝜏, and 

subsequently, the final hidden state ℎ𝜏is updated as follows 

[39]: 

 

zτ=σ(Wzxτ + Uzhτ−1 + bz)                                                 (1) 

rτ= σ(Wrxτ + Urhτ−1 + br)                                                 (2) 

ĥ τ = tanh(Wxτ+U (rτ⊙ hτ−1) + bh)                                  (3) 

hτ=(1- zτ) ⊙ hτ−1+ zτ⊙ ĥ τ                                                                         (4) 

     where 𝜎(⋅)denotes the sigmoid activation function, tanh (⋅

)is the hyperbolic tangent activation, and ⊙represents the 

element-wise multiplication operator. Moreover, 𝑊and 

𝑈represent the weight matrices used during network training. 

In this study, a feed-forward neural network was employed 

to compute the alignment function, enabling the development 

of an enhanced GRU model inspired by [14, 15]. 

Furthermore, two attention gates were introduced to account 

for temporal intervals and geographical distances between 

successive check-ins, thereby improving the model’s ability 

to capture contextual dependencies in user mobility patterns. 

 

IV. Description of the Proposed Model 

The CEGRU architecture, illustrated in Fig. 4, consists of 

four main layers: input, embedding, recurrent, and output. The 

subsequent sections describe each of these layers in detail, 

along with the parameter learning process employed in the 

model. 

A. CEGRU Layers 

The input layer stores the model inputs, which include 

contextual information (CI) derived from user check-ins. It 

should be noted that the input to the proposed model consists 

of user check-in sequences. Each check-in record is 

represented by a quadruple that can be described: 

cu, v, t <u, l, v, t>, including the user identifier, the spatial 

information of the visited location (i.e., latitude and 

longitude), the venue or POI identifier, and the associated 

timestamp. Based on these inputs, the Contextual 

Information (CI) vector is constructed to embedding 

spatiotemporal user's check-ins information at each time 

step. Fig. 3 presents an illustrative example of the feature 

construction pipeline using sample check-in data from the 

Gowalla dataset. 

 

Fig.3. Feature Construction Pipeline from Sample Gowalla 

Check-ins 

In particular, the CI vector is formed by concatenating 

four components derived directly from the user's check-ins: 

(1) a location embedding associated with the venue or POI 

identifier, (2) a temporal embedding obtained from 

discretized timestamp features such as time of day and day 

of week, and (3),(4) a user embedding representing 

individual mobility preferences including geographical 

distance (Δg) and time interval (Δt) between two successive 

check-ins. 

 Within the recurrent layer of the CEGRU model, this 

transition CI is emphasized through two specially designed 
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attention gates. As a result, the time interval (Δt) and 

geographical distance (Δg) between successive check-ins 

are computed within this layer. Given a user 𝑢, a venue 𝑣1, 

and a timestamp 𝑡𝜏at timestep 𝜏, the time interval and 

geographical distance between 𝑣1and the previously 

visited venue 𝑣2at timestep 𝜏 − 1are computed as: Δtτ = tτ− 

tτ−1 and Δgτ = dist(lat v1, lng v1, lat v2, lng v2), respectively 

(Eq.10). The geographical distance Δ𝑔𝜏is calculated using 

the Haversine formula, which computes the angular 

distance between two points on the surface of a sphere. In 

this calculation, the latitude serves as the first coordinate 

and the longitude as the second, both measured in radians. 

Two data dimensions are required for this computation: 

latitude and longitude. 

D(x,y)=2 

arcsin[√sin2(
x1−y1

2
) + cos(x1)cos(y1)sin

2 (
x2−y2

2
)]              

(5) 

     Before entering the recurrent layer, the embedding 

layer is used to embed inputs from a sequence of check-

ins. In this layer, latent factors for the user, POI (venue), 

and time are generated, denoted as, ∅ui∈ U, ∅vτ
i∈ V and 

time ∅tτ∈ T, respectively. The set of parameters for the 

embedding layer is defined as 𝜃e = {U, V, T}. The venue 

latent factor 𝜙𝑣𝜏

𝑗
, the time latent factor 𝜙𝑡𝜏, and the 

contextual transition features (Δ𝑔𝜏 and Δ𝑡𝜏) are 

subsequently passed to the recurrent layer for CEGRU 

training. In the recurrent layer, the GRU model is 

enhanced with two attention gates: the GAG and the TAG, 

as proposed by Manotumruksa et al. [14] and Kala et al. 

[15]. These gates control the influence of the previous 

recurrent unit’s hidden state based on the geographical 

distance and time interval between successive check-ins, 

reflecting the observation that contextual information 

impacts users’ dynamic preferences differently. The 

output of this layer is the hidden state of the recurrent unit 

at timestep 𝜏, denoted as ℎ𝜏, and is formally defined as 

follows: 

)6(                                             )rθ,τg,Δτt,Δτt ∅,j
τv∅(f =  τh 

The following describes how the traditional GRU is 

extended to incorporate absolute and CI. To estimate the 

hidden state ℎ𝜏, the update and reset gates of the GRU are 

employed, taking into account the user’s check-in 

sequence 𝑆𝑢and the user’s dynamic preferences at timestep 

𝜏: 

z τ = σ(Wz∅vτ
j+ Uzhτ −1 + bz)                                        (7) 

 r τ = σ(Wr∅vτ
j+ Urhτ −1 + br)                                          (8) 

 ĥ τ = tanh(W∅vτ
j +U (rτ⊙ hτ−1) + bh)                          (9)      

    hτ=(1- zτ) ⊙ hτ−1+ zτ⊙ ĥ τ                                                                 (10) 
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Fig.4. General CEGRU Architecture; historical check-ins are collected in LBSNs and used as input in the proposed model; the proposed 

CEGRU's output is a ranked POI list that might be interesting to a user in the future based on historical sequences of check-ins at time t 

 

     In the equations above, 𝜙𝑣𝜏

𝑗
denotes the latent factor of the 

venue 𝑣visited by the user at timestep 𝜏. Besides, tanh() and 

𝜎() denote the hyperbolic tangent and sigmoid functions, 

respectively. Moreover, U implies a recurrent connection 

weight matrix used to capture sequential signals between 

every two neighboring hidden states, namely hτ and hτ−1, by 

employing⊙, indicating the element-wise product. In 

addition, W and bare indicate the transition matrix between 

the venues' latent factors and corresponding biases, 

respectively. Furthermore, θr = {W, U, b} represents the set 

of recurrent layer’s parameters.  

To effectively model users’ check-ins in sequential order, the 

relevant CI must be examined independently. To address this, 

the proposed GAG and TAG were introduced. The GAG is 

designed to capture spatial transition dynamics and takes as 

input the geographical distance between two consecutive 

check-ins, together with the previous hidden state hτ-1. This 

enables the model to adaptively regulate the influence of 

spatial proximity on the hidden state update. Formally, GAG 

is defined as Eq.(11), where Δg denotes the geographical 

distance between two consecutive check-ins. The TAG 

focuses on temporal transition patterns and takes as input the 

time interval between two consecutive check-ins, together with 

the previous hidden state hτ-1. By explicitly modeling temporal 

gaps, this gate allows the network to dynamically adjust the 

impact of irregular temporal behaviors in user mobility 

sequences. Formally, the TAG is formulated as Eq.(12) in our 

manuscript, where Δt represents the time interval between two 

consecutive check-ins. 

GAG= σ (WGAG,h hτ-1+ WGAG,t Δgτ + bGAG)               (11) 

TAG= σ (WTAG,h hτ-1+WTAG,g  Δtτ + bTAG)                 (12) 

     where the attention gates, GAG and TAG, capture the 

influence of both time intervals and geographical distances 

between successive check-ins. For instance, if the distance 

between two check-ins is short, the impact of the previous 

hidden state ℎ𝜏−1is likely to remain significant even when 

the time interval between them is long. Together, the GAG, 

TAG, and the reset gate 𝑟𝜏regulate the contribution of the 

previous hidden state ℎ𝜏−1to the current hidden state ℎ𝜏. 

    The proposed attention gates (GAG and TAG), together with 

the traditional GRU update and reset gates, are integrated to 
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compute the next hidden state. Accordingly, the conventional 

GRU equations are modified to incorporate these attention 

gates, resulting in the CEGRU architecture as follows: 

z τ = σ(Wz∅vτ
j+ Uzhτ −1 +Wz((ϕtτ  + (GAG⊙Δgτ ) + 

(TAG⊙Δtτ))+bz)                                                            (13) 

r τ = σ(Wr∅vτ
j+ Urhτ −1 + Wr((ϕtτ +( GAG⊙Δgτ ) + 

(TAG⊙Δtτ )) +br)                                                           (14) 

ĥ τ = tanh(W∅vτ
j +U (rτ⊙ hτ−1) +Wr((ϕtτ+ (GAG⊙Δgτ ) + 

(TAG⊙Δtτ)) + bh)                                                           (15) 

     The hidden state ℎ𝜏is updated according to the steps 

described above and serves as the output of the recurrent unit 

at timestep 𝜏. At the same timestamp, the output layer 

estimates user 𝑢’s preference for venue 𝑣as follows: 

hτ=(1- zτ) ⊙ hτ−1+ zτ⊙tanh(W∅vτ
j +U (rτ⊙ hτ−1) +Wr((ϕtτ+ 

(GAG⊙Δgτ ) + (TAG⊙Δtτ)) + bh)                                                (17) 

   At timestamp 𝜏, the output layer estimates user u's 

preference for venue v as follows: 

ĉu,v,t=∅uu h
τT                                                      (18) 

Previous studies have shown that pairwise loss functions 

outperform classification-based loss functions in capturing 

patterns from sequential data and offer more efficient training 

for recurrent-based recommender systems [14, 15, 41, 16]. 

Specifically, as noted by Manotumruksa et al. [14, 41], the 

BPR framework [16] can be used to estimate the parameters 

of both the recurrent and embedding layers, as well as the 

probability distribution over all venues, taking into account 

the hidden state ℎ𝜏. 

B. Network training 

    In this study, the datasets consist of sampled triplets, each 

containing one user and two POIs: one positive (visited) and 

one negative (unvisited). As previously discussed, the 

pairwise BPR framework is employed to learn the parameters 

of both the embedding and recurrent layers (Θ = {𝜃𝑒 , 𝜃𝑟}). 

BPR leverages the relative ranking of POI pairs, operating 

under the assumption that a user prefers observed POIs over 

all unobserved POIs [11, 17]. Within this framework, 

CEGRU aims to maximize the probability at each sequential 

position 𝑘as follows [11, 16, 17]: 

P(u, t, v >𝑣′) = 1

1+e−x
 ( ou,t,v – ou,t,v’)                              (19) 

where, 𝑣and 𝑣′denote the positive (visited) and negative 

(unvisited) POIs, respectively. To optimize the network’s 

objective function for next POI recommendation, a 

regularization term is incorporated into the loss function, as 

expressed below [16]: 

J=−∑ ln 𝑃(𝑢, 𝑡, 𝑣 >  𝑣′)
(𝑣,𝑣′) +𝜆/2 || Θ ||2             (20) 

     where denotes the regularization strength, and Θrepresents the 

set of model parameters. Following Manotumruksa et al. [14] and 

Kala et al. [15], the dimensions of the hidden layers ℎ𝜏and latent 

factors 𝑑(set to 𝑑 = 10) in the CEGRU architecture were fixed 

consistently across both datasets. All parameters of the recurrent 

and embedding layers were initialized randomly using a Gaussian 

distribution. At the start of training, the batch size and learning 

rate were set to 256 and 0.001, respectively. Model parameters 

were optimized using the Adam optimizer. The recurrent layer of 

CEGRU includes parameter sets 𝑈, 𝑊, and 𝑏for the reset gate as 

well as for the GAG and TAG update gates. The model outputs a 

score for each POI, reflecting the probability of being the next 

POI in a user’s sequence. A summary of the CEGRU learning 

algorithm is provided below [23,26]: 

Algorithm 1: Training of CEGRU 

Input: Set of users 𝑈s and set of historical check-in sequences Su 

//construct training instances 

1. Initialize D=Usu D
u = ∅  Du is a set of check-in trajectory 

samples combined with negative POIs of 𝑢    
2. For each user 𝑢 ∈𝑈s do 

3.          For each check-in sequence Su = {st1
u , st2

u ,…, stn
u } do 

4.             Get the set of negative samples 𝑣
′
  

5.             For each check-in activity in Su do 

6.                   Compute the embedded vector vτ
u 

7.                   Compute the geographical contexts vector gτ
u 

8.                   Compute the temporal contexts vector tτ
u 

9.            End for 
10.            Add a training instance ({vτ

u , gτ
u , tτ

u },{𝑣
′
}) into Du 

11.         End for 
12. End for 

//train the model 

13. Initialize the parameter set 𝛩 
14. While (exceed(maximum number of iterations)==FALSE) do 

15.          For each user 𝑢 in 𝑈 do 

16.              Randomly select a batch of instances 𝐷𝑏
𝑢 from 𝐷𝑢  

17.              Find 𝛩 minimizing the objective (23) with 𝐷𝑏𝑢 
18.         End for 
19. End While 
20. Return the set of parameter 𝛩 

 

V. Experimental Results 

  To evaluate the effectiveness of the proposed method, 

empirical experiments were conducted on three publicly 

available LBSN datasets. These experiments were designed to 

address the following research questions corresponding to the 

challenges outlined in Section 1.1: RQ1: How can users’ 

check-in CI be effectively utilized in RM? RQ2: RQ2: How 

can the basic GRU architecture be extended to separately 

consider transition CI associated with check-in sequences for 

RM? RQ3: Does CEGRU, which incorporates multiple types 

of contextual data via two additional attention gates, improve 

POI prediction and outperform existing methods? 

   The experiments were conducted using three publicly 

available LBSN datasets: Brightkite, Gowalla, and Foursquare. 

To mitigate data sparsity and the cold-start problem, users with 

fewer than ten check-ins and POIs with fewer than ten visits 

were removed from all three datasets, following the approach 

of Manotumruksa et al. [14]. For data preprocessing, intelligent 

sampling [27] which considers the intrinsic characteristics of 

the data rather than relying on simple random sampling was 

employed. This approach ensured the inclusion of all POIs 

while maintaining their original frequency distribution and 
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prevented bias toward any particular geographical region. To 

preserve both geographical and temporal diversity and to 

reflect the true data distribution, a combination of controlled 

oversampling and undersampling was applied. Oversampling 

was used to increase the number of check-ins for users with 

fewer records, while undersampling was used to reduce the 

number of check-ins for users with excessively frequent 

activity. In this study, each check-in record is represented as 

a quadruple containing a user identifier, check-in timestamp, 

geographical coordinates, and POI (location ID). Sequential 

user trajectories were constructed based on each user's check-

in history across the three datasets. The data density for each 

dataset was computed using Equation (21) [42]: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = (|𝑐ℎ𝑒𝑐𝑘 − 𝑖𝑛𝑠|)/(|𝑢𝑠𝑒𝑟𝑠| × |𝑃𝑂𝐼𝑠|)      (21) 

 In this research, the effect of dataset density on model 

performance is investigated for the first time. This 

innovation enables the identification of an optimal density 

range for selecting appropriate datasets when evaluating the 

proposed model. To achieve this, a series of experiments was 

conducted under two experimental states. In each state, the 

dataset described in [23] was considered the main level, and 

each dataset was examined at multiple levels of variation. 

This experimental design provides a novel framework that 

can guide dataset selection in future studies. In the first 

experimental state, the number of users was kept constant 

while the number of check-ins in each dataset was adjusted 

to 50% and 150% of the main level. Table 1 presents the 

datasets selected for this state. As shown in the table, dataset 

density increases nonlinearly as the number of check-ins 

grows. A summary of the statistics for the three datasets in 

the first experimental state is provided in Table III.. 

TABLE III. Statistics of the three datasets in the First State of 

experiments 

Dataset Level% #users #check-ins #POI Density 

 

Brightkite 

50%  

915 

338361  15054 0.0245 

100% 676721  7527 0.0928 

150% 921510  3341 0.2635 

 

Gowalla 

50%  

1047 

307170  10022 0.0293 

100% 614340 5011 0.1170 

150% 921510 3341 0.2163 

 

Foursquare 

50%  

615 

54098 38490 0.0023 

100% 108195 19245 0.0091 

150% 162293 12830 0.0206 

 

   In the second experimental state, and again considering 

the dataset described in [23] as the main level, the number of 

selected users was modified to 50% and 150% of the main 

level, while keeping the number of check-ins in each dataset 

constant. Table 2 presents the datasets used in this 

experimental state. As illustrated in the table, dataset density 

decreases nonlinearly as the number of users increases. The 

statistical characteristics of the three datasets in the second 

experimental state are summarized in Table IV. 

 

TABLE IV. Statistics of the three datasets in the Second State of 

experiments 

Dataset Level% #users #check-ins #POI Density 

 

Brightkite 

50% 458  3763 0.3928 

100% 915 676721  7527 0.0982 

150% 1373  11290 0.0522 

 

Gowalla 

50% 524  2506 0.4680 

100% 1047 614340 5011 0.1170 

150% 1571  7516 0.0521 

 

Foursquare 

50% 308  9623 0.0364 

100% 615 108195 19245 0.0091 

150% 923  28868 0.0041 

 

    Figure 5 illustrates the impact of varying parameters on dataset 

density across all experimental datasets. As shown in Fig. 5(a), 

when the number of check-ins increases while the number of 

users remains constant, the density increases exponentially. 

Among the datasets, Gowalla exhibits the highest sensitivity to 

the increase in check-ins, whereas Foursquare maintains a 

relatively low density, even with higher numbers of check-ins 

ndicating a broader spatial distribution of POIs. In contrast, Fig. 

5(b) demonstrates that when the number of users increases while 

the number of check-ins remains constant, the density decreases 

nonlinearly. The density variations in Gowalla and Brightkite are 

nearly similar, while Foursquare consistently shows a lower 

density across all user levels. Following prior research [14, 15], 

the leave-one-out cross-validation approach was employed to 

evaluate the performance of the proposed CEGRU architecture. 

In this method, each user’s most recent check-in was used as the 

test instance, while 100 randomly selected POIs that the user had 

not previously visited were included as negative samples. These, 

together, formed the testing set, whereas the remaining check-ins 

were used as the training set. The CEGRU model’s objective was 

to rank the 100 candidate venues according to their likelihood of 

being the next visited POI, considering temporal, geographical, 

and contextual transition information with the actual (ground-

truth) check-in expected to rank highest. In line with 

Manotumruksa et al. [14] and Kala et al. [15], the hidden layer 

dimension ℎ𝜏and latent factor dimension 𝑑 = 10were fixed. As 

previously noted, the parameters of the recurrent layer were 

randomly initialized using a Gaussian distribution [28]. The 

Adam optimizer [43] was utilized for parameter learning, owing 

to its faster convergence compared to traditional Stochastic 

Gradient Descent (SGD), which relies on a fixed learning rate 

across iterations. To further prevent overfitting, the batch size 

was set to 256, and the dropout rate was adjusted to 0.2. 
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Fig.5. Impact of varying parameters on density    Corporation of 

the Two Experiment States 

 

    The experimental procedure was designed and conducted 

in two distinct states to analyze the impact of dataset density 

on model performancep: First state: the number of check-

ins was increased while keeping the number of users 

constant. Second state: the number of users was increased 

while keeping the number of check-ins constant. First state: 

While keeping the number of users constant, the number of 

check-ins in each dataset was varied to 50% and 150% of the 

main level. This manipulation aimed to examine how 

changes in check-in volume influence model performance. 

The training and testing accuracy@10 and loss@10 for the 

Brightkite, Gowalla, and Foursquare datasets across different 

epochs in the CEGRU model are illustrated in Fig. 6. Second 

state: In this experiment, the number of selected users was 

varied to 50% and 150% of the main level, while keeping the 

number of check-ins in each dataset constant. This setup 

aimed to analyze how user population size affects the 

model’s performance. The training and testing accuracy@10 

and loss@10 for the Brightkite, Gowalla, and Foursquare 

datasets across epochs in the CEGRU model for the second 

experimental state are presented in Fig. 7. The results 

comparing the two experimental states are presented in 

TABLE V. It should be noted that this table is provided to 

evaluate the effect of dataset density at different levels and to 

identify the optimal density for model performance. The optimal 

density of a dataset refers to the range of density values at which 

the model achieves its highest prediction accuracy, indicating the 

most effective balance between data sparsity and redundancy. 

    In recommender systems, low data density indicates that 

limited information is available for learning user preferences, 

which consequently reduces prediction accuracy. Conversely, 

excessively high data density introduces redundant information, 

resulting in only marginal improvements in accuracy. Therefore, 

identifying the optimal density, a concept first introduced in the 

pioneering experiments of this study, represents finding a 

“golden point” of data density. Beyond this range, prediction 

accuracy either declines due to data sparsity or plateaus because 

of redundant information.    As described in Section V of the 

original manuscript, in the first experimental state, and using the 

dataset from [23] as the main reference, the number of check-ins 

in each dataset was varied to 50% and 150% of the main level, 

while keeping the number of users constant. In the second 

experimental state, again considering the [23] dataset as the main 

reference, the number of selected users was adjusted to 50% and 

150% of the main level, while maintaining a constant number of 

check-ins in each dataset. 

TABLE V. The results of the comparison of two states of experiments 

Loss 

@10 

Acc 

@10 

Density Level Dataset Sate 

0.259 0.758 0.0245 50%  

Brightkite 

 

 

 

 

 

First 

0.196 0.798 0.0928 100% 

0.134 0.834 0.2635 150% 

0.238 0.727 0.0293 50%  

Gowalla 
0.199 0.741 0.1170 100% 

0.120 0.796 0.2163 150% 

0.273 0.674 0.0023 50%  

Foursquare 
0.177 0.724 0.0091 100% 

0.128 0.760 0.0206 150% 

0.127 0.824 0.3928 50%  

Brightkite 

 

 

 

 

 

Second 

0.180 0.800 0.0982 100% 

0.254 0.765 0.0522 150% 

0.139 0.791 0.4680 50%  

Gowalla 
0.177 0.775 0.1170 100% 

0.251 0.709 0.0521 150% 

0.142 0.786 0.0364 50%  

Foursquare 
0.183 0.693 0.0091 100% 

0.251 0.689 0.0041 150% 
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(a)                                                              (b)                                                              (c) 

 

 
(a)                                                             (b)                                                               (c) 

 

 
(a)                                                             (b)                                                               (c) 

Fig.6. Training and testing accuracy @10 and loss @10 for three datasets vs. epochs in the first sate of experiments and in the three levels (%L). (a) 

Brightkite Dataset; (b) Gowalla Dataset; (c) foursquare dataset. 
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(a)                                                          (b)                                                           (c) 

 
(a)                                                          (b)                                                           (c) 

 

 
(a)                                                          (b)                                                           (c) 

 

Fig.7. Training and testing accuracy @10 and loss @10 for three datasets vs. epochs in the second sate of experiments and in the three 

levels (%L). (a) Brightkite Dataset; (b) Gowalla Dataset; (c) foursquare dataset. 

 

   The comparison of the two experimental states is illustrated in 

Fig. 8. From the results, it is observed that in the first 

experimental state, across all three datasets, the highest accuracy 

was achieved at the 150% check-in level. In other words, 

increasing dataset density by raising the number of user check-

ins while keeping the number of users constant, enhances the 

performance of the proposed CEGRU model. 

   By analyzing the results from the second experimental state, it 

is observed that across all three datasets, the highest accuracy was 

achieved at the 50% user level. In other words, increasing dataset 

density by reducing the number of users while keeping the 

number of check-ins constant, improves the performance of 

the proposed CEGRU model. Based on the findings from 

both experimental states, the optimal density range for each 

dataset in the context of the proposed architecture is 

summarized in TABLE VI: 

TABLE VI. The optimal density range in each of the datasets for the CEGRU 

architecture 

Optimized Density Second 

State 

Frist 

State 

Dataset 

(0.2635,0.3928) 0.3928 0.2635 Brightkite 

(0.2163,0.4680) 0.4680 0.2163 Gowalla 

(0.0206,0.0364) 0.0364 0.0206 Foursqure 
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Fig 8. Comparison of two states of experiments 

A. Comparison Methods 
   In this section, the performance of the proposed CEGRU 

model in the next POI recommendation task is evaluated by 

comparing it with six state of the art methods. Table VII 

summarizes these methods into different aspects. Based on data, 

they are categorized into RNN-, and AM-based approaches. The 

compared models are also classified according to the use of GCI 

and TCI.  

Table VII. Summary of all the baseline methods used in this study 

Methods 

Approaches and Contextual 

Information 

RNN AM GCI TCI 

STGN [30] √ × √ √ 

LLRec [38] √ √ √ √ 

Flashback [40] √ × √ √ 

GeoSAN [43] × √ √ √ 

DRCF [44] √ × × × 

CARA [14] √ √ √ √ 

CEGRU √ √ √ √ 

Note. RNN: Recurrent neural network; AM: Attention mechanism; GCI: 

Geographical contextual information; TCI: Temporal contextual 

information; STGN: Spatiotemporal gated network; LLRec: Light 

Location Recommender System; Flashback; DRCF: Deep Recurrent 

Collaborative Filtering; CARA: Contextual attention recurrent 

architecture; CEGRU: Contextual extended gated recurrent unit. 

A brief description of these models is given below: 

     STGN: The Spatiotemporal Gated Network (STGN), 

proposed by Zhao et al. [30], enhances the traditional LSTM 

model by incorporating spatiotemporal gates (STGs) to 

capture the spatiotemporal relationships between successive 

check-ins. By introducing additional gates and memory cells 

to model both short- and long-term user preferences, STGN 

effectively extends the basic LSTM architecture for 

improved next POI prediction. 

     LLRec: Wang et al. [38] proposed LLRec, a model designed 

to capture long-term and short-term user preferences, as well as 

the textual features of POIs and the complex dependencies 

among user preferences. The model leverages embedding 

layers, recurrent components, and an attention mechanism to 

effectively integrate these factors for improved next POI 

recommendation. 

     Flashback: Yang et al. [40] proposed Flashback, a model 

designed to handle sparse user mobility data by performing 

flashbacks on the hidden states of RNNs. The model 

computes a weighted average of historical hidden states to 

more effectively capture spatiotemporal dependencies and 

improve the accuracy of next POI prediction. 

     GeoSAN: Lian et al. [43] proposed GeoSAN, which 

addresses the data sparsity problem by introducing a novel loss 

function. The model represents the hierarchical gridding of 

each GPS point and employs a self-attention-based geography 

encoder to effectively capture and utilize geographical 

information for improved next POI prediction.  

    DRCF: Manotumruksa et al. [44] proposed DRCF, 

which extends NeuMF to leverage traditional RNNs for 

modeling the sequential order of users’ check-ins. The 

model consists of two components, each containing its 

own recurrent layer, to capture both user preferences and 

sequential dependencies for next POI recommendation.  

     CARA: CARA: Manotumruksa et al. [14] proposed 

the Contextual Attention Recurrent Architecture 

(CARA), a model designed to capture users’ dynamic 

preferences by integrating feedback sequences with the 

CI associated with those sequences. This approach 

enables a more accurate modeling of user behavior in next 

POI recommendation tasks. 

   To evaluate the performance of the aforementioned 

methods, we used the recall metric (Acc@k, k = 10), 

which measures whether the ground-truth POI appears in 

the top-k recommended list. The general definition of 
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Acc@k is provided in Eq. (22) [3]. 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                      (22) 

  In the above equations, the terms TP, FP, TN, and FN are 

defined as follows:  

 TP or true positive detection (in reality it is correct 

and correctly predicted)  

 FP or false positive detection (in reality it is 

incorrect but incorrectly predicted correctly)  

 TN or true negative detection (in reality it is 

incorrect and correctly predicted incorrectly)  

 FN or false negative detection (in reality it is correct 

but incorrectly predicted incorrectly) 

  Generalizing the above definitions for evaluating user location 

prediction models in recommender systems, we obtain:  

 TP, the number of predicted next POI that is 

actually present in the user's location recording 

sequence.  

 FP, the number of predicted next POI that is 

actually not present in the user's location recording 

sequence.  

 TN. the number of unpredicted next POI that is 

actually not present in the user's location recording 

sequence.  

 FN. the number of unpredicted next POI that is 

actually present in the user's location recording 

sequence.  

   Since the output of the proposed CEGRU architecture is a 

ranking model, the evaluation criteria from Eq. (22) can be 

generalized to assess the model’s performance in top-K 

prediction recommendations as follows:     

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦@𝑘 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
      (22) 

 

B. Results and Discussion 

   TABLE VIII presents a comparison of the recommendation 

performance of six methods across the three datasets. Bolded 

numbers in each column indicate the best-performing results. 

The results of the two experimental states are denoted as 

CEGRU-1 and CEGRU-2, corresponding to increasing the 

number of check-ins while keeping the number of users 

constant and increasing the number of users while keeping 

the number of check-ins constant, respectively. 

 

 

 

 

 

 

 

 

 

TABLE VIII. A comparison between different methods for 

recommendation performance 

Methods 
                       Acc@10 

Brightkite Gowalla Foursquare 

STGN 0.2020 0.5231 0.3017 

LLRec - 0.3874 0. 3542 

Flashback - 0.3472 0.6236 

GeoSAN 0.6425 0.6028 0.4867 

DRCF 0.7363 - 0.8805 

CARA 0.7385 - 0.8851 

CEGRU-1 0.8340 0.7960 0.7600 

CEGRU-2 0.8240 0.7910 0.7860 

   The experimental results indicate that methods that do not 

employ recurrent models and do not account for the 

temporal and geographical contextual information of users’ 

movement trajectories separately exhibit reduced prediction 

accuracy in recommender systems.   

  Although the STGN model separately incorporates 

geographical contextual information (GCI) and temporal 

contextual information (TCI), it does not employ an attention 

mechanism to adaptively weight these contextual factors. 

Moreover, its reliance on an LSTM-based architecture limits 

its ability to capture fine-grained sequential dynamics, 

resulting in lower prediction accuracy compared to GRU-

based models such as CARA and the proposed CEGRU. The 

LLRec model accounts for both long-term and short-term 

user preferences through embedding representations, a 

recurrent component based on an RNN architecture, and an 

attention mechanism. However, it does not explicitly model 

temporal intervals and geographical distances as independent 

contextual signals within users’ movement trajectories, which 

constrains its effectiveness in handling irregular 

spatiotemporal patterns. In addition, models built upon 

traditional RNN architectures often suffer from degraded 

performance when modeling long user check-in sequences 

due to vanishing gradient issues, limiting their ability to 

capture long-range dependencies. Similarly, the Flashback 

model leverages an RNN architecture and aggregates 

historical hidden states using a weighted mechanism to model 

spatiotemporal effects. Nevertheless, like LLRec, it lacks 

explicit modeling of spatial distances and temporal gaps 

between consecutive check-ins, leading to inferior 

performance compared to GRU-based approaches. GeoSAN 

employs a self-attention mechanism for POI recommendation 

and incorporates geographical–temporal contextual 

information (GTCI). Despite this, its performance remains 

lower than that of DRCF and CARA, as it primarily focuses 

on modeling spatial relationships among locations and does 

not sufficiently capture sequential transition dynamics in user 

trajectories. The DRCF model improves upon STGN by 

employing a recurrent architecture to model sequences of 

previously visited venues, thereby achieving higher 

prediction accuracy. However, it does not explicitly 

incorporate contextual information associated with individual 

check-ins, such as temporal intervals and geographical 

distances. This observation highlights that a strong sequential 

modeling architecture alone is insufficient; explicit 

integration of rich spatiotemporal contextual information is 

essential for accurate next POI recommendation. The CARA 

model further improves prediction performance by separately 

incorporating TCI and GCI and by jointly leveraging 
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recurrent and attention mechanisms. Although this model 

demonstrates superior performance compared to other models, it 

incurs additional computational overhead due to the 

incorporation of a time-stamp attention gate. Building upon this 

idea, the proposed CEGRU model introduces a novel architecture 

that embeds two attention gates within the GRU framework to 

more effectively capture spatiotemporal transition dynamics. 

Specifically, the Temporal Attention Gate (TAG) and the 

Geographical Attention Gate (GAG) explicitly model time 

intervals and geographical distances between successive check-

ins. The outputs of these gates independently influence the reset 

and update gates of the GRU, enabling CEGRU to adaptively 

handle irregular user mobility patterns and thereby achieve 

superior predictive performance. Overall, due to the adoption 

of the GRU architecture and the explicit modeling of 

heterogeneous spatiotemporal contextual factors through dual 

attention gates, the proposed CEGRU model consistently 

outperforms models based on traditional RNNs (e.g., LLRec, 

Flashback, and DRCF), as well as approaches relying 

primarily on recurrent architectures without adaptive 

contextual weighting (e.g., STGN) or attention mechanisms 

alone (e.g., GeoSAN). As shown in Fig. 9, experimental 

results demonstrate that this design improves prediction 

accuracy, confirming the effectiveness of the CEGRU 

architecture. 

 

 

Fig. 9. A comparison between CEGRU and the baseline methods for Accuracy@10 on Brightkite, Gowalla and Foursquare datasets. 

    In response to RQ1, it can be stated that location prediction 

in LBSNs is a key application of RM. The CI of users’ 

movement trajectories in LBSNs, including temporal and 

geographical data, provides valuable input for predicting 

movement patterns. By collecting and feeding this information 

into deep recurrent neural network models, it can be effectively 

utilized for RM tasks. To address RQ2, two attention gates were 

implemented as a feed-forward network to extend the GRU 

model. The outputs of these gates influence the GRU’s reset and 

update gates, controlling the impact of users’ GTCI in modeling 

their trajectory data. Regarding RQ3, the effectiveness of the 

proposed CEGRU model was evaluated by comparing its 

Accuracy@10 in the first and second experimental states 

against existing architectures, as shown in Fig. 10. The results 

indicate that CEGRU achieves higher accuracy than competing 

models on the Brightkite and Gowalla datasets. In the 

Foursquare dataset, however, due to its low density and high 

POI diversity, CEGRU’s accuracy is 11.2% lower than CARA 

and 10.7% lower than DRCF, exhibiting a different behavior. 

Overall, the CEGRU model demonstrates an average 

improvement of 64.6% compared to the baseline methods.  

   From a computational perspective, the proposed CEGRU 

model maintains a complexity comparable to standard GRU 

and LSTM architectures. Similar to GRU, the dominant 

computational cost per time step arises from matrix 

multiplications associated with hidden state updates, 

resulting in a time complexity of O(dh • di + dh²), where dh 

and di denote the hidden and input dimensions, 

respectively[45].  CEGRU introduces two lightweight 

attention gates that operate on scalar spatiotemporal 

transition features, namely the geographical distance and 

time interval between consecutive check-ins. The additional 

computations introduced by these gates are linear with 

respect to the hidden dimension and therefore add only a 

modest constant factor overhead without changing the 

asymptotic complexity. As a result, CEGRU achieves 

improved predictive performance while preserving 

computational efficiency comparable to GRU/LSTM based 

models . 

   From a Reality Mining (RM) perspective, the proposed 

CEGRU model serves as a computational framework for 

extracting latent spatiotemporal behavioral patterns from 

real world human mobility data. By modeling temporal 

intervals and geographical distances through dual attention 
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gates embedded within a GRU architecture, CEGRU 

effectively captures irregular and personalized mobility 

behaviors reflected in user check-in sequences.   

   It is important to note that prior RM studies typically focus on 

sensor based or communication data and adopt different 

experimental settings and evaluation metrics. In contrast, this 

work represents one of the first attempts to apply recurrent 

neural architectures to Reality Mining using large scale LBSN 

datasets. Despite these differences, the experimental results 

validate that the proposed model successfully mines meaningful 

behavioral regularities, thereby reinforcing the central role of 

Reality Mining in this study. 

 

VI.Conclusion 

       RM seeks to uncover predictable behavioral patterns by 

collecting and analyzing machine-sensed ambient data 

related to human social interactions. With the increasing 

availability of large scale LBSN data, user check-ins has 

emerged as an important source of real world behavioral 

traces that reflect human mobility and activity patterns. In 

recent years, next location prediction has become 

increasingly important for a wide range of LBSN 

applications. GTCI plays a critical role in assessing 

individual activities for personalized POI recommendation.

 

 
Fig. 10. Percentage of Improvement of CEGRU 

Despite the relevance of contextual information obtained 

from users’ trajectory data in LBSNs, such information has 

not been fully explored within the Reality Mining 

framework.  To address the limitations of previous studies, 

this research proposed a novel CEGRU model for location 

prediction in Reality Mining using check-in data from 

LBSNs. The proposed architecture extends the standard 

GRU by separately incorporating geographical and temporal 

contextual information extracted from user check-ins. 

Inspired by attention mechanisms, two additional contextual 

attention gates are introduced to explicitly emphasize the 

impact of temporal intervals and geographical distances 

when modeling sequential user behavior. POIs are ranked for 

recommendation based on users’ prior check-ins. In 

particular, the explicit modeling of heterogeneous 

spatiotemporal contextual factors for Reality Mining 

applications constitutes a key novelty of the proposed 

CEGRU architecture.  The value of independently evaluating 

contextual information is evident from the comparison with 

baseline techniques. The proposed CEGRU architecture, 

enhanced with two contextual attention gates, demonstrated 

superior performance in next-location prediction and POI 

recommendation tasks. Extensive experiments on three 

large-scale LBSN datasets, including Gowalla, Brightkite, 

and Foursquare, showed that CEGRU consistently 

outperformed contemporary recurrent and attention-based 

models.  Moreover, this study is among the first to 

systematically investigate the impact of dataset density 

on model performance in a RM setting by conducting 

experiments under two different density states. These 

experiments identify an optimal density range for each 

dataset, providing practical guidance for future Reality 

Mining research when selecting datasets for model 

evaluation. From a broader perspective, this work 

demonstrates that recurrent neural architectures equipped 

with explicit spatiotemporal contextual attention 

mechanisms provide an effective framework for mining 

latent human mobility patterns from real world social 

sensing data.  In future work, the CEGRU architecture 

could be extended to incorporate social relationships 

among users in LBSNs, enabling more comprehensive 

RM analyses. Additionally, richer contextual 

information, such as textual and visual data from check-

ins or environmental factors like weather, could be 

integrated to further enhance prediction accuracy and 

broaden the applicability of RM research. 
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Appendix A 

1-Realituy Mining (RM) 

2-Location Based Social Network (LBSN) 

3- Contextual Information (CI) 

4- Point of Interest (POI) 

5- Contextual Extended Gated Recurrent Unit (CEGRU) 

6- Attention Mechanism (AM) 

7- Collaboration Filtering (CF) 

8- Geographical Contextual Attention Gate (GAG) 

9- Temporal Contextual Attention Gate (TAG) 

10- Machine Learning (ML) 

11-Deep Learning (DL) 

12- Recurrent Neural Network (RNN) 

13- Global Positioning System (GPS) 
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