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This paper investigates the problem of static data flow analysis, which is an important 

problem in program comprehension, optimization, and bug detection. However, its 

application to large-scale, real-world software often faces significant challenges related 

to computational time and memory consumption, particularly for programs exhibiting 

extremely large Npath complexities. Existing approaches frequently struggle to scale 

efficiently while maintaining precision. To address this deficiency, we propose a novel 

compositional method for classical data flow analyses, specifically focusing on Available 

Expressions, Very Busy Expressions, Reaching Definitions, and Live Variables. Our 

approach leverages the decomposition of the Control Flow Graph into its Strongly 

Connected Components (SCCs), employing a divide-and-conquer strategy that analyzes 

smaller, more manageable program corpora. A key innovation is the Two-level Set 

Accessing Method (TSAM), a non-contiguous, pointer-based data structure that 

significantly reduces memory overhead for storing the dynamic data flow information. 

We prove that our algorithm, which utilizes a queueing mechanism for fixed-point 

computation, eventually terminates while achieving the same level of precision as 

traditional, exhaustive global analyses. Our extensive experimental evaluation against 

the traditional iterative method demonstrates that the SCC-based method, coupled with 

TSAM, significantly outperforms existing techniques, consuming on average 53% less 

memory and utilizing 43% less processing time, particularly for programs with high 

Npath complexity. This work provides a practical and scalable solution for precise data 

flow analysis of complex software systems. 
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I. Introduction 

Program analysis plays a critical role in modern software 

engineering, enabling tasks ranging from compiler 

optimizations and performance tuning to automated 

vulnerability detection and software quality assurance. Static 

data flow analysis (DFA), in particular, provides a 

systematic way to gather information about the possible 

values of variables, the availability of expressions, or the 

liveness of data at different program points without 

executing the code. Classical data flow problems such as 

Available Expressions (AE), Very Busy Expressions (VBE), 

Reaching Definitions (RD), and Live Variables (LV) form 

the foundational bedrock for many advanced analyses. 

Despite their fundamental importance, applying these 

classical DFA techniques to industrial-scale software 

projects presents formidable challenges. Modern codebases 

can contain millions of lines of code, intricate control flow, 

and complex interprocedural dependencies. A significant 

bottleneck arises from programs characterized by extremely 

large Npath complexities, where the sheer number of 

possible execution paths makes exhaustive analysis 

computationally intractable. Traditional iterative algorithms, 

while precise, often suffer from prohibitively high time and 

space complexity, rendering them impractical for large-scale 

applications. The need for scalable yet precise static analysis 

methods remains a pressing concern in the field. 

This paper introduces a novel time and space-efficient 

compositional method for data flow analysis designed to 

overcome these scalability limitations. Our approach is 

grounded in the principle of divide-and-conquer, achieved 

through the decomposition of the program's Control Flow 

Graph (CFG) into its Strongly Connected Components 

(SCCs). By breaking down the analysis into smaller, self-

contained SCCs and then composing their results, we can 

efficiently analyze complex program structures that would 

otherwise overwhelm conventional methods. This SCC-

based strategy allows each phase of the analysis to work on 

a small corpus of the program under analysis, leading to 

significant practical benefits. 

Contributions : The major contributions of this paper 

are multi-fold : First, we present a novel high-performance 

SCC-based compositional framework for performing AE, 

VBE, RD, and LV analyses by efficiently identifying, 

analyzing, and merging information across program SCCs. 

This approach ensures that each phase of the analysis 

operates on a significantly smaller corpus, leading to 

substantial performance gains. Second, we introduce Three-

level Set Accessing Method (TSAM). It is a novel pointer-

based, non-contiguous memory allocation data structure 

specifically designed to efficiently store and manage the 

dynamic sets of data flow information associated with 

program points. TSAM significantly mitigates the high 

space cost traditionally associated with storing abundant 

intermediate data flow facts, especially in large CFGs. Third, 

through extensive experimentation on a suite of benchmark 

programs, we demonstrate that our SCC-based 

compositional method, powered by TSAM, consistently 

outperforms the traditional iterative method in terms of both 

processing time and memory consumption. Our method 

achieves the same level of precision as traditional global 

analyses while demonstrating superior scalability for 

programs with extremely large Npath complexities. We 

show average reductions in memory consumption of 53% 

and processing time reductions of 64% compared to the 

iterative method. 

Organization: Section II defines some basic concepts. 

Section III states the DFA problem. Subsequently, Section 

IV presents data structures as well as TSAM method of 

memory allocation. Section V offers a vertex-based 

algorithm for DFA generation. Section VI puts forward a 

highly time and space-efficient SCC-based method for DFA. 

Section VII presents our experimental results. Section VIII 

discusses related work. Finally, Section 8 makes concluding 

remarks and discusses future extensions of this work.  

II. Preliminaries 

This section presents some graph-theoretic concepts that 

we utilize throughout this paper. A directed graph G = (V, A) 

includes a set of vertices V and a set of arcs (vi, vj) ∈ E, where 

vi, vj ∈V. A vertex vj is reachable from another vertex vi iff 

(if and only if) there is a simple path that emanates from vi 

and terminates at vj. A SCC in G is a sub-graph G′ = (V′,A′), 

where V′ ⊆ V and A′ ⊆ A, and for any pair of vertices vi,vj ∈ 

V′, vi and vj are reachable from each other. Tarjan [1] 

presents a polynomial-time algorithm that finds the SCCs of 

the input graph and constructs its component graph. Each 

vertex of the input graph appears in exactly one of the SCCs. 

The result is a Directed Acyclic Graph (DAG) whose every 

vertex is an SCC. A Control Flow Graph (CFG) models the 

flow of execution control between the basic blocks in a 

program, where a basic block is a collection of program 

statements without any conditional or unconditional jumps. 

Each vertex v ∈ V corresponds to a basic block. Each 

edge/arc e = (vi, vj) ∈ E corresponds to a possible transfer of 

control from block vi to block vj. A CFG often has a start 

vertex that captures the block of statement starting with the 

first instruction of the program, and has some end vertices 

representing the blocks of statements that end in a 

halt/exit/return instruction. (We use the terms ‘arc ’and 

‘edge ’interchangeably throughout this paper.) Figure 1 

illustrates an example method as well as its corresponding 

CFG for a class in the Apache Commons library.  

 

Function Foo (a, b) { 

1: var x = a + b; 

2: var y = a * b; 

3: while (y > a + b) {  

4:        a = a + 1; 

5:        x = x + b; 

    } // while 

} //Foo 
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(a) Source code example          (b) CFG for function Foo 

FIGURE 1. example function and corresponding CFG 

Definition 1 (Component Graph of CFGs): The component 

graph of a CFG G = (V, A), called CCFG, is a DAG whose 

vertices are the SCCs of G, and any arc (vi, vj) ∈ A starts in 

an SCCi and ends in SCCj. 

In the following definitions, let G = (V, A) be a CFG and 

C = (Vc, Ac) be an SCC in the CCFG of G; i.e., C is a vertex 

in CCFG of G. 

Definition 2 (SccEntryVertex): A vertex ve ∈ Vc is an 

SccEntryVertex of C iff ∃v : v ∈ V ∧v∉ Vc : (v,ve) ∈ A. (e.g., 

Vertex 3 in Fig 1(b)).  

Definition 3 (SccExitVertex): A vertex ve ∈ Vc is an 

SccExitVertex of C iff ∃v : v ∈ V ∧ v ∉ Vc: (ve,v) ∈ A. (e.g., 

Vertex 3 in Fig 1(b)). 

III. Problem Statement  

The primary goal of DFA is to determine how data flows 

through a program, enabling optimizations and the detection 

of potential errors. Static analysis of CFGs related to real 

world programs with a large Npath complexity is an 

important problem in compilers and program analysis tools 

to gather information about the possible states of a program 

at various points during its execution. To compute analysis 

state at each program point, DFA finds a fixed-point solution 

to a system of data flow equations derived from all 

components. For each vertex v, we seek to compute 

v.entrySet (information before v) and v.exitSet (information 

after v). DFA problem can be formulated as follows:  

Problem 1 (DFA Generation):  

Input: 
1. A graph G = (V, E) that represents the CFG of a given 

program, a start vertex s∈V and an end vertex e∈V.  

2. Dataflow Framework Definition: The formal 

specification of the particular data flow problem, 

comprising: 
a. Lattice of Dataflow Facts (L, ⊑, ⊓ / ⊔, ⊤, ⊥): The 

set of all possible data flow information at any 

program point, along with a partial order and a 

meet/join operator to combine information. 

b. Transfer Functions (fn): For each vertex v∈V, a 

function fn :L→L that describes how the data flow 

information are transformed when control passes 

through that vertex. 

c. Boundary Condition: The initial data flow 

information at the program's entry vertex (for 

forward problems) or exit vertex (for backward 

problems). 

Output: 
For each vertex v∈V in the input CFG, the desired output 

is a pair of data flow information sets: 

1. v.entrySet (vIN): The data flow information that are true 

immediately before the execution of vertex v. 

2. v.exitSet(vOUT): The data flow information that are true 

immediately after the execution of vertex v. 

These sets must represent the Least Fixed Point (LFP) 

solution to the system of data flow equations defined by the 

problem's lattice, transfer functions, and boundary 

conditions. 

IV. Data Structures 

In this section, we present a data structure for storing 

the input CFG (Section 4.1), and a novel memory 

allocation method called TSAM (Section 4.2) for storing 

the generated DFAs. 

IV.I. CFG Data Structure  
A matrix is usually stored as a two-dimensional array in 

memory. Memory requirements of a sparse matrix can be 

significantly reduced by maintaining only non-zero entries. 

Based on the number and distribution of non-zero entries, we 

can use different data structures. The Compressed Sparse 

Row (CSR, CRS or Yale format) [8] represents a matrix by 

a one-dimensional array that supports efficient access and 

matrix operations. We employ the CSR data structure to 

maintain a directed graph, where vertices of the graph 

receive unique IDs in {0, 1, · · ·, |V| − 1}. To represent a 

graph in CSR format, we store end vertices and start vertices 

of arcs in two separate arrays EndV and StartV respectively 

(Figure 2). Each entry in EndV points to the starting index of 

its adjacency list in array StartV. For example, Figure 2 

illustrates the CSR representation of the graph of Figure 1(b). 

Since the proposed algorithm computes all DFAs ending in 

each vertex v ∈ V, maintaining the predecessor vertices is of 

particular importance. In CSR data structure, first the vertex 

itself and then its predecessor vertices are stored.  

 
Fig. 2. CSR graph representation 

IV.II. Two-level Set Accessing Method 
A significant challenge in scaling data flow analysis to 

large programs is the immense memory footprint required to 

store the evolving sets of data flow information at every 

program point. For a large CFG, the number of such 

information sets (e.g., vIN and vOUT for every vertex v) could 

be enormous, which would incur a significant space cost on 

the algorithm. To reduce this space complexity, we introduce 

the Two-level Set Accessing Method (TSAM), a novel 

pointer-based, non-contiguous memory allocation data 

structure specifically designed for efficient storage and 

access of data flow sets. 
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Fig.  3. Two-level Set Accessing Method (TSAM) 

TSAM is an extension of the TPAM data structure from 

our previous work [12]. While TPAM was suitable for 

storing intermediate partial paths, TSAM has been 

specifically adapted and optimized to handle the dynamic 

and update-intensive nature of data flow sets (such as AE or 

LV) required by classical data flow analyses. This distinction 

is critical as data flow analysis involves frequent 

modifications, unions, and intersections of sets of facts, 

which differs fundamentally from the primarily sequential 

storage and retrieval of path segments. 

TSAM is organized hierarchically into two levels, 

leveraging linked lists for flexibility and memory efficiency: 

Level 1 (Address Table): This serves as the primary access 

mechanism. It is an address table (e.g., an array of pointers) 

with a length of 2∣V∣ in the input CFG. For each vertex v , 

there are two pointers from Level 1 lead to its dedicated 

Level 2 structures.  

Level 2 (Actual Set Contents): This level consists of two 

linked lists for each vertex (e.g., for its vIN and vOUT). This is 

where the actual data flow information sets reside. Each node 

within these lists represents a data flow fact (e.g., an 

expression, a variable, or a definition). For instance {a+b, a-

b} is the AE at the entry point of statement 1, and {a+b} is 

the AE at exit point of statement 1(Figure 2).  

TSAM achieves significant memory efficiency through 

several key mechanisms: 

Non-Contiguous Allocation and Sparsity: By utilizing a 

pointer-based, non-contiguous memory allocation strategy 

TSAM only allocates memory precisely as needed for the 

actual data flow facts and their pointer-based 

organization. This inherently exploits the common 

sparsity observed in data flow sets, where many sets might 

be empty or contain only a few elements. Unlike fixed-size 

representations (e.g., large bitsets) that must pre-allocate 

space for the entire universe of possible facts for every 

program point, TSAM avoids this overhead by dynamically 

sizing its linked lists. If an Entry Set or ExitList is empty, its 

corresponding structure in Level 2 might be minimal or even 

a null pointer, further conserving memory. 

Set Canonicalization/Sharing: The pointer-based nature of 

TSAM, which points to Level 2 content, creates a strong 

opportunity for set canonicalization (or hash-consing). If 

multiple vi EntryLists or vi ExitLists contain identical sets 

of information (e.g., the exact same set of "available 

expressions"), TSAM can store that set content once in Level 

2. Multiple pointers from Level 1 can then reference this 

single canonical instance in Level 2, thereby avoiding 

redundant storage and significantly reducing overall 

memory consumption, especially when common data flow 

states recur across the CFG. This approach involves hashing 

set contents to identify duplicates and managing a pool of 

unique sets in Level 2. 

Efficient Set Operations: TSAM needed to support rapid 

set union (∪), intersection (∩), and difference (−) operations. 

This was achieved by optimizing linked list traversals and, 

implicitly, by leveraging the canonicalization of sets in Level 

2. When performing a set operation (e.g., S1 ∪ S2 ), the 

result Snew would be computed and then checked against the 

canonicalized sets in Level 2. If Snew already exists, a 

pointer to the existing instance is returned; otherwise, Snew 

is added to Level 2 and becomes a new canonical instance. 

Dynamic Insertion and Deletion: Facts are not just 

accumulated; they are added and removed as information 

propagates and converges. The linked list implementation in 

Level 2 is inherently well-suited for dynamic insertion and 

deletion of individual facts compared to fixed-size arrays. 

Dynamic Nature of Sets: The content of data flow sets 

changes frequently during the iterative fixed-point 

computation. TSAM's pointer-based approach allows for 

efficient updates: when a set's content changes, a new 

canonical set might be generated in Level 2, and the 

corresponding pointer in Level 2 is updated to point to this 

new set member. Old, unreferenced sets can then be garbage 

collected. 

V. Vertex-Based Algorithm for DFA 

This section presents a time-efficient algorithm (i.e., a 

solution for Problem 1) that takes a digraph G(V,A) 

(representing the CFG of a program) and a start vertex s∈V, 

and then computes two sets vIN and vOUT for each vertex v in 

the given CFG. Initially, the mentioned two sets are empty, 

and the start vertex s and its immediate successors are 

inserted in a queue Q. Algorithm 1 performs two kinds of 

processing on vi: (1) computing data flow facts at the entry 

point of vi  (Lines 6 to 10), and (2) generating data flow facts 

at the exit point of vi (Lines 12 to 14). Each vertex vi 

undergoes these processing steps after extraction from Q 

(Line 2). Algorithm 1 then propagates the wave of updates 

to the successors of vi by inserting them in Q (Lines 15 to 

17). 

 
Algorithm 1 Vertex-Based DFA Generation // AE analysis 

Input: G(V , A) with an outdegree 2; Start vertex s ∈ V ; End vertex 

E 

Output: For each vertex v∈V in the input CFG, v.EntrySet, 
v.ExitSet.  

Initialize: ∀vi ∈ V , vi.IN = vi.OUT = empty, vi.updateFlag = false, 

and queue Q with s.  

1. while (Q is non-empty) do  

2. Extract vi from Q;  

3. vi.updateFlag = false;  

4. if vi =s then  

5.         Insert the immediate successors of vi in Q;  

6. for each vj where (vj, vi) ∈ A do  

7.         for each entry e ∈ vj.OUT do  

8.                 if e is not read by vi then  

9.                         Oj = Oj ∪ e; 

10. for each vj where (vj, vi) ∈ A do  

11.          vi.INtemp = ∩ Oj; 
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12. if  vi.INtemp <> vi.IN then 

13.         vi.IN = vi.INtemp; 

14.         vi.OUT = vi.IN \ kill(vi) ∪ gen(vi) ; 

15.         vi.updateFlag = true; 

16. if vi.updateFlag = true then 

17.         for each vk where (vi,vk) ∈ A do  

18.                 Insert vk in Q; 

19. for each vi ∈V do  

20.         return vi.IN;  

21.         return vi.OUT; 

 
Lemma 1: Let (vj, vi) be an arc in A and e be an entry in in 

vj.OUT. The condition of the if statement on Line 8 evaluates 

to true for e and vi no more than once. That is, each entry e 

∈ vj.OUT is read by vi at most once.  

proof 1: Suppose Algorithm 1 has already entered the if 

statement on Line 8 for some e and vi. This means that e has 

been labeled as read by vi. Thus, next time Algorithm 1 gets 

to check if e is read by vi, the condition on Line 8 evaluates 

to false.  

Lemma 2: For any vertex vj that has an outgoing arc (vj, vi), 

each entry e ∈ vj.OUT will eventually be labeled read by vj.  

proof 2: Initially, vj.OUT for each vj ∈ V is empty. The for-

loop in Line 6 iterates through all incoming arcs of each 

vertex vi ∈ V and will eventually get to (vi , vi). As a result, 

any entry e ∈ vj.OUT will be labeled on Line 9 because 

initially all lists are empty. If new entry are imported in 

vj.OUT from its predecessors in subsequent iterations of the 

algorithm, then such entry will be labeled as read by vi.  

Lemma 3: For each vertex vi ∈ V, at some finite point in 

time, vi.updateFlag will become false and will remain false.  

proof 3: Lemmas 1 and 2 imply that all entries in the 

predecessors of vi will eventually be labeled as read by vi, 

and will keep their status of being read. As such, the 

condition on Line 8 will never become true again when 

processing arc (vi, vi). Therefore, Algorithm 1 will no longer 

get to Line 15; i.e., vi.updateFlag will become false (on Line 

3) and will never become true again.  

 

Theorem 1: Algorithm 1 will eventually terminate.  

proof 4: Lemma 3 implies that at some finite point in time, 

the condition in Line 16 will become false for each vi ∈ V 

and will remain false. Thus, Algorithm 1 will eventually stop 

inserting vertices in Q. Moreover, the remaining vertices in 

Q are extracted on Line 2 in subsequent iterations of the 

while-loop. Thus, Q will eventually become empty; i.e., 

Algorithm 1 exits the while loop. 

 

VI. Proposed Method 

Our proposed compositional method for data flow analysis 

leverages a systematic decomposition of the input Control 

Flow Graph (CFG) into its Strongly Connected Components 

(SCCs), followed by a structured analysis and merging 

process. This divide-and-conquer paradigm is central to 

achieving high levels of time and space efficiency, 

particularly for programs with complex control flow 

structures and extremely large Npath complexities. For each 

vertex vi ∈V in the CFG, our analysis maintains two critical 

sets of information: vi.EntrySet to record all incoming data 

flow information and vi.ExitSet to record all outgoing 

information. Depending on the analysis direction (e.g., 

forwarding analysis for RD or AE), the ExitSet of a vertex is 

computed based on its EntrySet and the transfer function of 

the statement within that vertex. For reaching a fixed point 

and finalizing the analysis, the proposed method uses a 

queueing mechanism. We formally prove that this algorithm 

eventually terminates while guaranteeing the same level of 

precision as traditional, exhaustive global analyses. 

The overall compositional analysis proceeds in three main 

phases: 

Component Graph Computation: The initial step involves 

efficiently computing the component graph of the input 

CFG. This process transforms the CFG into a Directed 

Acyclic Graph (DAG) where each node represents an SCC. 

This decomposition is crucial for establishing an efficient 

processing order, as SCCs can be analyzed in topological 

order within the component DAG. 

SCC-Local Information Calculation: For each SCC in the 

component graph, we calculate the sets of data flow 

information associated with its internal vertices. Since each 

SCC represents a smaller, self-contained portion of the 

program's control flow (often containing loops or recursion), 

traditional iterative data flow algorithms can be applied 

efficiently within these local contexts. The reduced size of 

the analysis domain within each SCC significantly improves 

performance. 

 
FIGURE 4. Overview of compositional method for DFA 

Global Information Generation and Merging: Finally, the 

results from individual SCCs are systematically merged and 

propagated through the component graph to generate the 

final sets of data flow information for the entire CFG. This 

merging process respects the dependencies between SCCs, 

ensuring that global precision is maintained and that 

information flows correctly across SCC boundaries. 
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VII. Experimental Results 

This section presents the results of our experimental 

evaluations of the proposed SCC-based method for DFA 

compared to the iterative Vertex-based approach. To validate 

the effectiveness and efficiency of our proposed SCC-based 

compositional method, we implemented our approach and 

conducted a comprehensive experimental evaluation. We 

compared its performance against the traditional iterative 

method, which represents a common state-of-the-art baseline 

for precision in static data flow analysis. 

TABLE 1. Modified benchmark CFGs  

 

The experimental benchmark consists of a set of ten 

modified CFGs from [13] (which are taken from Apache 
Commons libraries. Table 1 presents the structure of these 

CFGs. Columns 3 to 9 of Table 2 provide the number of 

nodes, edges, and SCCs of each CFG. The total numbers of 

nodes and edges of all SCCs are mentioned as SccNodes and 

SccEdges, respectively. Columns 7 and 8 show the 

Cyclomatic Complexity (CC) [14] and Npath Complexity 

[15] of the input CFGs. The last column illustrates the 

number of prime paths produced with the GPU-based 

method. We compare the SCC-based and the Vertex-based 

approaches with respect to their running time. We ran all the 

experiments on an Intel Core i7 machine with 3.6GHz X 8 

processors and 16 GB of memory running Ubuntu 17.01 with 

gcc version 5.4.1.  

 

 
FIGURE 5. Time costs of the vertex-based and SCC-

based algorithms on the benchmarks CFGs. 

The bar graph of Figure 5 illustrates the time efficiencies 

of the SCC-based and Vertex-based approaches. (The 

reported timings for each approach is the average of fifteen 

runs.) These values reflect the fact that the time the SCC-

based method is more effective for larger CFGs. 

Specifically, for the CFGs of the bottom four rows of Table 

1. On average, the SCC-based method consumed 43% less 

time than the iterative  Vertex-based method. This time 

efficiency increases significantly with growing graph size. 

For example, the SCC-based time efficiency in the last graph 

is 65%. The recorded times indicate that by increasing the 

structural complexity, the SCC-based algorithm provides a 

better performance. Thus, for real-world applications that 

have a large number of lines and complex structures, the 

SCC-based algorithm is expected to be highly efficient.  

 

VIII. Related Works 

This section discusses related works on the DFA. Static 

DFA has been an active area of research for decades, with 

numerous iterative and compositional approaches developed 

to address the inherent challenges of program complexity 

and scalability. The theoretical foundations for DFA were 

largely established by Kildall's seminal work, which 

introduced the lattice-theoretic framework and the 

traditional iterative method for computing fixed points [2]. 

This iterative approach, which repeatedly propagates data 

flow information until convergence over the entire CFG, 

serves as a common baseline for precision for classical 

problems such as RD, LV, AE, and VBE [3]. 

However, the scalability of the traditional iterative method 

often becomes a significant bottleneck for large and complex 

real-world programs [5]. Factors contributing to this include 

the number of iterations required for convergence, 

particularly in the presence of complex loops or irreducible 

CFGs, and the substantial memory footprint needed to store 

data flow facts for every program point [4]. Modern 

programs with intricate control flow structures and high 

Npath complexities can lead to an enormous number of 

program points and potential data flow facts, making brute-

force iterative propagation impractical. Researchers have 

continuously sought methods to improve the efficiency of 

iterative algorithms, for instance, by optimizing iteration 

orders (e.g., reverse postorder for forward problems) or 

refining convergence tests [3, 7]. 

To overcome the inherent limitations of global iterative 

approaches, compositional data flow analysis methods have 

been extensively explored. These techniques aim to analyze 

program components independently and then combine their 

results, thereby reducing the scope of analysis at any given 

time. Early compositional methods often focused on modular 

analysis of functions or procedures. More advanced 

techniques have explored various program decomposition 

strategies, such as interval analysis, which partitions the 

CFG into single-entry regions, or the use of program 

dependence graphs (PDGs) and code property graphs 

(CPGs) that integrate control and data dependencies for 

comprehensive code representation [8, 9]. 

Our work builds upon the concept of decomposing the 

CFG into SCCs. SCC-based decomposition has been 

recognized as a powerful technique for handling loops and 

recursive structures efficiently in graph algorithms, allowing 

for a topological ordering of components that can simplify 

fixed-point computation. While SCCs have been used in 

various program analysis contexts, their specific application 

to the precise and efficient computation of classical DFA 

problems, while guaranteeing full precision, remains an area 



65                                                                                                    A Time and Space-Efficient Compositional Method for Data Flow Analysis lE.Fazli 

 
of ongoing research, particularly when combined with a 

novel memory management technique. 

Furthermore, the memory efficiency of data flow analysis 

is heavily reliant on the underlying data structures used to 

represent and manipulate sets of facts. Common 

representations include bitsets, sparse sets, hash-based 

collections, and various forms of pointer-based data 

structures designed for dynamic data [9]. Recent 

advancements in scalable static analysis also explore 

demand-driven approaches, which compute information 

only when needed to save both time and memory, 

particularly for complex analyses like points-to analysis 

[10]. Approaches for binary analysis also leverage 

specialized graph representations and optimized data flow 

analysis to handle large firmware images efficiently [11]. 

Our proposed Two-level Set Accessing Method (TSAM) 

extends our previous work on memory-efficient data 

structures. Specifically, TSAM builds upon the TPAM 

(Three-level Pointer Accessing Method) data structure 

introduced in our earlier work [12]. A key distinction and 

limitation of TPAM was its primary suitability for storing 

intermediate partial paths, which involves a relatively stable 

set of facts (path segments) that are primarily accumulated 

for enumeration. In contrast, data flow analysis requires 

storing dynamically changing sets of propagated 

information, such as AE or LV. This involves frequent and 

complex set operations (union, intersection, difference) and 

dynamic insertions/deletions of facts during fixed-point 

iteration. TSAM has been specifically adapted and optimized 

to handle this dynamic and update-intensive nature, aiming 

for superior memory efficiency for storing and accessing 

facts during iterative fixed-point computations in the context 

of DFA. 

IX. Conclusion and Future Work  

This paper presented a novel time and space-efficient 

compositional method for Data Flow Analysis (DFA), 

specifically targeting Available Expressions (AE), Very 

Busy Expressions (VBE), Reaching Definitions (RD), and 

Live Variables (LV). By decomposing Control Flow Graphs 

(CFGs) into Strongly Connected Components (SCCs) and 

employing a rigorous divide-and-conquer strategy, our 

method effectively addresses the scalability challenges 

posed by large-scale, real-world programs with high Npath 

complexities. A cornerstone of our approach is the Two-

level Set Accessing Method (TSAM), a specialized pointer-

based data structure that drastically reduces the memory 

footprint associated with storing dynamic data flow 

information. We have formally proven the termination of our 

fixed-point algorithm and demonstrated that our method 

achieves the same high level of precision as traditional, 

exhaustive global analyses. 

The proposed compositional method (i) computes the 

component graph of the input CFG; (ii) calculates the set of 

facts of each SCC in the component graph, and (iii) generates 

the set of facts of the given CFG with very low time and 

space costs. We implemented and evaluated the proposed 

methods versus existing approaches, and our experimental 

results show that the proposed methods significantly 

outperform the state-of-the-art in dealing with programs that 

have extremely large Npath complexities (see Figure 5). 

Building upon the robust framework presented in this 

paper, several promising avenues for future research exist: 

Extension to Other Data Flow Problems: Investigate the 

applicability and benefits of our SCC-based compositional 

method and TSAM to a broader range of data flow problems, 

including more complex analyses such as constant 

propagation, taint analysis, and points-to analysis. 

Inter-procedural Analysis: Extend the current 

intraprocedural framework to a full interprocedural analysis. 

This would involve adapting the SCC decomposition and 

information merging to handle function calls, returns, and 

contextual sensitivities. 

Parallel Implementation: Explicitly implement and 

evaluate the parallelization strategies afforded by the 

SCC-based decomposition. Analyzing independent SCCs 

concurrently on multi-core processors (GPU-based) or 

distributed systems could yield even greater speedups. 

Application to Diverse Codebases: Apply the method to 

an even wider range of larger, more diverse real-world 

open-source projects or industrial codebases to further 

validate its robustness and scalability in varied 

programming language and application contexts. 

TSAM Optimization: Further optimize the TSAM data 

structure, potentially exploring hybrid representations 

(e.g., linked lists for sparse sets, bitsets for dense sets) or 

alternative canonicalization techniques to maximize 

memory efficiency and access speed. 
Formal Benchmarking for Npath Complexity: Develop or 

leverage standardized benchmark suites specifically 

designed to evaluate static analysis tools on programs with 

extremely high Npath complexities, providing a more direct 

comparison metric for scalability in such challenging 

scenarios. 
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