
Copyright © Author(s).

Publisher: Islamic Azad University – Zanjan Branch

J IMPCS (2025) 21: 59-66

 DOI 10.71856/IMPCS.2025.1218351

A Time and Space-Efficient Compositional Method for Data Flow

Analysis

Ebrahim Fazli*

Assistant Professor, Department of Computer Engineering, Za.C., Islamic Azad University, Zanjan, Iran.

*Corresponding Author, efazli@iau.ac.ir

Article Info ABSTRACT

Article history:

Received: 30 Jun 2025

Accepted: 11 Aug 2025

Keywords:

Data flow analysis,

Fault detection,

Static program analysis.

This paper investigates the problem of static data flow analysis, which is an important

problem in program comprehension, optimization, and bug detection. However, its

application to large-scale, real-world software often faces significant challenges related

to computational time and memory consumption, particularly for programs exhibiting

extremely large Npath complexities. Existing approaches frequently struggle to scale

efficiently while maintaining precision. To address this deficiency, we propose a novel

compositional method for classical data flow analyses, specifically focusing on Available

Expressions, Very Busy Expressions, Reaching Definitions, and Live Variables. Our

approach leverages the decomposition of the Control Flow Graph into its Strongly

Connected Components (SCCs), employing a divide-and-conquer strategy that analyzes

smaller, more manageable program corpora. A key innovation is the Two-level Set

Accessing Method (TSAM), a non-contiguous, pointer-based data structure that

significantly reduces memory overhead for storing the dynamic data flow information.

We prove that our algorithm, which utilizes a queueing mechanism for fixed-point

computation, eventually terminates while achieving the same level of precision as

traditional, exhaustive global analyses. Our extensive experimental evaluation against

the traditional iterative method demonstrates that the SCC-based method, coupled with

TSAM, significantly outperforms existing techniques, consuming on average 53% less

memory and utilizing 43% less processing time, particularly for programs with high

Npath complexity. This work provides a practical and scalable solution for precise data

flow analysis of complex software systems.

Research Paper

https://sanad.iau.ir/Journal/impcs/Article/1218351
mailto:efazli@iau.ac.ir

60 A Time and Space-Efficient Compositional Method for Data Flow Analysis lE.Fazli

I. Introduction

Program analysis plays a critical role in modern software

engineering, enabling tasks ranging from compiler

optimizations and performance tuning to automated

vulnerability detection and software quality assurance. Static

data flow analysis (DFA), in particular, provides a

systematic way to gather information about the possible

values of variables, the availability of expressions, or the

liveness of data at different program points without

executing the code. Classical data flow problems such as

Available Expressions (AE), Very Busy Expressions (VBE),

Reaching Definitions (RD), and Live Variables (LV) form

the foundational bedrock for many advanced analyses.

Despite their fundamental importance, applying these

classical DFA techniques to industrial-scale software

projects presents formidable challenges. Modern codebases

can contain millions of lines of code, intricate control flow,

and complex interprocedural dependencies. A significant

bottleneck arises from programs characterized by extremely

large Npath complexities, where the sheer number of

possible execution paths makes exhaustive analysis

computationally intractable. Traditional iterative algorithms,

while precise, often suffer from prohibitively high time and

space complexity, rendering them impractical for large-scale

applications. The need for scalable yet precise static analysis

methods remains a pressing concern in the field.

This paper introduces a novel time and space-efficient

compositional method for data flow analysis designed to

overcome these scalability limitations. Our approach is

grounded in the principle of divide-and-conquer, achieved

through the decomposition of the program's Control Flow

Graph (CFG) into its Strongly Connected Components

(SCCs). By breaking down the analysis into smaller, self-

contained SCCs and then composing their results, we can

efficiently analyze complex program structures that would

otherwise overwhelm conventional methods. This SCC-

based strategy allows each phase of the analysis to work on

a small corpus of the program under analysis, leading to

significant practical benefits.

Contributions : The major contributions of this paper

are multi-fold : First, we present a novel high-performance

SCC-based compositional framework for performing AE,

VBE, RD, and LV analyses by efficiently identifying,

analyzing, and merging information across program SCCs.

This approach ensures that each phase of the analysis

operates on a significantly smaller corpus, leading to

substantial performance gains. Second, we introduce Three-

level Set Accessing Method (TSAM). It is a novel pointer-

based, non-contiguous memory allocation data structure

specifically designed to efficiently store and manage the

dynamic sets of data flow information associated with

program points. TSAM significantly mitigates the high

space cost traditionally associated with storing abundant

intermediate data flow facts, especially in large CFGs. Third,

through extensive experimentation on a suite of benchmark

programs, we demonstrate that our SCC-based

compositional method, powered by TSAM, consistently

outperforms the traditional iterative method in terms of both

processing time and memory consumption. Our method

achieves the same level of precision as traditional global

analyses while demonstrating superior scalability for

programs with extremely large Npath complexities. We

show average reductions in memory consumption of 53%

and processing time reductions of 64% compared to the

iterative method.

Organization: Section II defines some basic concepts.

Section III states the DFA problem. Subsequently, Section

IV presents data structures as well as TSAM method of

memory allocation. Section V offers a vertex-based

algorithm for DFA generation. Section VI puts forward a

highly time and space-efficient SCC-based method for DFA.

Section VII presents our experimental results. Section VIII

discusses related work. Finally, Section 8 makes concluding

remarks and discusses future extensions of this work.

II. Preliminaries

This section presents some graph-theoretic concepts that

we utilize throughout this paper. A directed graph G = (V, A)

includes a set of vertices V and a set of arcs (vi, vj) ∈ E, where

vi, vj ∈V. A vertex vj is reachable from another vertex vi iff

(if and only if) there is a simple path that emanates from vi

and terminates at vj. A SCC in G is a sub-graph G′ = (V′,A′),

where V′ ⊆ V and A′ ⊆ A, and for any pair of vertices vi,vj ∈

V′, vi and vj are reachable from each other. Tarjan [1]

presents a polynomial-time algorithm that finds the SCCs of

the input graph and constructs its component graph. Each

vertex of the input graph appears in exactly one of the SCCs.

The result is a Directed Acyclic Graph (DAG) whose every

vertex is an SCC. A Control Flow Graph (CFG) models the

flow of execution control between the basic blocks in a

program, where a basic block is a collection of program

statements without any conditional or unconditional jumps.

Each vertex v ∈ V corresponds to a basic block. Each

edge/arc e = (vi, vj) ∈ E corresponds to a possible transfer of

control from block vi to block vj. A CFG often has a start

vertex that captures the block of statement starting with the

first instruction of the program, and has some end vertices

representing the blocks of statements that end in a

halt/exit/return instruction. (We use the terms ‘arc ’and

‘edge ’interchangeably throughout this paper.) Figure 1

illustrates an example method as well as its corresponding

CFG for a class in the Apache Commons library.

Function Foo (a, b) {

1: var x = a + b;

2: var y = a * b;

3: while (y > a + b) {

4: a = a + 1;

5: x = x + b;

 } // while

} //Foo

61 A Time and Space-Efficient Compositional Method for Data Flow Analysis lE.Fazli

(a) Source code example (b) CFG for function Foo

FIGURE 1. example function and corresponding CFG

Definition 1 (Component Graph of CFGs): The component

graph of a CFG G = (V, A), called CCFG, is a DAG whose

vertices are the SCCs of G, and any arc (vi, vj) ∈ A starts in

an SCCi and ends in SCCj.

In the following definitions, let G = (V, A) be a CFG and

C = (Vc, Ac) be an SCC in the CCFG of G; i.e., C is a vertex

in CCFG of G.

Definition 2 (SccEntryVertex): A vertex ve ∈ Vc is an

SccEntryVertex of C iff ∃v : v ∈ V ∧v∉ Vc : (v,ve) ∈ A. (e.g.,

Vertex 3 in Fig 1(b)).

Definition 3 (SccExitVertex): A vertex ve ∈ Vc is an

SccExitVertex of C iff ∃v : v ∈ V ∧ v ∉ Vc: (ve,v) ∈ A. (e.g.,

Vertex 3 in Fig 1(b)).

III. Problem Statement

The primary goal of DFA is to determine how data flows

through a program, enabling optimizations and the detection

of potential errors. Static analysis of CFGs related to real

world programs with a large Npath complexity is an

important problem in compilers and program analysis tools

to gather information about the possible states of a program

at various points during its execution. To compute analysis

state at each program point, DFA finds a fixed-point solution

to a system of data flow equations derived from all

components. For each vertex v, we seek to compute

v.entrySet (information before v) and v.exitSet (information

after v). DFA problem can be formulated as follows:

Problem 1 (DFA Generation):

Input:
1. A graph G = (V, E) that represents the CFG of a given

program, a start vertex s∈V and an end vertex e∈V.

2. Dataflow Framework Definition: The formal

specification of the particular data flow problem,

comprising:
a. Lattice of Dataflow Facts (L, ⊑, ⊓ / ⊔, ⊤, ⊥): The

set of all possible data flow information at any

program point, along with a partial order and a

meet/join operator to combine information.

b. Transfer Functions (fn): For each vertex v∈V, a

function fn :L→L that describes how the data flow

information are transformed when control passes

through that vertex.

c. Boundary Condition: The initial data flow

information at the program's entry vertex (for

forward problems) or exit vertex (for backward

problems).

Output:
For each vertex v∈V in the input CFG, the desired output

is a pair of data flow information sets:

1. v.entrySet (vIN): The data flow information that are true

immediately before the execution of vertex v.

2. v.exitSet(vOUT): The data flow information that are true

immediately after the execution of vertex v.

These sets must represent the Least Fixed Point (LFP)

solution to the system of data flow equations defined by the

problem's lattice, transfer functions, and boundary

conditions.

IV. Data Structures

In this section, we present a data structure for storing

the input CFG (Section 4.1), and a novel memory

allocation method called TSAM (Section 4.2) for storing

the generated DFAs.

IV.I. CFG Data Structure
A matrix is usually stored as a two-dimensional array in

memory. Memory requirements of a sparse matrix can be

significantly reduced by maintaining only non-zero entries.

Based on the number and distribution of non-zero entries, we

can use different data structures. The Compressed Sparse

Row (CSR, CRS or Yale format) [8] represents a matrix by

a one-dimensional array that supports efficient access and

matrix operations. We employ the CSR data structure to

maintain a directed graph, where vertices of the graph

receive unique IDs in {0, 1, · · ·, |V| − 1}. To represent a

graph in CSR format, we store end vertices and start vertices

of arcs in two separate arrays EndV and StartV respectively

(Figure 2). Each entry in EndV points to the starting index of

its adjacency list in array StartV. For example, Figure 2

illustrates the CSR representation of the graph of Figure 1(b).

Since the proposed algorithm computes all DFAs ending in

each vertex v ∈ V, maintaining the predecessor vertices is of

particular importance. In CSR data structure, first the vertex

itself and then its predecessor vertices are stored.

Fig. 2. CSR graph representation

IV.II. Two-level Set Accessing Method
A significant challenge in scaling data flow analysis to

large programs is the immense memory footprint required to

store the evolving sets of data flow information at every

program point. For a large CFG, the number of such

information sets (e.g., vIN and vOUT for every vertex v) could

be enormous, which would incur a significant space cost on

the algorithm. To reduce this space complexity, we introduce

the Two-level Set Accessing Method (TSAM), a novel

pointer-based, non-contiguous memory allocation data

structure specifically designed for efficient storage and

access of data flow sets.

62 A Time and Space-Efficient Compositional Method for Data Flow Analysis lE.Fazli

Fig. 3. Two-level Set Accessing Method (TSAM)

TSAM is an extension of the TPAM data structure from

our previous work [12]. While TPAM was suitable for

storing intermediate partial paths, TSAM has been

specifically adapted and optimized to handle the dynamic

and update-intensive nature of data flow sets (such as AE or

LV) required by classical data flow analyses. This distinction

is critical as data flow analysis involves frequent

modifications, unions, and intersections of sets of facts,

which differs fundamentally from the primarily sequential

storage and retrieval of path segments.

TSAM is organized hierarchically into two levels,

leveraging linked lists for flexibility and memory efficiency:

Level 1 (Address Table): This serves as the primary access

mechanism. It is an address table (e.g., an array of pointers)

with a length of 2∣V∣ in the input CFG. For each vertex v ,

there are two pointers from Level 1 lead to its dedicated

Level 2 structures.

Level 2 (Actual Set Contents): This level consists of two

linked lists for each vertex (e.g., for its vIN and vOUT). This is

where the actual data flow information sets reside. Each node

within these lists represents a data flow fact (e.g., an

expression, a variable, or a definition). For instance {a+b, a-

b} is the AE at the entry point of statement 1, and {a+b} is

the AE at exit point of statement 1(Figure 2).

TSAM achieves significant memory efficiency through

several key mechanisms:

Non-Contiguous Allocation and Sparsity: By utilizing a

pointer-based, non-contiguous memory allocation strategy

TSAM only allocates memory precisely as needed for the

actual data flow facts and their pointer-based

organization. This inherently exploits the common

sparsity observed in data flow sets, where many sets might

be empty or contain only a few elements. Unlike fixed-size

representations (e.g., large bitsets) that must pre-allocate

space for the entire universe of possible facts for every

program point, TSAM avoids this overhead by dynamically

sizing its linked lists. If an Entry Set or ExitList is empty, its

corresponding structure in Level 2 might be minimal or even

a null pointer, further conserving memory.

Set Canonicalization/Sharing: The pointer-based nature of

TSAM, which points to Level 2 content, creates a strong

opportunity for set canonicalization (or hash-consing). If

multiple vi EntryLists or vi ExitLists contain identical sets

of information (e.g., the exact same set of "available

expressions"), TSAM can store that set content once in Level

2. Multiple pointers from Level 1 can then reference this

single canonical instance in Level 2, thereby avoiding

redundant storage and significantly reducing overall

memory consumption, especially when common data flow

states recur across the CFG. This approach involves hashing

set contents to identify duplicates and managing a pool of

unique sets in Level 2.

Efficient Set Operations: TSAM needed to support rapid

set union (∪), intersection (∩), and difference (−) operations.

This was achieved by optimizing linked list traversals and,

implicitly, by leveraging the canonicalization of sets in Level

2. When performing a set operation (e.g., S1 ∪ S2), the

result Snew would be computed and then checked against the

canonicalized sets in Level 2. If Snew already exists, a

pointer to the existing instance is returned; otherwise, Snew

is added to Level 2 and becomes a new canonical instance.

Dynamic Insertion and Deletion: Facts are not just

accumulated; they are added and removed as information

propagates and converges. The linked list implementation in

Level 2 is inherently well-suited for dynamic insertion and

deletion of individual facts compared to fixed-size arrays.

Dynamic Nature of Sets: The content of data flow sets

changes frequently during the iterative fixed-point

computation. TSAM's pointer-based approach allows for

efficient updates: when a set's content changes, a new

canonical set might be generated in Level 2, and the

corresponding pointer in Level 2 is updated to point to this

new set member. Old, unreferenced sets can then be garbage

collected.

V. Vertex-Based Algorithm for DFA

This section presents a time-efficient algorithm (i.e., a

solution for Problem 1) that takes a digraph G(V,A)

(representing the CFG of a program) and a start vertex s∈V,

and then computes two sets vIN and vOUT for each vertex v in

the given CFG. Initially, the mentioned two sets are empty,

and the start vertex s and its immediate successors are

inserted in a queue Q. Algorithm 1 performs two kinds of

processing on vi: (1) computing data flow facts at the entry

point of vi (Lines 6 to 10), and (2) generating data flow facts

at the exit point of vi (Lines 12 to 14). Each vertex vi

undergoes these processing steps after extraction from Q

(Line 2). Algorithm 1 then propagates the wave of updates

to the successors of vi by inserting them in Q (Lines 15 to

17).

Algorithm 1 Vertex-Based DFA Generation // AE analysis

Input: G(V , A) with an outdegree 2; Start vertex s ∈ V ; End vertex

E

Output: For each vertex v∈V in the input CFG, v.EntrySet,
v.ExitSet.

Initialize: ∀vi ∈ V , vi.IN = vi.OUT = empty, vi.updateFlag = false,

and queue Q with s.

1. while (Q is non-empty) do

2. Extract vi from Q;

3. vi.updateFlag = false;

4. if vi =s then

5. Insert the immediate successors of vi in Q;

6. for each vj where (vj, vi) ∈ A do

7. for each entry e ∈ vj.OUT do

8. if e is not read by vi then

9. Oj = Oj ∪ e;

10. for each vj where (vj, vi) ∈ A do

11. vi.INtemp = ∩ Oj;

63 A Time and Space-Efficient Compositional Method for Data Flow Analysis lE.Fazli

12. if vi.INtemp <> vi.IN then

13. vi.IN = vi.INtemp;

14. vi.OUT = vi.IN \ kill(vi) ∪ gen(vi) ;

15. vi.updateFlag = true;

16. if vi.updateFlag = true then

17. for each vk where (vi,vk) ∈ A do

18. Insert vk in Q;

19. for each vi ∈V do

20. return vi.IN;

21. return vi.OUT;

Lemma 1: Let (vj, vi) be an arc in A and e be an entry in in

vj.OUT. The condition of the if statement on Line 8 evaluates

to true for e and vi no more than once. That is, each entry e

∈ vj.OUT is read by vi at most once.

proof 1: Suppose Algorithm 1 has already entered the if

statement on Line 8 for some e and vi. This means that e has

been labeled as read by vi. Thus, next time Algorithm 1 gets

to check if e is read by vi, the condition on Line 8 evaluates

to false.

Lemma 2: For any vertex vj that has an outgoing arc (vj, vi),

each entry e ∈ vj.OUT will eventually be labeled read by vj.

proof 2: Initially, vj.OUT for each vj ∈ V is empty. The for-

loop in Line 6 iterates through all incoming arcs of each

vertex vi ∈ V and will eventually get to (vi , vi). As a result,

any entry e ∈ vj.OUT will be labeled on Line 9 because

initially all lists are empty. If new entry are imported in

vj.OUT from its predecessors in subsequent iterations of the

algorithm, then such entry will be labeled as read by vi.

Lemma 3: For each vertex vi ∈ V, at some finite point in

time, vi.updateFlag will become false and will remain false.

proof 3: Lemmas 1 and 2 imply that all entries in the

predecessors of vi will eventually be labeled as read by vi,

and will keep their status of being read. As such, the

condition on Line 8 will never become true again when

processing arc (vi, vi). Therefore, Algorithm 1 will no longer

get to Line 15; i.e., vi.updateFlag will become false (on Line

3) and will never become true again.

Theorem 1: Algorithm 1 will eventually terminate.

proof 4: Lemma 3 implies that at some finite point in time,

the condition in Line 16 will become false for each vi ∈ V

and will remain false. Thus, Algorithm 1 will eventually stop

inserting vertices in Q. Moreover, the remaining vertices in

Q are extracted on Line 2 in subsequent iterations of the

while-loop. Thus, Q will eventually become empty; i.e.,

Algorithm 1 exits the while loop.

VI. Proposed Method

Our proposed compositional method for data flow analysis

leverages a systematic decomposition of the input Control

Flow Graph (CFG) into its Strongly Connected Components

(SCCs), followed by a structured analysis and merging

process. This divide-and-conquer paradigm is central to

achieving high levels of time and space efficiency,

particularly for programs with complex control flow

structures and extremely large Npath complexities. For each

vertex vi ∈V in the CFG, our analysis maintains two critical

sets of information: vi.EntrySet to record all incoming data

flow information and vi.ExitSet to record all outgoing

information. Depending on the analysis direction (e.g.,

forwarding analysis for RD or AE), the ExitSet of a vertex is

computed based on its EntrySet and the transfer function of

the statement within that vertex. For reaching a fixed point

and finalizing the analysis, the proposed method uses a

queueing mechanism. We formally prove that this algorithm

eventually terminates while guaranteeing the same level of

precision as traditional, exhaustive global analyses.

The overall compositional analysis proceeds in three main

phases:

Component Graph Computation: The initial step involves

efficiently computing the component graph of the input

CFG. This process transforms the CFG into a Directed

Acyclic Graph (DAG) where each node represents an SCC.

This decomposition is crucial for establishing an efficient

processing order, as SCCs can be analyzed in topological

order within the component DAG.

SCC-Local Information Calculation: For each SCC in the

component graph, we calculate the sets of data flow

information associated with its internal vertices. Since each

SCC represents a smaller, self-contained portion of the

program's control flow (often containing loops or recursion),

traditional iterative data flow algorithms can be applied

efficiently within these local contexts. The reduced size of

the analysis domain within each SCC significantly improves

performance.

FIGURE 4. Overview of compositional method for DFA

Global Information Generation and Merging: Finally, the

results from individual SCCs are systematically merged and

propagated through the component graph to generate the

final sets of data flow information for the entire CFG. This

merging process respects the dependencies between SCCs,

ensuring that global precision is maintained and that

information flows correctly across SCC boundaries.

64 A Time and Space-Efficient Compositional Method for Data Flow Analysis lE.Fazli

VII. Experimental Results

This section presents the results of our experimental

evaluations of the proposed SCC-based method for DFA

compared to the iterative Vertex-based approach. To validate

the effectiveness and efficiency of our proposed SCC-based

compositional method, we implemented our approach and

conducted a comprehensive experimental evaluation. We

compared its performance against the traditional iterative

method, which represents a common state-of-the-art baseline

for precision in static data flow analysis.

TABLE 1. Modified benchmark CFGs

The experimental benchmark consists of a set of ten

modified CFGs from [13] (which are taken from Apache
Commons libraries. Table 1 presents the structure of these

CFGs. Columns 3 to 9 of Table 2 provide the number of

nodes, edges, and SCCs of each CFG. The total numbers of

nodes and edges of all SCCs are mentioned as SccNodes and

SccEdges, respectively. Columns 7 and 8 show the

Cyclomatic Complexity (CC) [14] and Npath Complexity

[15] of the input CFGs. The last column illustrates the

number of prime paths produced with the GPU-based

method. We compare the SCC-based and the Vertex-based

approaches with respect to their running time. We ran all the

experiments on an Intel Core i7 machine with 3.6GHz X 8

processors and 16 GB of memory running Ubuntu 17.01 with

gcc version 5.4.1.

FIGURE 5. Time costs of the vertex-based and SCC-

based algorithms on the benchmarks CFGs.

The bar graph of Figure 5 illustrates the time efficiencies

of the SCC-based and Vertex-based approaches. (The

reported timings for each approach is the average of fifteen

runs.) These values reflect the fact that the time the SCC-

based method is more effective for larger CFGs.

Specifically, for the CFGs of the bottom four rows of Table

1. On average, the SCC-based method consumed 43% less

time than the iterative Vertex-based method. This time

efficiency increases significantly with growing graph size.

For example, the SCC-based time efficiency in the last graph

is 65%. The recorded times indicate that by increasing the

structural complexity, the SCC-based algorithm provides a

better performance. Thus, for real-world applications that

have a large number of lines and complex structures, the

SCC-based algorithm is expected to be highly efficient.

VIII. Related Works

This section discusses related works on the DFA. Static

DFA has been an active area of research for decades, with

numerous iterative and compositional approaches developed

to address the inherent challenges of program complexity

and scalability. The theoretical foundations for DFA were

largely established by Kildall's seminal work, which

introduced the lattice-theoretic framework and the

traditional iterative method for computing fixed points [2].

This iterative approach, which repeatedly propagates data

flow information until convergence over the entire CFG,

serves as a common baseline for precision for classical

problems such as RD, LV, AE, and VBE [3].

However, the scalability of the traditional iterative method

often becomes a significant bottleneck for large and complex

real-world programs [5]. Factors contributing to this include

the number of iterations required for convergence,

particularly in the presence of complex loops or irreducible

CFGs, and the substantial memory footprint needed to store

data flow facts for every program point [4]. Modern

programs with intricate control flow structures and high

Npath complexities can lead to an enormous number of

program points and potential data flow facts, making brute-

force iterative propagation impractical. Researchers have

continuously sought methods to improve the efficiency of

iterative algorithms, for instance, by optimizing iteration

orders (e.g., reverse postorder for forward problems) or

refining convergence tests [3, 7].

To overcome the inherent limitations of global iterative

approaches, compositional data flow analysis methods have

been extensively explored. These techniques aim to analyze

program components independently and then combine their

results, thereby reducing the scope of analysis at any given

time. Early compositional methods often focused on modular

analysis of functions or procedures. More advanced

techniques have explored various program decomposition

strategies, such as interval analysis, which partitions the

CFG into single-entry regions, or the use of program

dependence graphs (PDGs) and code property graphs

(CPGs) that integrate control and data dependencies for

comprehensive code representation [8, 9].

Our work builds upon the concept of decomposing the

CFG into SCCs. SCC-based decomposition has been

recognized as a powerful technique for handling loops and

recursive structures efficiently in graph algorithms, allowing

for a topological ordering of components that can simplify

fixed-point computation. While SCCs have been used in

various program analysis contexts, their specific application

to the precise and efficient computation of classical DFA

problems, while guaranteeing full precision, remains an area

65 A Time and Space-Efficient Compositional Method for Data Flow Analysis lE.Fazli

of ongoing research, particularly when combined with a

novel memory management technique.

Furthermore, the memory efficiency of data flow analysis

is heavily reliant on the underlying data structures used to

represent and manipulate sets of facts. Common

representations include bitsets, sparse sets, hash-based

collections, and various forms of pointer-based data

structures designed for dynamic data [9]. Recent

advancements in scalable static analysis also explore

demand-driven approaches, which compute information

only when needed to save both time and memory,

particularly for complex analyses like points-to analysis

[10]. Approaches for binary analysis also leverage

specialized graph representations and optimized data flow

analysis to handle large firmware images efficiently [11].

Our proposed Two-level Set Accessing Method (TSAM)

extends our previous work on memory-efficient data

structures. Specifically, TSAM builds upon the TPAM

(Three-level Pointer Accessing Method) data structure

introduced in our earlier work [12]. A key distinction and

limitation of TPAM was its primary suitability for storing

intermediate partial paths, which involves a relatively stable

set of facts (path segments) that are primarily accumulated

for enumeration. In contrast, data flow analysis requires

storing dynamically changing sets of propagated

information, such as AE or LV. This involves frequent and

complex set operations (union, intersection, difference) and

dynamic insertions/deletions of facts during fixed-point

iteration. TSAM has been specifically adapted and optimized

to handle this dynamic and update-intensive nature, aiming

for superior memory efficiency for storing and accessing

facts during iterative fixed-point computations in the context

of DFA.

IX. Conclusion and Future Work

This paper presented a novel time and space-efficient

compositional method for Data Flow Analysis (DFA),

specifically targeting Available Expressions (AE), Very

Busy Expressions (VBE), Reaching Definitions (RD), and

Live Variables (LV). By decomposing Control Flow Graphs

(CFGs) into Strongly Connected Components (SCCs) and

employing a rigorous divide-and-conquer strategy, our

method effectively addresses the scalability challenges

posed by large-scale, real-world programs with high Npath

complexities. A cornerstone of our approach is the Two-

level Set Accessing Method (TSAM), a specialized pointer-

based data structure that drastically reduces the memory

footprint associated with storing dynamic data flow

information. We have formally proven the termination of our

fixed-point algorithm and demonstrated that our method

achieves the same high level of precision as traditional,

exhaustive global analyses.

The proposed compositional method (i) computes the

component graph of the input CFG; (ii) calculates the set of

facts of each SCC in the component graph, and (iii) generates

the set of facts of the given CFG with very low time and

space costs. We implemented and evaluated the proposed

methods versus existing approaches, and our experimental

results show that the proposed methods significantly

outperform the state-of-the-art in dealing with programs that

have extremely large Npath complexities (see Figure 5).

Building upon the robust framework presented in this

paper, several promising avenues for future research exist:

Extension to Other Data Flow Problems: Investigate the

applicability and benefits of our SCC-based compositional

method and TSAM to a broader range of data flow problems,

including more complex analyses such as constant

propagation, taint analysis, and points-to analysis.

Inter-procedural Analysis: Extend the current

intraprocedural framework to a full interprocedural analysis.

This would involve adapting the SCC decomposition and

information merging to handle function calls, returns, and

contextual sensitivities.

Parallel Implementation: Explicitly implement and

evaluate the parallelization strategies afforded by the

SCC-based decomposition. Analyzing independent SCCs

concurrently on multi-core processors (GPU-based) or

distributed systems could yield even greater speedups.

Application to Diverse Codebases: Apply the method to

an even wider range of larger, more diverse real-world

open-source projects or industrial codebases to further

validate its robustness and scalability in varied

programming language and application contexts.

TSAM Optimization: Further optimize the TSAM data

structure, potentially exploring hybrid representations

(e.g., linked lists for sparse sets, bitsets for dense sets) or

alternative canonicalization techniques to maximize

memory efficiency and access speed.
Formal Benchmarking for Npath Complexity: Develop or

leverage standardized benchmark suites specifically

designed to evaluate static analysis tools on programs with

extremely high Npath complexities, providing a more direct

comparison metric for scalability in such challenging

scenarios.

REFERENCES

[1] Tarjan, Robert. "Depth-first search and linear grajh

algorithms." 12th Annual Symposium on Switching and

Automata Theory (swat 1971). IEEE Computer Society,

1971.

[2] Kildall, Gary A. "A unified approach to global program

optimization." Proceedings of the 1st annual ACM SIGACT-

SIGPLAN symposium on Principles of programming

languages. 1973.

[3] Muchnick, Steven. Advanced compiler design

implementation. Morgan kaufmann, 1997.

[4] Cooper, Keith D., Timothy J. Harvey, and Ken Kennedy.

"Iterative data-flow analysis, revisited." Rice Univ., Houston,

TX, Tech. Rep. TR04-100, 2004.

[5] Hecht, Matthew S. Flow analysis of computer programs.

Elsevier Science Inc., 1977.

[6] Nielson, Flemming, Hanne R. Nielson, and Chris

Hankin. Principles of program analysis. Springer Science &

Business Media, 2004.

[7] Yamaguchi, Fabian, et al. "Modeling and discovering

vulnerabilities with code property graphs." 2014 IEEE

symposium on security and privacy. IEEE, 2014.

66 A Time and Space-Efficient Compositional Method for Data Flow Analysis lE.Fazli

[8] Akinyemi, Temidayo, et al. "A Comprehensive Review of

Static Memory Analysis." IEEE Access (2024).

[9] Eisenstat, Stanley C., Martin H. Schultz, and Andrew H.

Sherman. "Algorithms and data structures for sparse

symmetric Gaussian elimination." SIAM Journal on

Scientific and Statistical Computing 2.2, 1981.

[10] Yang, Xuqing. "Boosting static bug detection via demand-

driven points-to analysis." Third International Conference on

Communications, Information System, and Data Science

(CISDS 2024). Vol. 13519. SPIE, 2025.

[11] Gibbs, Wil, et al. "Operation mango: Scalable discovery of

Taint-Style vulnerabilities in binary firmware services." 33rd

USENIX Security Symposium (USENIX Security 24). 2024.

[12] Fazli, Ebrahim, and Ali Ebnenasir. "TPGen: A Self-

stabilizing GPU-Based Method for Test and Prime Paths

Generation." International Conference on Fundamentals of

Software Engineering. Cham: Springer Nature Switzerland,

2023.

[13] Bang, Lucas, Abdulbaki Aydin, and Tevfik Bultan.

"Automatically computing path complexity of

programs." Proceedings of the 2015 10th Joint Meeting on

Foundations of Software Engineering, 2015.

[14] McCabe, T.J.: A complexity measure. IEEE Transactions

on software Engineering (4), 1976.

[15] Nejmeh, B.A.: Npath: a measure of execution path

complexity and its applications. Communications of the

ACM 31(2), 1988.

