Intelligent Multimedia Processing & Communication Systems Journal EE E

IMPCSJ

J IMPCS (2025) 21: 59-66

DOI 10.71856/IMPCS.2025.1218351

Research Paper

A Time and Space-Efficient Compositional Method for Data Flow

Analysis

Ebrahim Fazli*

Assistant Professor, Department of Computer Engineering, Za.C., Islamic Azad University, Zanjan, Iran.

*Corresponding Author, efazli@iau.ac.ir

Article Info

ABSTRACT

Article history:
Received: 30 Jun 2025
Accepted: 11 Aug 2025

Keywords:

Data flow analysis,
Fault detection,

Static program analysis.

This paper investigates the problem of static data flow analysis, which is an important
problem in program comprehension, optimization, and bug detection. However, its
application to large-scale, real-world software often faces significant challenges related
to computational time and memory consumption, particularly for programs exhibiting
extremely large Npath complexities. Existing approaches frequently struggle to scale
efficiently while maintaining precision. To address this deficiency, we propose a novel
compositional method for classical data flow analyses, specifically focusing on Available
Expressions, Very Busy Expressions, Reaching Definitions, and Live Variables. Our
approach leverages the decomposition of the Control Flow Graph into its Strongly
Connected Components (SCCs), employing a divide-and-conquer strategy that analyzes
smaller, more manageable program corpora. A key innovation is the Two-level Set
Accessing Method (TSAM), a non-contiguous, pointer-based data structure that
significantly reduces memory overhead for storing the dynamic data flow information.
We prove that our algorithm, which utilizes a queueing mechanism for fixed-point
computation, eventually terminates while achieving the same level of precision as
traditional, exhaustive global analyses. Our extensive experimental evaluation against
the traditional iterative method demonstrates that the SCC-based method, coupled with
TSAM, significantly outperforms existing techniques, consuming on average 53% less
memory and utilizing 43% less processing time, particularly for programs with high
Npath complexity. This work provides a practical and scalable solution for precise data
flow analysis of complex software systems.

Copyright © Author(s).
BY NG Publisher: Islamic Azad University — Zanjan Branch


https://sanad.iau.ir/Journal/impcs/Article/1218351
mailto:efazli@iau.ac.ir

60

|. Introduction

Program analysis plays a critical role in modern software
engineering, enabling tasks ranging from compiler
optimizations and performance tuning to automated
vulnerability detection and software quality assurance. Static
data flow analysis (DFA), in particular, provides a
systematic way to gather information about the possible
values of variables, the availability of expressions, or the
liveness of data at different program points without
executing the code. Classical data flow problems such as
Available Expressions (AE), Very Busy Expressions (VBE),
Reaching Definitions (RD), and Live Variables (LV) form
the foundational bedrock for many advanced analyses.

Despite their fundamental importance, applying these
classical DFA techniques to industrial-scale software
projects presents formidable challenges. Modern codebases
can contain millions of lines of code, intricate control flow,
and complex interprocedural dependencies. A significant
bottleneck arises from programs characterized by extremely
large Npath complexities, where the sheer number of
possible execution paths makes exhaustive analysis
computationally intractable. Traditional iterative algorithms,
while precise, often suffer from prohibitively high time and
space complexity, rendering them impractical for large-scale
applications. The need for scalable yet precise static analysis
methods remains a pressing concern in the field.

This paper introduces a novel time and space-efficient
compositional method for data flow analysis designed to
overcome these scalability limitations. Our approach is
grounded in the principle of divide-and-conquer, achieved
through the decomposition of the program's Control Flow
Graph (CFG) into its Strongly Connected Components
(SCCs). By breaking down the analysis into smaller, self-
contained SCCs and then composing their results, we can
efficiently analyze complex program structures that would
otherwise overwhelm conventional methods. This SCC-
based strategy allows each phase of the analysis to work on
a small corpus of the program under analysis, leading to
significant practical benefits.

Contributions : The major contributions of this paper
are multi-fold : First, we present a novel high-performance
SCC-based compositional framework for performing AE,
VBE, RD, and LV analyses by efficiently identifying,
analyzing, and merging information across program SCCs.
This approach ensures that each phase of the analysis
operates on a significantly smaller corpus, leading to
substantial performance gains. Second, we introduce Three-
level Set Accessing Method (TSAM). It is a novel pointer-
based, non-contiguous memory allocation data structure
specifically designed to efficiently store and manage the
dynamic sets of data flow information associated with
program points. TSAM significantly mitigates the high
space cost traditionally associated with storing abundant
intermediate data flow facts, especially in large CFGs. Third,
through extensive experimentation on a suite of benchmark
programs, we demonstrate that our SCC-based
compositional method, powered by TSAM, consistently
outperforms the traditional iterative method in terms of both

A Time and Space-Efficient Compositional Method for Data Flow Analysis IE.Fazli

processing time and memory consumption. Our method
achieves the same level of precision as traditional global
analyses while demonstrating superior scalability for
programs with extremely large Npath complexities. We
show average reductions in memory consumption of 53%
and processing time reductions of 64% compared to the
iterative method.

Organization: Section 11 defines some basic concepts.
Section 111 states the DFA problem. Subsequently, Section
IV presents data structures as well as TSAM method of
memory allocation. Section V offers a vertex-based
algorithm for DFA generation. Section VI puts forward a
highly time and space-efficient SCC-based method for DFA.
Section VII presents our experimental results. Section VIII
discusses related work. Finally, Section 8 makes concluding
remarks and discusses future extensions of this work.

I1. Preliminaries

This section presents some graph-theoretic concepts that
we utilize throughout this paper. A directed graph G = (V, A)
includes a set of vertices V and a set of arcs (v, vj) € E, where
Vi, Vj EV. A vertex vj is reachable from another vertex v; iff
(if and only if) there is a simple path that emanates from vi
and terminates at vj. A SCC in G is a sub-graph G’ = (V" A’),
where V' €V and A’ €A, and for any pair of vertices vi,vj €
V', vi and vj are reachable from each other. Tarjan [1]
presents a polynomial-time algorithm that finds the SCCs of
the input graph and constructs its component graph. Each
vertex of the input graph appears in exactly one of the SCCs.
The result is a Directed Acyclic Graph (DAG) whose every
vertex is an SCC. A Control Flow Graph (CFG) models the
flow of execution control between the basic blocks in a
program, where a basic block is a collection of program
statements without any conditional or unconditional jumps.
Each vertex v € V corresponds to a basic block. Each
edge/arc e = (v;, ;) € E corresponds to a possible transfer of
control from block v; to block v;. A CFG often has a start
vertex that captures the block of statement starting with the
first instruction of the program, and has some end vertices
representing the blocks of statements that end in a
halt/exit/return instruction. (We use the terms ‘arc ’and
‘edge ’interchangeably throughout this paper.) Figure 1
illustrates an example method as well as its corresponding
CFG for a class in the Apache Commons library.

Function Foo (a, b) {
l:varx=a+b;
2:vary=a*b;
3:while (y>a+b){
4. a=a+1;

5: X=X+b;

} I/ while
} //Foo




61

(a) Source code example (b) CFG for function Foo
FIGURE 1. example function and corresponding CFG

Definition 1 (Component Graph of CFGs): The component
graph of a CFG G = (V, A), called CCFG, is a DAG whose
vertices are the SCCs of G, and any arc (vi, ;) € A starts in
an SCC; and ends in SCC;.

In the following definitions, let G = (V, A) be a CFG and
C = (V., Ac) be an SCC in the CCFG of G; i.e., C is a vertex
in CCFG of G.

Definition 2 (SccEntryVertex): A vertex ve € V. is an
SccEntryVertex of C iff 3v:v eV AvE V¢ : (v,Ve) € A. (e.g.,
Vertex 3 in Fig 1(b)).

Definition 3 (SccExitVertex): A vertex ve € V¢ is an
SccExitVertex of Ciffav:veV A v & V¢ (v,v) € A. (e.0.,
Vertex 3 in Fig 1(b)).

I11. Problem Statement

The primary goal of DFA is to determine how data flows
through a program, enabling optimizations and the detection
of potential errors. Static analysis of CFGs related to real
world programs with a large Npath complexity is an
important problem in compilers and program analysis tools
to gather information about the possible states of a program
at various points during its execution. To compute analysis
state at each program point, DFA finds a fixed-point solution
to a system of data flow equations derived from all
components. For each vertex v, we seek to compute
v.entrySet (information before v) and v.exitSet (information
after v). DFA problem can be formulated as follows:

Problem 1 (DFA Generation):

Input:

1. A graph G = (V, E) that represents the CFG of a given
program, a start vertex S€EV and an end vertex eeV.
2.Dataflow Framework Definition: The formal
specification of the particular data flow problem,

comprising:

a. Lattice of Dataflow Facts (L, &, n/ U, T, L): The
set of all possible data flow information at any
program point, along with a partial order and a
meet/join operator to combine information.

b. Transfer Functions (fn): For each vertex veV, a
function fn :L—L that describes how the data flow
information are transformed when control passes
through that vertex.

c. Boundary Condition: The initial data flow
information at the program's entry vertex (for
forward problems) or exit vertex (for backward
problems).

Output:
For each vertex VeV in the input CFG, the desired output
is a pair of data flow information sets:
1. v.entrySet (vin): The data flow information that are true
immediately before the execution of vertex v.
2. v.exitSet(vout): The data flow information that are true
immediately after the execution of vertex v.

A Time and Space-Efficient Compositional Method for Data Flow Analysis IE.Fazli

These sets must represent the Least Fixed Point (LFP)
solution to the system of data flow equations defined by the
problem's lattice, transfer functions, and boundary
conditions.

1V. Data Structures

In this section, we present a data structure for storing
the input CFG (Section 4.1), and a novel memory
allocation method called TSAM (Section 4.2) for storing
the generated DFAs.

IV.I. CFG Data Structure

A matrix is usually stored as a two-dimensional array in
memory. Memory requirements of a sparse matrix can be
significantly reduced by maintaining only non-zero entries.
Based on the number and distribution of non-zero entries, we
can use different data structures. The Compressed Sparse
Row (CSR, CRS or Yale format) [8] represents a matrix by
a one-dimensional array that supports efficient access and
matrix operations. We employ the CSR data structure to
maintain a directed graph, where vertices of the graph
receive unique IDs in {0, 1, - - -, [V| — 1}. To represent a
graph in CSR format, we store end vertices and start vertices
of arcs in two separate arrays EndV and StartV respectively
(Figure 2). Each entry in EndV points to the starting index of
its adjacency list in array StartV. For example, Figure 2
illustrates the CSR representation of the graph of Figure 1(b).
Since the proposed algorithm computes all DFAs ending in
each vertex v € V, maintaining the predecessor vertices is of
particular importance. In CSR data structure, first the vertex
itself and then its predecessor vertices are stored.

0 1 2 3 V-2 V-1

v [ Jo] i [s]. ]  [es ||E|—2|
o 1 2 3 B3 B2 B
Start\c’| 0 | 1 | 4 2 2 5 7 |

Note: each index v in EndV points to first index including predecessors of v in StartV'

Fig. 2. CSR graph representation

IV.IL. Two-level Set Accessing Method

A significant challenge in scaling data flow analysis to
large programs is the immense memory footprint required to
store the evolving sets of data flow information at every
program point. For a large CFG, the number of such
information sets (e.g., vin and vour for every vertex v) could
be enormous, which would incur a significant space cost on
the algorithm. To reduce this space complexity, we introduce
the Two-level Set Accessing Method (TSAM), a novel
pointer-based, non-contiguous memory allocation data
structure specifically designed for efficient storage and
access of data flow sets.



62

VAl V2 V3 Va V5

T T T, T T, T e, T
0 1 2 3 4 5 6 7 8 9

| IN |OUT| IN |OUT| IN |OUT| IN |OUT| IN |OUT|
] ] 1 | ] ] ]

VA NN v

Fig. 3. Two-level Set Accessing Method (TSAM)

TSAM is an extension of the TPAM data structure from
our previous work [12]. While TPAM was suitable for
storing intermediate partial paths, TSAM has been
specifically adapted and optimized to handle the dynamic
and update-intensive nature of data flow sets (such as AE or
LV) required by classical data flow analyses. This distinction
is critical as data flow analysis involves frequent
modifications, unions, and intersections of sets of facts,
which differs fundamentally from the primarily sequential
storage and retrieval of path segments.

TSAM is organized hierarchically into two levels,
leveraging linked lists for flexibility and memory efficiency:

Level 1 (Address Table): This serves as the primary access
mechanism. It is an address table (e.g., an array of pointers)
with a length of 2|V| in the input CFG. For each vertex v,
there are two pointers from Level 1 lead to its dedicated
Level 2 structures.

Level 2 (Actual Set Contents): This level consists of two
linked lists for each vertex (e.g., for its viy and vour). This is
where the actual data flow information sets reside. Each node
within these lists represents a data flow fact (e.g., an
expression, a variable, or a definition). For instance {a+b, a-
b} is the AE at the entry point of statement 1, and {a+b} is
the AE at exit point of statement 1(Figure 2).

TSAM achieves significant memory efficiency through
several key mechanisms:

Non-Contiguous Allocation and Sparsity: By utilizing a
pointer-based, non-contiguous memory allocation strategy
TSAM only allocates memory precisely as needed for the
actual data flow facts and their pointer-based
organization. This inherently exploits the common
sparsity observed in data flow sets, where many sets might
be empty or contain only a few elements. Unlike fixed-size
representations (e.g., large bitsets) that must pre-allocate
space for the entire universe of possible facts for every
program point, TSAM avoids this overhead by dynamically
sizing its linked lists. If an Entry Set or ExitList is empty, its
corresponding structure in Level 2 might be minimal or even
a null pointer, further conserving memory.

Set Canonicalization/Sharing: The pointer-based nature of
TSAM, which points to Level 2 content, creates a strong
opportunity for set canonicalization (or hash-consing). If
multiple vi EntryLists or vi ExitLists contain identical sets
of information (e.g., the exact same set of "available
expressions'), TSAM can store that set content once in Level
2. Multiple pointers from Level 1 can then reference this
single canonical instance in Level 2, thereby avoiding

A Time and Space-Efficient Compositional Method for Data Flow Analysis IE.Fazli

redundant storage and significantly reducing overall
memory consumption, especially when common data flow
states recur across the CFG. This approach involves hashing
set contents to identify duplicates and managing a pool of
unique sets in Level 2.

Efficient Set Operations: TSAM needed to support rapid
set union (V), intersection (N), and difference (—) operations.
This was achieved by optimizing linked list traversals and,
implicitly, by leveraging the canonicalization of sets in Level
2. When performing a set operation (e.g., S1 U S2 ), the
result Snew would be computed and then checked against the
canonicalized sets in Level 2. If Snew already exists, a
pointer to the existing instance is returned; otherwise, Snew
is added to Level 2 and becomes a new canonical instance.

Dynamic Insertion and Deletion: Facts are not just
accumulated; they are added and removed as information
propagates and converges. The linked list implementation in
Level 2 is inherently well-suited for dynamic insertion and
deletion of individual facts compared to fixed-size arrays.

Dynamic Nature of Sets: The content of data flow sets
changes frequently during the iterative fixed-point
computation. TSAM's pointer-based approach allows for
efficient updates: when a set's content changes, a new
canonical set might be generated in Level 2, and the
corresponding pointer in Level 2 is updated to point to this
new set member. Old, unreferenced sets can then be garbage
collected.

V. Vertex-Based Algorithm for DFA

This section presents a time-efficient algorithm (i.e., a
solution for Problem 1) that takes a digraph G(V,A)
(representing the CFG of a program) and a start vertex seV,
and then computes two sets vy and vour for each vertex v in
the given CFG. Initially, the mentioned two sets are empty,
and the start vertex s and its immediate successors are
inserted in a queue Q. Algorithm 1 performs two kinds of
processing on vi: (1) computing data flow facts at the entry
point of v; (Lines 6 to 10), and (2) generating data flow facts
at the exit point of v; (Lines 12 to 14). Each vertex vi
undergoes these processing steps after extraction from Q
(Line 2). Algorithm 1 then propagates the wave of updates
to the successors of v; by inserting them in Q (Lines 15 to
17).

Algorithm 1 Vertex-Based DFA Generation // AE analysis
Input: G(V, A) with an outdegree 2; Start vertex s € V ; End vertex
E

Output: For each vertex veV in the input CFG, v.EntrySet,
v.ExitSet.
Initialize: vvj € V, vj.IN = vj.OUT = empty, vj.updateFlag = false,
and queue Q with s.
. while (Q is non-empty) do
Extract vj from Q;
vj.updateFlag = false;
if vj =s then
Insert the immediate successors of vj in Q;
for each vj where (vj, vij) € A do
for each entry e € vj.OUT do
if e is not read by v; then
Oj=0juUe;
for each vj where (vj, vij) € A do
vj.INtemp = N Oj;

BO®©® N OMONE

.
= o



63

12. if vj.INtemp <> vj.IN then

13. Vj.IN = vj.INtemp;

14. Vi.OUT = vj.IN \ kill(vj) U gen(vj) ;
15. vj.updateFlag = true;

16. if vji.updateFlag = true then

17. for each vk where (vj,vk) € A do
18. Insert vk in Q;

19. for each vj €V do

20. return vj.IN;

21. return vj.OUT;

Lemma 1: Let (vj, vi) be an arc in A and e be an entry in in
vj.out. The condition of the if statement on Line 8 evaluates
to true for e and v; no more than once. That is, each entry e
€ vj.OUT is read by v at most once.

proof 1. Suppose Algorithm 1 has already entered the if
statement on Line 8 for some e and v;. This means that e has
been labeled as read by vi. Thus, next time Algorithm 1 gets
to check if e is read by vj, the condition on Line 8 evaluates
to false.

Lemma 2: For any vertex v; that has an outgoing arc (v;, vi),
each entry e € vj.OUT will eventually be labeled read by vi;.

proof 2: Initially, vj.OUT for each vj € V is empty. The for-
loop in Line 6 iterates through all incoming arcs of each
vertex vi € V and will eventually get to (vj , vi). As a result,
any entry e € vj.OUT will be labeled on Line 9 because
initially all lists are empty. If new entry are imported in
vj.OUT from its predecessors in subsequent iterations of the
algorithm, then such entry will be labeled as read by vi.

Lemma 3: For each vertex vj € V, at some finite point in
time, vj.updateFlag will become false and will remain false.

proof 3: Lemmas 1 and 2 imply that all entries in the
predecessors of vj will eventually be labeled as read by vj,
and will keep their status of being read. As such, the
condition on Line 8 will never become true again when
processing arc (vj, vi). Therefore, Algorithm 1 will no longer
get to Line 15; i.e., vj.updateFlag will become false (on Line
3) and will never become true again.

Theorem 1: Algorithm 1 will eventually terminate.

proof 4: Lemma 3 implies that at some finite point in time,
the condition in Line 16 will become false for each vj € V
and will remain false. Thus, Algorithm 1 will eventually stop
inserting vertices in Q. Moreover, the remaining vertices in
Q are extracted on Line 2 in subsequent iterations of the
while-loop. Thus, Q will eventually become empty; i.e.,
Algorithm 1 exits the while loop.

V1. Proposed Method

Our proposed compositional method for data flow analysis
leverages a systematic decomposition of the input Control
Flow Graph (CFG) into its Strongly Connected Components
(SCCs), followed by a structured analysis and merging
process. This divide-and-conquer paradigm is central to
achieving high levels of time and space efficiency,
particularly for programs with complex control flow
structures and extremely large Npath complexities. For each
vertex vi €V in the CFG, our analysis maintains two critical
sets of information: vi.EntrySet to record all incoming data

A Time and Space-Efficient Compositional Method for Data Flow Analysis IE.Fazli

flow information and vi.ExitSet to record all outgoing
information. Depending on the analysis direction (e.g.,
forwarding analysis for RD or AE), the ExitSet of a vertex is
computed based on its EntrySet and the transfer function of
the statement within that vertex. For reaching a fixed point
and finalizing the analysis, the proposed method uses a
gueueing mechanism. We formally prove that this algorithm
eventually terminates while guaranteeing the same level of
precision as traditional, exhaustive global analyses.

The overall compositional analysis proceeds in three main
phases:

Component Graph Computation: The initial step involves
efficiently computing the component graph of the input
CFG. This process transforms the CFG into a Directed
Acyclic Graph (DAG) where each node represents an SCC.
This decomposition is crucial for establishing an efficient
processing order, as SCCs can be analyzed in topological
order within the component DAG.

SCC-Local Information Calculation: For each SCC in the
component graph, we calculate the sets of data flow
information associated with its internal vertices. Since each
SCC represents a smaller, self-contained portion of the
program's control flow (often containing loops or recursion),
traditional iterative data flow algorithms can be applied
efficiently within these local contexts. The reduced size of
the analysis domain within each SCC significantly improves
performance.

I:’ Program Control Flow Graph |

e Y
LJ

SCCs Extraction J

- CCFG Generation -

/" Preprocessing

. _d

L \
~ ) _

"/f)FA Generation ¥

¥y
| SCCs DFA Generation

y
| CCFG's DFA Generation
-

{ Merging v

'::.Cﬂmplt.‘ii: DFA Generation

v
-:-Tclal DFA of the program )

FIGURE 4. Overviéw of compositional rﬁethod for DFA

Global Information Generation and Merging: Finally, the
results from individual SCCs are systematically merged and
propagated through the component graph to generate the
final sets of data flow information for the entire CFG. This
merging process respects the dependencies between SCCs,
ensuring that global precision is maintained and that
information flows correctly across SCC boundaries.



64

VII. Experimental Results

This section presents the results of our experimental
evaluations of the proposed SCC-based method for DFA
compared to the iterative Vertex-based approach. To validate
the effectiveness and efficiency of our proposed SCC-based
compositional method, we implemented our approach and
conducted a comprehensive experimental evaluation. We
compared its performance against the traditional iterative
method, which represents a common state-of-the-art baseline
for precision in static data flow analysis.

TABLE 1. Modified benchmark CFGs

Graph structure after modification

Original Functions 2 CC | Npath

DdAD
)
sa8py
o]

AsmClassReader Accept 180 | 214 | 18 | 78 35 | 2.1e7
AsmClassWriterToByteArray | 215 | 258 | 24 | 103 44 | 6.1lell
SquareMesh2DereateLinks | 244 | 290 | 27 | 115 49 | 3.3e12

w
&
&
&
83
110
125
PrivilizerAsmMethodWriter | 355 | 431 | 38 [160| 173 | 68 | 4.5¢22
244
351
762
490
712

SingularValueDecomposition | 486 | 567 | 47 | 223 104 | 1.1e23
ListParserTokenManager 723 | 853 | 75 | 331 3f 131 2.0e32
BOBYQAOptimizer 874 | 994 | 83 | 409 155 |9.3e39
ParserParserTokenManager | 963 | 1119| 93 |448 213 | 1.3e44
InternalXsltcCompilerCUP | 1441|1713 | 149 | 626 273 | 4.1e68
XPathLexerNextToken 2160 | 2566 | 224 | 957 | 1073 | 404 | 8.4e97

E=lR -1 s I=rlR=al o R

=
=1

The experimental benchmark consists of a set of ten
modified CFGs from [13] (which are taken from Apache
Commons libraries. Table 1 presents the structure of these
CFGs. Columns 3 to 9 of Table 2 provide the number of
nodes, edges, and SCCs of each CFG. The total numbers of
nodes and edges of all SCCs are mentioned as SccNodes and
SccEdges, respectively. Columns 7 and 8 show the
Cyclomatic Complexity (CC) [14] and Npath Complexity
[15] of the input CFGs. The last column illustrates the
number of prime paths produced with the GPU-based
method. We compare the SCC-based and the Vertex-based
approaches with respect to their running time. We ran all the
experiments on an Intel Core i7 machine with 3.6GHz X 8
processors and 16 GB of memory running Ubuntu 17.01 with
gcc version 5.4.1.

Execution Time

I:l 0 sce-Basd

4000 [ vertex-basst

3,301.76

Time (s}

1,380.08

2000

|

10

11.32

11.86
16.93
1

1

8
w
'S
@
A
m
®

Source Graphs

FIGURE 5. Time costs of the vertex-based and SCC-
based algorithms on the benchmarks CFGs.

The bar graph of Figure 5 illustrates the time efficiencies
of the SCC-based and Vertex-based approaches. (The
reported timings for each approach is the average of fifteen
runs.) These values reflect the fact that the time the SCC-
based method is more effective for larger CFGs.
Specifically, for the CFGs of the bottom four rows of Table
1. On average, the SCC-based method consumed 43% less

A Time and Space-Efficient Compositional Method for Data Flow Analysis IE.Fazli

time than the iterative Vertex-based method. This time
efficiency increases significantly with growing graph size.
For example, the SCC-based time efficiency in the last graph
is 65%. The recorded times indicate that by increasing the
structural complexity, the SCC-based algorithm provides a
better performance. Thus, for real-world applications that
have a large number of lines and complex structures, the
SCC-based algorithm is expected to be highly efficient.

VIII. Related Works

This section discusses related works on the DFA. Static
DFA has been an active area of research for decades, with
numerous iterative and compositional approaches developed
to address the inherent challenges of program complexity
and scalability. The theoretical foundations for DFA were
largely established by Kildall's seminal work, which
introduced the lattice-theoretic framework and the
traditional iterative method for computing fixed points [2].
This iterative approach, which repeatedly propagates data
flow information until convergence over the entire CFG,
serves as a common baseline for precision for classical
problems such as RD, LV, AE, and VBE [3].

However, the scalability of the traditional iterative method
often becomes a significant bottleneck for large and complex
real-world programs [5]. Factors contributing to this include
the number of iterations required for convergence,
particularly in the presence of complex loops or irreducible
CFGs, and the substantial memory footprint needed to store
data flow facts for every program point [4]. Modern
programs with intricate control flow structures and high
Npath complexities can lead to an enormous number of
program points and potential data flow facts, making brute-
force iterative propagation impractical. Researchers have
continuously sought methods to improve the efficiency of
iterative algorithms, for instance, by optimizing iteration
orders (e.g., reverse postorder for forward problems) or
refining convergence tests [3, 7].

To overcome the inherent limitations of global iterative
approaches, compositional data flow analysis methods have
been extensively explored. These techniques aim to analyze
program components independently and then combine their
results, thereby reducing the scope of analysis at any given
time. Early compositional methods often focused on modular
analysis of functions or procedures. More advanced
techniques have explored various program decomposition
strategies, such as interval analysis, which partitions the
CFG into single-entry regions, or the use of program
dependence graphs (PDGs) and code property graphs
(CPGs) that integrate control and data dependencies for
comprehensive code representation [8, 9].

Our work builds upon the concept of decomposing the
CFG into SCCs. SCC-based decomposition has been
recognized as a powerful technique for handling loops and
recursive structures efficiently in graph algorithms, allowing
for a topological ordering of components that can simplify
fixed-point computation. While SCCs have been used in
various program analysis contexts, their specific application
to the precise and efficient computation of classical DFA
problems, while guaranteeing full precision, remains an area



65

of ongoing research, particularly when combined with a
novel memory management technique.

Furthermore, the memory efficiency of data flow analysis
is heavily reliant on the underlying data structures used to
represent and manipulate sets of facts. Common
representations include bitsets, sparse sets, hash-based
collections, and various forms of pointer-based data
structures designed for dynamic data [9]. Recent
advancements in scalable static analysis also explore
demand-driven approaches, which compute information
only when needed to save both time and memory,
particularly for complex analyses like points-to analysis
[10]. Approaches for binary analysis also leverage
specialized graph representations and optimized data flow
analysis to handle large firmware images efficiently [11].

Our proposed Two-level Set Accessing Method (TSAM)
extends our previous work on memory-efficient data
structures. Specifically, TSAM builds upon the TPAM
(Three-level Pointer Accessing Method) data structure
introduced in our earlier work [12]. A key distinction and
limitation of TPAM was its primary suitability for storing
intermediate partial paths, which involves a relatively stable
set of facts (path segments) that are primarily accumulated
for enumeration. In contrast, data flow analysis requires
storing dynamically changing sets of propagated
information, such as AE or LV. This involves frequent and
complex set operations (union, intersection, difference) and
dynamic insertions/deletions of facts during fixed-point
iteration. TSAM has been specifically adapted and optimized
to handle this dynamic and update-intensive nature, aiming
for superior memory efficiency for storing and accessing
facts during iterative fixed-point computations in the context
of DFA.

I X. Conclusion and Future Work

This paper presented a novel time and space-efficient
compositional method for Data Flow Analysis (DFA),
specifically targeting Available Expressions (AE), Very
Busy Expressions (VBE), Reaching Definitions (RD), and
Live Variables (LV). By decomposing Control Flow Graphs
(CFGs) into Strongly Connected Components (SCCs) and
employing a rigorous divide-and-conquer strategy, our
method effectively addresses the scalability challenges
posed by large-scale, real-world programs with high Npath
complexities. A cornerstone of our approach is the Two-
level Set Accessing Method (TSAM), a specialized pointer-
based data structure that drastically reduces the memory
footprint associated with storing dynamic data flow
information. We have formally proven the termination of our
fixed-point algorithm and demonstrated that our method
achieves the same high level of precision as traditional,
exhaustive global analyses.

The proposed compositional method (i) computes the
component graph of the input CFG; (ii) calculates the set of
facts of each SCC in the component graph, and (iii) generates
the set of facts of the given CFG with very low time and
space costs. We implemented and evaluated the proposed
methods versus existing approaches, and our experimental
results show that the proposed methods significantly

A Time and Space-Efficient Compositional Method for Data Flow Analysis IE.Fazli

outperform the state-of-the-art in dealing with programs that
have extremely large Npath complexities (see Figure 5).

Building upon the robust framework presented in this
paper, several promising avenues for future research exist:

Extension to Other Data Flow Problems: Investigate the
applicability and benefits of our SCC-based compositional
method and TSAM to a broader range of data flow problems,
including more complex analyses such as constant
propagation, taint analysis, and points-to analysis.

Inter-procedural ~ Analysis:  Extend the  current
intraprocedural framework to a full interprocedural analysis.
This would involve adapting the SCC decomposition and
information merging to handle function calls, returns, and
contextual sensitivities.

Parallel Implementation: Explicitly implement and
evaluate the parallelization strategies afforded by the
SCC-based decomposition. Analyzing independent SCCs
concurrently on multi-core processors (GPU-based) or
distributed systems could yield even greater speedups.

Application to Diverse Codebases: Apply the method to
an even wider range of larger, more diverse real-world
open-source projects or industrial codebases to further
validate its robustness and scalability in varied
programming language and application contexts.

TSAM Optimization: Further optimize the TSAM data
structure, potentially exploring hybrid representations
(e.q., linked lists for sparse sets, bitsets for dense sets) or
alternative canonicalization techniques to maximize
memory efficiency and access speed.

Formal Benchmarking for Npath Complexity: Develop or
leverage standardized benchmark suites specifically
designed to evaluate static analysis tools on programs with
extremely high Npath complexities, providing a more direct
comparison metric for scalability in such challenging
scenarios.

REFERENCES

[1] Tarjan, Robert. "Depth-first search and linear grajh
algorithms." 12th Annual Symposium on Switching and
Automata Theory (swat 1971). IEEE Computer Society,
1971.

[2] Kildall, Gary A. "A unified approach to global program
optimization." Proceedings of the 1st annual ACM SIGACT-
SIGPLAN symposium on Principles of programming
languages. 1973.

[31 Muchnick, Steven. Advanced compiler design
implementation. Morgan kaufmann, 1997.

[4] Cooper, Keith D., Timothy J. Harvey, and Ken Kennedy.
"[terative data-flow analysis, revisited." Rice Univ., Houston,
TX, Tech. Rep. TR04-100, 2004.

[5] Hecht, Matthew S. Flow analysis of computer programs.
Elsevier Science Inc., 1977.

[6] Nielson, Flemming, Hanne R. Nielson, and Chris
Hankin. Principles of program analysis. Springer Science &
Business Media, 2004.

[71 Yamaguchi, Fabian, et al. "Modeling and discovering
vulnerabilities with code property graphs." 2014 IEEE
symposium on security and privacy. IEEE, 2014.



66

[8] Akinyemi, Temidayo, et al. "A Comprehensive Review of
Static Memory Analysis." IEEE Access (2024).

[9] Eisenstat, Stanley C., Martin H. Schultz, and Andrew H.
Sherman. "Algorithms and data structures for sparse
symmetric Gaussian elimination." SIAM Journal on
Scientific and Statistical Computing 2.2, 1981.

[10] Yang, Xuqing. "Boosting static bug detection via demand-
driven points-to analysis." Third International Conference on
Communications, Information System, and Data Science
(CISDS 2024). Vol. 13519. SPIE, 2025.

[11] Gibbs, Wil, et al. "Operation mango: Scalable discovery of
Taint-Style vulnerabilities in binary firmware services." 33rd
USENIX Security Symposium (USENIX Security 24). 2024.

[12] Fazli, Ebrahim, and Ali Ebnenasir. "TPGen: A Self-
stabilizing GPU-Based Method for Test and Prime Paths
Generation." International Conference on Fundamentals of
Software Engineering. Cham: Springer Nature Switzerland,
2023.

[13] Bang, Lucas, Abdulbaki Aydin, and Tevfik Bultan.
"Automatically  computing  path  complexity  of
programs." Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, 2015.

[14] McCabe, T.J.: A complexity measure. IEEE Transactions
on software Engineering (4), 1976.

[15] Nejmeh, B.A.: Npath: a measure of execution path
complexity and its applications. Communications of the
ACM 31(2), 1988.

A Time and Space-Efficient Compositional Method for Data Flow Analysis IE.Fazli



